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TESTING FOR A UNIT ROOT NONSTATIONARITY IN
MULTIVARIATE AUTOREGRESSIVE TIME SERIES

BY NicorLaos G. FOUNTIS AND DAVID A. DICKEY
North Carolina State University

The characteristic equation of a multiple autoregressive time series
involves the eigenvalues of a matrix equation which determine if the series is
-stationary. Suppose one eigenvalue is 1 and the rest are less than 1 in
magnitude. We show that ordinary least squares may be used to estimate the
matrices involved and that the largest estimated eigenvalue has distribu-
tional properties that allow us to test this unit root hypothesis using critical
values tabulated by Dickey (1976). See also Fountis (1983). If a single unit
root is suspected, a model can be fit whose parameters are constrained to
produce an exact unit root. This is the vector analog of differencing in the
univariate case. In the fitting process, canonical series can be computed thus
extending the work of Box and Tiao (1977) to the unit root case.

1. Introduction. Consider the multivariate first-order autoregressive
[AR(1)] process defined by the rule

(1.1) Y,=AY,_ | +e, t=1,2,...,
where

Y, =[Y.Y%,.... %, 1%

e, = [el,t’ €9, tre0es ek,t]T’
Y, =9,

and {e,; ¢t = 1,2, ...} is a sequence of independent identically distributed multi-
variate normal variates with mean () (a vector of 0’s) and variance matrix I
Henceforth we assume

k—1
(1.2) E:OAiX(Ai)T

is of full rank. In linear system theory, (1.2) is the definition of controllability of
[ A, zl /2].

We also assume

‘

(1.3) A has an eigenvalue 1 and the rest les® than 1 in magnitude.

There exists a real matrix R such that
V=R4R- [% ¢T],
where the eigenvalues of the (k — 1) X (k — 1) matrix D are those of A which
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are less than 1 in magnitude. The matrix R™! provides a transformation

(1.4) RY,=2,=[z,2%,]"
for which

(1.5) Z,=VZ, | +e¢,
where

e, =R, = [el,t, er{t]T.
Equation (1.5) can be written as
21 =21 T &g
Zy,=DZy, | +¢&,

Write the appropriately partitioned covariance matrix of ¢, as
Jll J12 :|

(1.6)

R'ER Y =d= [
FE Ty
and note that

1

k-
i\T
Mll J12 Z (Dt)

k-1

.EOVJ(V) S| R k-1 o

- Z DU21 Z DL 22(Dl)
i=0 i=0

k-1
= R—l[ goAiz(Ai)T](R_l)T’

Now % is positive definite and R is full rank so J;; > 0 and -3 Diy(DY)" is
full rank. :

LEMMA 1. The controllability assumption (1.2) and the unit eigenvalue
assumption (1.3) imply

(i) n!

M=

0
Z, .27, > Y. DJy(D') =@ a.s,

t i=0

21» tZéI,‘t = Op(n)7

M= &

(i)

t=0

™M=

(iii)

21,t€2,¢ = Op(n)'
¢

0

Proor. Result (i) follows from Theorem 2 of Lai and Wei (1985). Results (ii)
and (iii) follow by arguments similar to those of Lemma 3.4.3 in Chan and Wei
(1988). See also Dickey and Fuller (1979) and Tiao and Tsay (1983). O



MULTIVARIATE AUTOREGRESSIVE TIME SERIES 421

2. Distribution of estimators. The matrix A is a £ X k real matrix whose
eigenvalues determine whether the sequence {Y,} is stationary. If all of the
eigenvalues of A are less than 1 in magnitude, we will say that the series is
stationary. Otherwise we will say that it is nonstationary. This differs slightly
from the convention for stationary series because we have fixed the initial value
Y,. Given the observations Y}, Y,,..., Y,, define the & X n data matrices

Y=[Y;t=1,...,n] and Y, =[Y,_;;t=1,..., n].
The ordinary least-squares estimate of A is given by
An = (YYLT)(YLYI:F)_I‘

Define Z = R™'Y, Z, = R™'Y, and V, = (ZZF )2, Z})"' = R'A R.

