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THE BRACKETING CONDITION FOR LIMIT THEOREMS ON
STATIONARY LINEAR PROCESSES

By Yuzo Hosoya
Tohoku University

This paper aims at improvement in regularity conditions on spectral
densities for the limit theorems of the quasi maximum-likelihood estimator
and the quasi likelihood-ratio statistic. The approach parallels the Daniels—
Huber—Pollard proofs of central limit theorems under nonstandard condi-
tions for i.i.d. situations. The results of the paper enable one to dispense with
excessive regularity conditions on the spectral density.

0. Introduction. In order to establish the asymptotic properties of the
quasi maximum-likelihood (QML) estimator and the quasi likelihood-ratio statis-
tics for general stationary time series models, this paper presents a set of
regularity conditions which is very much in parallel to the ones under which
Daniels (1961), Huber (1967) and Pollard (1985) established the asymptotic
normality of the maximum-likelihood estimator for i.i.d. cases. The QML estima-
tor was first introduced and studied by Whittle (1952) and since then generaliza-
tions have been tried in various directions in such studies as Walker (1964),
Hannan (1973), Hosoya (1974), Dunsmuir and Hannan (1976) and Hosoya and
Taniguchi (1982). But those generalizations are mainly about the generating
process of observations, and as far as the regularity conditions of the spectral
density are concerned, they are more or less based on common assumptions. The
aim of that section is an improvement in the latter aspect.

In this respect, Pollard (1985) gave a general setup of a stochastic differentia-
bility condition and especially presented a weaker condition for bracketing the
remainder term in the stochastic differentiability condition than Huber did.
Lemma 2.4 in Section 2 which is crucial for the following central limit theorems
is proved by Pollard’s bracketing-function method.

It may be pertinent here to illustrate the usefulness of the results of this
paper. Suppose that I(w) is the periodogram based on a finite realization of a
stationary process which has a spectral density f(w — 8), where 6 indicates the
location of the peak. The criterion function to be minimized in order to obtain a
quasi maximum-likelihood estimate of # is expressed as

(0.1) D(f,, 1) = f_"ﬂ[log fo - 0) + I(w)f(w - 6) 7] de.

Suppose now that f has a sharp peak such that f(w — ) = exp(—|w — 6]); then
it is not differentiable at § = w and the usual regularity condition does not hold.
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402 Y. HOSOYA
On the other hand, the criterion

(0.2) D(fy, fy) = [ [tog (@ = 0) + f(w)f(w - 6) 7] dw
is smooth with respect to § and it holds that, if |6 is small, .
D( f, fo) = (27 — @%) + 702 + 0(6?)

and it behaves like a quadratic function in a neighborhood of the origin. This
latter property of D(f,, f,) is the one which is needed in the following limit
theorems.

There is another example of application which seems to be practically more
interesting. This time, suppose f(w — ) is sufficiently smooth everywhere and
has a peak at 6. It is noted that the minimization of the criterion (0.1) is very
much affected by the performance of I(w) in a region where f is relatively small;
but this is not necessarily desirable if the estimation of the location of the peak
is of interest and not the overall fit. For such a case the modified density,

f*(w—0)={f(w_0)’ iff>e,

€, if f <e,
might be fitted instead of f [Hosoya (1978) proposed such a modification for the
purpose of minimax prediction]. Then f* is continuous but not differentiable
with respect to 6, whereas

f_ﬂﬂ[log *(w = 8) + f(o— 8)f*(0 — 8) Y] do

can be smooth in general.

Section 1 gives limit theorems of the QML estimator and the quasi
likelihood-ratio statistics for fourth-order stationary processes under nonstan-
dard conditions in Huber’s sense (Theorems 1.2-1.4). The proofs of the theorems
and the related lemmas are all given in Section 2. As for the notations and
symbols used in the paper, J denotes the set of integers; degree(s) of freedom is
abbreviated as d.f.; df(x,)/dx denotes the derivative of f evaluated at x = x,;
R? is Euclidean p-space. 8(x, y) = 1 if x = y and 0 otherwise. I, is the identity
matrix of order k2; A’ and A* denote the transpose and the conjugate transpose
of a matrix A, respectively.

