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2. Statistical problems like appropriate goodness-of-fit tests, confidence bounds
and selection of important or elimination of unimportant covariates should be
dealt with.
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We would like to congratulate the authors for presenting us with such a broad
overview of this important topic, and in particular on their proof of the
convergence of the backfitting method. The linear smoother to which they have
paid the most attention is the cubic spline smoother. Now smoothing splines can
be represented as signal extraction estimates in a model where the unknown
regression function is generated by a stochastic process. This allows us to take a
model-based approach to smoothing and estimating the components of an
additive model using smoothing splines, and in this comment we wish to contrast
this approach with that of the authors. A model-based approach for estimating
the additive components has much to commend it because: (i) All assumptions
are stated explicitly. (ii) It is a comprehensive approach which is able to deal
with a variety of problems including polynomial smoothing splines. (iii) Unlike
ad hoc approaches such as running means and medians, the model-based ap-
proach can deal with unequally spaced data. (iv) It suggests reasonable ways of
estimating unknown parameters either by maximum likelihood or Bayesian
methods. (v) It provides a framework for doing statistical inference, that is, for
setting confidence intervals for the unobserved components and the unknown
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parameters. (vi) It suggests efficient algorithms for doing the required computa-
tions. (vii) For each model-based approach there is usually an equivalent penal-
ized least-squares problem which provides some measure of how reasonable our
model is.

1. Stochastic model for one-dimensional smoothing. Wahba (1978)
showed that the solution to the penalized least-squares problem (4) in the paper
could alternatively be obtained by signal extraction as

1 E{{()5(1),..., y(n)}
with
(2) y(1) = f(t) +e(d),

where f(t) generated by the stochastic differential equation d?*f(t)/dt% =
oA~ 2dW(t)/dt. The e(i) are independent N(0, 62), and independent of the
Wiener process W(t), and A is the smoothing parameter. For simplicity, we
ignore the complications caused by the initial conditions in the solution of the
differential equation as they are not central to our discussion. Details are given
in Kohn and Ansley (1988). The smoothness properties of the solution (1) are
obtained directly for stochastic models by Kohn and Ansley (1983).

One immediate consequence of the model (2) is that we can apply results from
the time-series filtering and smoothing literature to obtain very fast and accu-
rate algorithms to compute both the optimal solution and Bayesian confidence
intervals. These algorithms are based on a state space representation for the
stochastic process f(¢) and the observations y(i) in (2). Details are given by
Kohn and Ansley (1987a) and Wecker and Ansley (1983), who apply the Kalman
filter and the fixed point smoothing algorithms to find the optimal solution (1)
and the Bayesian confidence intervals. In particular, our approach which is
based on a continuous-time prior yields model-based confidence intervals at
arguments lying between the observed values ¢;,. A later Bayesian approach
proposed by Silverman (1985), page 13, gives the same confidence intervals at the
arguments ¢; but narrower ones in between these arguments, as shown by Kohn
and Ansley (1988, pages 418-419).This is most easily seen when e(i) is identically
0 in (1) as then Silverman’s (1985) confidence intervals have zero length. Kohn
and Ansley (1988), pages 415 and 416, also resolve the paradox mentioned by
Wahba (1983) and Silverman (1985), page 13, who observe that the solution to
the optimal smoothing problem is smoother than the sample paths generated by
the prior and posterior distributions for f(¢).

Recently, a new smoothing algorithm for state space models was obtained by
Kohn and Ansley (1987b, 1989) which is faster and numerically more stable than
existing spline smoothing algorithms. It also enables the evaluation of the
cross-validation and generalized cross-validation function without additional

- computation.

2. Additive models. We view the observations as a sum of zero mean
independent Gaussian components. It will suffice to consider the three-
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component model

(3) y(l) =f1(si) +f2(ti) +e(i)’ 1= 1,°'°’n,

with the third component being the residual e(i) which we assume is indepen-
dent N(O, 62). The indices s; and ¢; belong to index sets I® and I®, respec-
tively, and each index set is either a subset of Euclidean space or an integer
lattice in such a space. Typically, each of IV and I® will be a subset of the real
line or the set of integers. Let Y be a vector of observations, and define
fl,obs = {f(s1)s-- s [i(sw)}s 1(s) = E{f(8)IY}, f1,obs = E( fl,oble) and put
var( f, o) = 0V, and A, = V(I + V;)™". We define fy gy fo(2), fi,oper Vo and
A, similarly for the second stochastic process f,(¢). Then fl(s) and f;( t) are the
best estimates of f,(s) and f,(¢). By a double-conditioning argument we have
that