LeEMMA 2. The controllability assumption (1.2) and unit eigenvalue assump-
tion (1.3) imply V, —» V a.s.

S

Proor. By Corollary 3 of Lai and Wei (1985), fin — A as. Hence V, =
R7,R—> R AR =Vas. O

By similarity, the eigenvalues of V, and A, are the same. Now let X, be the

eigenvalue of An (or V") with largest magnitude. Lemma 2, and its assumptions
(1.2) and (1.3), imply

(2.1) A, -1 as.
Let

M=

W=

n n
2 _ _ T
21, t-1 W, = Z 21,129,115 W, = Z Zy 1-1Zg 41>
t=2 t=2

t=2

n n
— — T —
W4,n = Z 21, t—181, ¢ W‘i,n = Z Z2, t—181, ¢» vve,n =
t=2

t=2

21,t-182,¢

“
1=

and

n
— T
W7,n = Z Zz,z—132,t-
t=2

Then

V _ V= m,n W5,n W,l,n ‘4/2”1‘" !
" VVG,n I/V7,n VVZ,n VVS,’n .

Following Chan and Wei (1988) we obtain the following lemma.
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LeMMA 3.  Assuming controllability (1.2) and a unit root (1.3),

n"2 W

1,n
- r
n ! m,n K74
-1/2 >1¢ ’
n W‘S,n C
-1/2
n~\2 W,

where T = L7 ,vH}, &=05T" - dy), T, =258 y/2(-1)/"H, v, =
[2/2) - 1)';7]2 H; ud N, J,) and C ~ N0, J ® ®) zndependent of T and &.
Chan and Wei (1988) and White (1958) give expressions for T and ¢ as
functionals of a Weiner process.

Now partition V, as

LEMMA 4. Assuming (1.2) and (1.3),

(a) IVl = O,(n7Y),

(b) ||‘712|| = Op(n_lﬂ)
and

(c) n(vu - 1) 3 §&/T,

where £/T has the limit distribution given in Fuller (1976), page 371.

Proor.
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By Lemma 3-and direct moment computations on W ,,,
In7Y2W5 Ll = O,(1),  IIn™'Ws ,ll = O,(1)

and
In=2W, Il = O,(1),

which completes the proof. O
THEOREM 1. Under assumptions (1.2) and (1.3),
n(X,—1) 3 ¢T.

PrOOF. Let f(A) = |V, — AlI|. Then f(A,) =0.Since V,, — A I -,
a.s. by Lemma 2, eventually V22 - A I is nonsingular and

14
F(R,) =1V = &,) + ViV = Ro1) ™ Vil [V — R, 11
However |V22 - )\nI | = ,-o|D — I| # 0 a.s. Hence eventually
A a A A —1.A
Vii—A,= _V12(Vz2 - XnI) Var.-
Consequently,
Vi1 = Kol = O,(IViall IVaall) = Op(n™%),
by Lemma 4. Therefore
n(xn - 1) = n()A\n - 1711) + n(v'11 - 1)
. &z
=0,(n" V) +n(V,, - 1) > ¢T
by Lemma 4. O

COROLLARY 1. Let
(2’2) Yt = Blyvt~l + - +Bth—p + Et:

423

oD =1

where ¢, are iid N(0, ¥) with ¥ positive definite. Assume thai the characteristic

equation

p
AL — Y APB;| =

Jj=1

has one root A\, = 1 and the other pk — 1 roots less than 1 in modulus. Let Ej

n

be the least-squares estimate of B; based on observations (Y, ..., Y,) and define

X to be the root of

D
API - Z Ap_]Bjn =

Jj=1

with the largest modulus. Then
n(X,-1) 3 ¢T.
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ProoF. Let

th Bl Bp &,
o e P
Y . .

