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able to determine precisely /. (When [ = 1, the method is essentially the Aitken
acceleration procedure.) Of course, one stops far short of 2/ iterations to obtain a
good approximation to f.

Therefore the extrapolation procedure consists of the following two steps:

1. Co?pute Gauss—Seidel iterations, f1,..., f 27, forcing f* to lie in the kernel
of P.

2. Extrapolate the iterates using the e-algorithm to get an improved approxima-
tion to f.

We have used the above algorithm on various problems with relatively good
success. A first data set which was given to us by the authors turned out to be
incompatible and as a result of our calculations an error in a spline fitting
program was detected! A second set of data was provided where Gauss—Seidel
converged slowly and the application of the above algorithm yielded very
satisfactory results.

Conclusion. Using the e-algorithm to accelerate convergence of a basic
iteration for linear systems with nonsymmetnc matrices seems to be a very
promising approach.

Acknowledgment. The authors wish to thank Mr. Will Sawyer for per-
forming the indicated computations.
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We would like to congratulate the authors for a stimulating paper. Additive
models for approximating high-dimensional regression problems have been around
for quite some time, but a number of important problems have remained
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unsolved. The present paper fills a large gap by studying in detail and with
mathematical rigor numerical and computational problems within a statistical
framework.

The first part of the paper is devoted to a discussion of various smoothing
methods and some of their properties. A rather bewildering “fauna” of smooth-
ing techniques to be found in the literature is presented one after the other. It
then is shown that the important methods can be formalized as penalized
least-squares methods, which give access to a powerful machinery both in
statistical and computational terms. It should be noted that an equivalent
approach is to consider smoothing techniques within the framework of the
so-called “method of sieves” as presented by Geman and Hwang (1982). As it
stands, the penalized least-squares approach does not, however, answer the
question whether some smoothing method should be preferred uniformly or for
some situation. There is, therefore, no strict rationale for choosing one of them.

Except for regression splines with variable knots, a common feature of the
more sophisticated methods is that all are some linear weighted scheme of the
data with the amount of smoothing tuned by one parameter. As a matter of fact,
methods like kernel estimators, smoothing splines, k-nearest-neighbor estimators
and locally weighted running lines are quite similar in an asymptotic sense. It
can be proved that asymptotically all can be put into the framework of kernel
estimation theory [for smoothing splines this was shown by Silverman (1984) and
for locally weighted running lines by Miiller (1987)]. Trying to understand how
these methods are related theoretically, we have studied kernel estimators with
bandwidth A(¢) varying with the density d of the design as follows [see
Jennen-Steinmetz and Gasser (1988)]:

At) =A,d(t)™%, O<ax<l.

A value a = 0 corresponds to ordinary kernel estimation, @ = 1/4 to smoothing
splines and a = 1 to k-nearest-neighbor estimation. Choosing the optimal method
thus means choosing the optimal value of a. Interestingly, there is no uniformly
optimal «, whereas a = 0 is minimax optimal. In the examples inspected,
a = 1/4 (i.e., smoothing splines) was never much more inferior compared to
a = 0, but a = 1 often was.

There are some further comments we would like to make with respect to the
smoothing part of the paper.

(i) Kernel smoothers do not need O(n?) operators, but can be computed in
O(n) operations for polynomial kernels W [which include optimal and minimum
variance kernels, see Gasser, Milller and Mammitzsch (1985)]. Following the
definition of Gasser and Miiller (1984), the smoothed value #; at design point x;
is given by

n
9= X wilx;x;0)y;,

J=1

where A is the bandwidth and w); is a weight derived from the kernel W. If W is
polynomial of some order p, for some a,,..., a,,, (given by W) w; is obtained
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where s; = (x;_; + x;)/2. Straightforward calculations yield
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By a rearrangement of sums, one notes that an O(n) algorithm is possible since
the sum over j needs only to be computed once,

p+1 &
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The basic idea is simple, but unfortunately a naive implementation is numeri-
cally unstable (note the awkward difference). A less simple but stable algorithm
has been found in the meantime.

(ii) Bias at the boundaries for kernel estimators can (and should) be reduced
by using appropriate boundary kernels [Gasser, Miiller and Mammitzsch et al.
(1985)]. These allow the same rates of convergence as for interior points.

(iii) Estimating o2 by the residual sum of squares renders a heavily biased
estimate as the authors note (Section 2.7.2). There is, however, a simple nonpara-
metric estimator with a negligible bias [Gasser, Sroka and Jennen-Steinmetz
(1986)], which performed well in subsequent work.

(iv) The present paper avoids the problem of the choice of the smoothing
parameter, which is acceptable. It should nevertheless be stressed that Section
2.7 only leads to a comparison of bandwidths for different estimators and not to
an objective choice of the optimal smoothing parameter (see also Section 2.2).

For anyone who plans to apply additive modeling to his or her data, the
second part of the paper is a major step forward. It becomes clear how practical
computations can be done and what the main properties of the algorithm are. It
seems to us that studying backfitting algorithms could be of even more general
interest: In our work on self-modeling nonlinear regression we found it essential
to break down a large (nonlinear) least-squares problem into smaller ones by an
iterative procedure similar to a backfitting algorithm [Kneip and Gasser (1988)].
This type of procedure might be of general interest in sophisticated model
building.

After seeing quite a lot of theory and algorithmic work, interesting applica-
tions could now provide feedback for further statistical work. Nevertheless, we
find two areas to be most interesting right now.

1. It would be important to understand which classes of multivariate problems
can be well analyzed by additive modeling, and also when it fails by leading to
wrong conclusions. The analogy to ANOVA tells us that often interaction
effects are more interesting than main effects. :
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2. Statistical problems like appropriate goodness-of-fit tests, confidence bounds
and selection of important or elimination of unimportant covariates should be
dealt with.
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We would like to congratulate the authors for presenting us with such a broad
overview of this important topic, and in particular on their proof of the
convergence of the backfitting method. The linear smoother to which they have
paid the most attention is the cubic spline smoother. Now smoothing splines can
be represented as signal extraction estimates in a model where the unknown
regression function is generated by a stochastic process. This allows us to take a
model-based approach to smoothing and estimating the components of an
additive model using smoothing splines, and in this comment we wish to contrast
this approach with that of the authors. A model-based approach for estimating
the additive components has much to commend it because: (i) All assumptions
are stated explicitly. (ii) It is a comprehensive approach which is able to deal
with a variety of problems including polynomial smoothing splines. (iii) Unlike
ad hoc approaches such as running means and medians, the model-based ap-
proach can deal with unequally spaced data. (iv) It suggests reasonable ways of
estimating unknown parameters either by maximum likelihood or Bayesian
methods. (v) It provides a framework for doing statistical inference, that is, for
setting confidence intervals for the unobserved components and the unknown