(4) fr,o0s = E{E[ F1(8)IY, fo, 0] 1Y} = A} (Y = f, ops)-

Similarly we have that f; obs = Ag(Y — f; obs) £iving the normal equations (19) in
the paper and leading directly to the backfitting algorithm. We note that both
A, and A, are symmetric positive-definite matrices with eigenvalues in the
interval (0, 1).

Suppose that conditionally on f, ., we have an algorithm to compute
E[{(8)]Y, fyops)- Then we also have an efficient way to compute fl(s) once we

have f, 4, because

(5) f1(8) = E[ F1($)IY, £, 0bs = F2,0e) -

In particular, the backfitting algorithm allows us to compute f,(s) for all s € I®
and not just fl, obse More generally, if g is some functional of the {f,(s)}
stochastic process, for example a derivative, then we can similarly obtain & =
E(g|Y). We can deduce another important result from (5). Suppose that the
stochastic process for {f,(s)} is generated by the linear stochastic differential
equation, possibly more general than the second-order differential equation
underlying cubic spline smoothing models. Then f,(s) is a smooth function of s
with its smoothness properties described in Kohn and Ansley (1983).

Kohn and Ansley (1988) show the equivalence between the stochastic model
(3) and the multicomponent penalized least-squares problem (21) in the paper.
Because the normal equations for backfitting follow directly from the stochastic
model, as shown above, the equivalence between smoothing by backfitting and
by penalized least squares is immediate.

The additive components model was investigated by Wecker and Ansley
(1982) using a stochastic modeling algorithm, with the components estimated by
splines, and estimation carried out by the backfitting algorithm, which Wecker
and Ansley (1982) called alternating projection. This paper also gives practical
examples and indicates a method of proof of the convergence of the backfitting
algorithm based on von Neumann’s (1950) alternating method and its extension
by Halperin (1962), although details are not given. The method of proof depends
on casting the penalized least-squares problem as a projection problem in Hilbert
space as in Kohn and Ansley (1988). Details will be given elsewhere.
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3. Smoothing, signal plus noise models and cross-validation. The.
stochastic models (2) and (3) are examples of a class of models known in the
time-series literature as signal plus noise models. In general, we can write such
models as y(i) = f(i) + e(i) with f(i) the signal, e(i) an independent N(0, 02)
noise sequence which is also independent of f(i). Put f, = {f(l), L ()Y, Y
the observation vector, 6’V = var( f,,,) and A = V(I + V)~L, Kohn and Ansley
(1989) show that

fors = E(faelY) =AY and var(f,,|Y) = %A

which implies that the influence matrix A is equal to the conditional variance of
the signal (up to the scalar 02). Therefore, if we have an efficient method for
computing var[ f(i)|Y], i=1,...,n, then we have an efficient method for
computing the diagonal elements A,; of A. In their paper the authors assume
that the smoothing parameters are given. If they are not, as is usually the case,
then they can be estimated by the cross-validation function CV and the general-
ized cross-validation function G defined, respectively, as

Cv = E{y() @) Z{l-

i=1

= N P2
G= % (s0) - F())’[(1 - raymy
i=1
Thus, if we use an algorithm based on the stochastic model to compute the
conditional variances efficiently, then we can compute CV and G efficiently. In
other words, cross-validation and Bayesian confidence intervals can be computed
by the same algorithms.