tp+1 6 ... I ¢ ¢
Then B satisfies (1.3) and the covariance matrix of e, is g] = ¥* It is known

that (B, £*1/2) satisfies (1.2) [cf. Lai and Wei (1985)]. Now observe that
(2.3) X,=BX, , +e,

k
ow

The least-squares estimate of B is

Il
~
- oS

¢ ... I ¢
This implies that f\n is the eigenvalue of Bn with the largest modulus. Clearly
Theorem 1 is applicable. O

3. Stationarity transformation. Reparameterize (2.2) as

p—1
VY= -CY_, - ¥ Wyy,,
j=1
where C=1—-B, - --- —B, and W;=B;,, + B;,, + --- +B,. Note that C

has exactly one zero eigenvalue. Let g, be the right eigenvector Cg, = @. This
implies g, = (LB;)g, so that BG, = G,, where B is given in (2.3) and GT =
(gl &1, gT, ..., gD)T. Thus we can find a real matrix R such that R !BR is
block diagonal with upper-left block 1 and with the first column of R being G,.
Let IT be the left eigenvector of C corresponding to the zero eigenvalue.
Then there is a matrix T with T7!CT having 0 in all first row and all first
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column entries and with the first row of T~! being /7. Let the first row of
R~! be partitioned as (v{, Y3, ¥3»---» Yy). Since this is a left eigen-
vector of B corresponding to the unique unit eigenvalue, we see that
Yy =vIB, +v%, i=1,2,..., p, where v,,; = 0. Summing over i we
get (I — B, — B, — --- —B,) = § so that y, can be taken to equal / and all
other y’s can be obtained from [T and the B;’s. :

The transformation matrix T transforms Y, into 7'Y, which has a unit root
process (not necessarily a pure random walk) as first entry and a stationary
vector process forming the other 2 — 1 entries. To see this, note that the matrix
R~ transforms X, into Z, = R~'X, which has a random walk z,, as its first
entry and remaining entries forming a stationary process Z,,. Define the & X kp
matrix H =[1,0,0,..., §] and note from (2.3) that HX, = Y,. We have T"'Y, =
T-'HRZ, and we note that the first column of 77 'HR is (1,0,0,..., 0)T which
shows that only the first element of T'Y, involves z;,. Granger and Weiss (1983)
refer to the situation where linear combinations of nonstationary series are
stationary as “cointegration.” The last £ — 1 rows of T~ ! provide cointegrating
vectors in our case.

Let £, denote the first element of T~ 'Y,. Note that £, can be expressed as a
linear combination Byz,, + ¢fZ,, with B, # 0 using the arguments of the preced-
ing paragraph. Similarly note that Y, = HRZ, implies that the ith element of Y,
can be expressed as Y, = 8,2,, + «}Z,,, where g, = (B, B, ---, B;)" is the previ-
ously mentioned eigenvector of C. Using the orders of convergence of sums of
squares and cross products for stationary and unit root processes, a simple
regression of x;, on £, produces a regression coefficient converging to 8,/8,. Now
x;, — (Bi/By)é, = (aF — (Bi/By)ad)Z,, so the residuals from this regression are
(approximately) stationary. Plots of these residual series show interrelationships
of component series adjusted for the system nonstationarity. This regression
approach was originally suggested to us by David Findley.

Note that n~2LY,Y,T converges to a random (lim n~2Y2%) multiple of g,g7 so
g, is approximated by the eigenvector of n~2LY,Y,T associated with the largest
in magnitude eigenvalue of LY,Y,T. This is an extension of Box and Tiao’s (1977)
approach for the stationary case.

4. Example. Consider the U.S. birthrate as measured in births per thousand
married women from 1948 through 1980. A logarithmic transformation seems to
be appropriate. Let y, , be the log of birthrate for mothers age 20-24 and let y, ,
be the log of birthrate for mothers age 25-29. The data were obtained from the
U.S. Bureau of the Census. Define the column vector Y, = (y, ,, ¥, ,)"- A plot of
the data is given by the solid lines in Figure 1.