4. Evaluation of the likelihood. Maximum likelihood, with the likelihood
based on the stochastic model, is another way to estimate unknown parameters.
This was done successfully by Wecker and Ansley (1983) for smoothing a single
function, with a marginal likelihood approach proposed by Kohn and Ansley
(1987a). The likelihood for the model (3) will be Gaussian with exponent
—$(Y)/20? and with denominator o™(det D)l/ 2 where D=1+ V, + V, and
$(Y)=YDY. It is computatlonally expenswe in general to evaluate det(D)
but if we can evaluate f, = f1 obs T f2 obs i O(n) operations, then we can
evaluate {(Y) in O(n) operatlons because $(y)=Y(Y - fobs) Our suggestion,
used successfully in time series, is to estimate unknown parameters, with the
exception of o2, by minimizing {(Y). If f,(¢) = 2(t)'8, then the computation
simplifies considerably. Then p(Y), the density of Y, is given by [p(Y|8)p(8) dB
so that {(Y) = YK'{I - KZW~'Z'K’}KY and D = Q(K'K) 'W~, where the
matrices K and W are defined as K'K = (I + V) ' and W= Q! + Z’K'KZ,
and Z is the n X r matrix with the ith row 2(¢,). If f,(s) is generated by a state
space model, then both {(Y) and det(D) can be evaluated in O(n) operations
using the Kalman filter.
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5. Semiparametric models. In Sections 3.2 and 5.4 of the paper the au-
thors discuss semiparametric models, which are additive models where one or
more of the components is assumed to be linear. The case where all but one of
the terms is assumed to be linear, often known as partial spline smoothing, was
first discussed by Ansley and Wecker (1983) using a state space approach. This
paper gave a number of examples and preceded all the papers on this topic
referenced by the authors. The solutions for f and fs° given in (36) of the paper
are those appearing in Ansley and Wecker (1983), and discussed in more detail in
Kohn and Ansley (1988). An efficient method for evaluating the estimate § is
given by Kohn and Ansley (1985), extending the method used by Ansley and
Wecker (1983) and Wecker and Ansley (1983).

More generally, suppose that in model (3), fi(¢) = 2(t)'B, where z(t)is r X 1
vector of regressors and 8 has the prior distribution N(0, 62Q) with @ an r X r
nonsingular matrix. Then, p(B|Y) = p(Y|B)p(B)/p(Y), where p(B|Y) is the
conditional density of B given Y with the rest of densities defined similarly. Let
B = E(B|Y) and define the matrices W, K and Z as in part 4 above. It follows
with a little algebra that § = W~'Z’K'KY and var(B|Y) = 62W~". Therefore

Frobs = AlY = ZB), f5,o0s = ZB, var(f,, 4o Y) = Z var(B|Y)Z’ and

var( f, oelY) = var( f, elYs B) + var{ E[ f, ulY, B1IY)}
= 02A1 + A4, va.r( fz,obs|Y)A{-

We can similarly show that
Var( fl,obs + fz,obs|Y) = 02A1 + 02(I - Al)Var( fz,obs|Y)(I - Al)'

We deduce the important result that if f,(s) is generated by a state space model,
then f, jpe fa,0ps and for i = 1,..., n, var{ fi(s,)|Y}, var{ fy(¢,)|Y}, var{f(s;) +
f(t,)|Y}, and the cross-validation functions CV and G can all be computed in
O(n) operations.

We note that if @ = kI, and we let £ — oo, then B is diffuse and this is
equivalent to taking B as a vector of parameters. The computation of W
simplifies in the obvious way. The additive model y(i) = f,(s;) + 2(¢;)B + e(i)
is particularly important because: (i) We can use it to add independent regres-
sors to a spline model. (i) We can model one additive component as a spline and
the other components as linear regressors or polynomial splines.
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I am grateful to be granted the opportunity to comment on this interesting
paper. It represents a synthesis of several smoothing techniques under one
characterisation, it proposes a useful way of carrying out multiple regression
that lies somewhere between multiple linear regression and the general additive
models that underline ACE, and it investigates the properties of a practicable
algorithm for obtaining the fit of the models to a set of data. There is much to
discuss in the paper but, apart from a few brief comments and questions near the
end, I should like to concentrate my remarks on a particular aspect, namely, the
concept of degrees of freedom associated with the fitted models and the relation-
ship with the choice of smoothing parameter.

I shall lead into my specific points by observing that, at first sight, the
structure under consideration offers a variety of immediately applicable smooth-
ing techniques, as indicated early on in Figure 2. However, a closer reading
reveals that, if one is confronted with a particular set of data, the situation is not
quite so straightforward. The authors remark that all their generic, linear
techniques are characterised, in some guise, by a smoothing parameter. If,
however, the choice of smoothing parameter is to be data-driven, then the
linearity is lost. They are quite correct, of course, but unfortunately one finds
repeatedly, in the literature, that the choice of a good smoothing parameter
is considered to be a rather sensitive issue and that automatic, data-driven