Our estimated equation is

Y=[—0.1874 +[1.4085 0.1829]Y
t 0.2925 0.2907 1.3060] !
(4.1)

_[05727 -0.0226]y

01797 04797 | T2 T &
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FIGURE 1: U. S. BIRTHRATES LOG SCALE

ORTGINAL SERIES SOLID LINES
CTOP AGE 28-24, BOTTOM AGE 25-20)
BROKEN CURVE IS TRANSFORMED SERIES X1

I 5.4
R 5.3

R 4.81

1845 1857 1668 1881

The test consists of finding the solutions m to
|m2[ — B, m — B,| = (m — 0.943589)(m — 0.716984)
X (m? — 1.0539695m + 0.4121333)
= 0.
Then compare 33(0.943589 — 1) = —1.86 to the left tail critical values of the top
display of Table 8.5.1 of Fuller (1976). The unit root hypothesis cannot be
rejected at any reasonable level of siAgniﬁcange. . . )

From (4.1) we get an estimate C = I — B, — B,, where B, and B, are the
estimated coefficient matrices. Computing the eigenvalues and vectors gives
P10T = [0.63303 0.83493 [ 0.1642 —0.2055 ] [0.814504 0.796860

0.60788 —0.85342 ]| —0.1110 0.1737]1 0.58016 —0.60417

_ [0.01784 0 ]
0 0.32006 |°

Computing T~'Y,= U, and the first difference VU, we fit (2.3), using least
squares to get the coefficients for each row.

[ 0.1256 —0.0179 0
vy, = [—0.3636] + [ 0 —0.3201]U'—1

[ 0.6416 0.1751
—0.0868 0.4109

(4.2)
]VUt—l + 7.
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In the univariate case the coefficient on U,_, would be a scalar near 0 and an
exact unit root for U, would be imposed by setting this coefficient to 0 in (4.2),
that is, omitting U,_; from the regression. The vector analog is to omit U,_,
from the first row regression in (4.2). If we also leave out the intercept in the first
row (0.1256 has standard error 0.2367) we get

0 0 0
U= e * | v,
0. —0.3201
43) 03636] T lo —0.320
0.6431  0.0904
*| —0.0868 0.4109]VU'—1 + Mg

Now the entire matrix system can easily be recast into the original Y scale
using T on the restricted estimates (4.3),

Y=[—-0.2897] +[1.3765 0.2549]Y _[0.5315 0.0373
t 0.2197 0.2679 1.3573 |7t [0.1504 0.5224

This model contains an exact unit root and its forecasts are, then, the analog of
forecasts from a differenced univariate series.

A plot of y, ,, ¥, , and the canonical unit root process £, is given in Figure 1.
The canonical series displays the overall trend in the data. We could plot the
other canonical series but we feel it is more informative to regress each element
¥; + on §, and plotting the (singular) system of residuals as suggested earlier. A

Y, o +e.

FIGURE 2: RESIDUALS FROM REGRESSION ON X1

SOLID LINE MOTHERS AGE 28 T0 24
BROKEN LINE MOTHERS AGE 25 TO 29

0.851

0.041

8.031

4 o o
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]
[
o
®
p—
N

-9.831

-0.04. T Y L v Al T L T T T v T v T v
1945 1957 1969 1881

Fic. 2.
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plot of the regression residuals for the birth series is given in Figure 2. A study of
this graph helps to reveal changing preference over time for motherhood earlier
in life versus later in life.

We do not claim that the adjusted series are white noise, only that they are
stationary. Since the adjusted series taken together form a singular bivariate
system, the autocorrelation structure of the two component series is the same.
The first six autocorrelations are 0.83, 0.52, 0.23, 0.03, —0.05 and —0.08. An
autoregressive model of order 2 with coefficients 1.3 and —0.5 fits the data well.
The fitted autoregression has two complex roots with magnitude 0.75 which is
consistent with an assumption of stationarity for these adjusted series. Whether
0.75 is significantly less than 1 would ideally be decided by a statistical hypothe-
sis test, however it is unclear what the effect of our adjustment might be on
available unit root tests.

Acknowledgment. The authors wish to thank an anonymous referee for
suggesting the method in Sections 1 and 2. This led to greater generality than we
originally achieved.
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