1. Limit theorems. Suppose that ‘a vector-valued process {z(¢): t € J)} is
generated as

(1) 2(6) = ¥ G(J)elt-J),

where the z(¢) and e(¢) have s real components, the matrices G(j) are s X s
such that X2, |G;(t)| < oo for all 1 <j, k& < s; the process {e(¢),t € J} is a
fourth-order stationary process such that E(e(t)) = 0, E(e(t)e(s)) = 8(t, s)K
for a positive-definite matrix K and the joint fourth cumulant of
e,(t), ex(2y), e(t3), e4(t,) is equal to k., if ¢, = t, = t; = t, and is equal to 0,
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otherwise, where e, e, denotes components of e. Then the process {z(¢)} has a
spectral density matrix
(1.2) f(w) = (1/27)k(w)KEk(w)*, -7<w<m,
where k(w) = £%.,G(j)e™’.
The following is assumed throughout:
(A) Denote by %(t) the o-field generated by {e(l); ! < t}. Then,

(i) for each B,, B, and m, there exists a positive ¢ such that
Var| E{e(n)es (n + m) | #(n = 1)) = 8(m,0)Ky,] = O(+>7),
uniformly in n;
(ii)
E|E{eﬁl(nl)eﬁz(nz)eﬁa(n:,,)eﬁd(n‘t)|gﬂ(n1 _ t)}
~E{eg(m)eg(na)ega)en(na)}1 = (),

uniformly in n,, where n, < n, < nz < n, and n > 0.

For a partial realization z(1),...,z(n), denote by Cov(m) and I(w), respec-
tively, the serial covariance and the periodogram matrix; namely,

1 n—m ,
Cov(m)=; Y z(t)z(t+m), O<m<n-1,
t=1

and Cov(m) = Cov’(—m) for —n+ 1 <m <0and

*
1 n . n .
() = 5| Zat0e || Satoe)
270\ .o t=1

Suppose statistical inference is conducted on a parametric model of {z(t);
t € J} which is structured as

0
(1.3) z(t) = Y G(J;0)e(t—J),

i=0

Jj=

where the matrices G and the vectors & are of the same size as in (1.1),
E(e(t)) =0, E(e(t)e(s)) =8(¢t,s)K(pn); 0 € ® and p € M, where ® and M
are open subsets of R? and RY, respectively. Set ¢ = (6, p) and ¥ = © X M and
denote by oo the point at infinity of the one-point compactification of ¥ in
case ¥ is not compact. The notation G(J, ) and K(¢) is also used. The coef-
ficient matrices G(Jj, ¢) are assumed to satisfy G(0, y) = I, and
I otr G(J, Y)K(Y)G(J, $) < oo and thus the model process has a spectral
density

flw; ¥) = f(w; 0,p)

(1.4)
= (1/27)k(w; 0)K(p)k(w; 0)*, -7<w<m,



404 Y. HOSOYA

where k(w; 0) = £5.,G(j, 0)e™/. Assume throughout that f(w;¥) has an in-
verse for |w| < 7 and y € V.

Assume also that logdet K(p) is differentiable and at each point of
f(w; )~ ! is differentiable a.e. w with respect to y. The derivatives are denoted,
respectively, as H;(y) = d logdet K(p)/dy; and hj(w; )= 9f (w; ¢)/dY;
and h; is assumed to be measurable ae. . The notations H(y) and
tr{A(w; ¥)f(w)} represent, respectively, the (p + g)-vectors whose jth elements
are H(y) and tr{h;(w; ¢)f(w)}. The h;(w; ¢) are assumed separable through-
out.

Let S, (¢) be defined as

(15)  S,;(¥)=H;(y) + %fltr{hj(w;np)In(w)}dw, j=1,...,p+q,

and let S, (¢) be the vector {S, (¢)}.
In order to prove Theorem 1.1, assume for each j, j=1,...,p + ¢q:

(B.1) At each y € ¥, there are square-integrable Hermitian matrix-valued
functions A j(w), hj(w) and r > 0 such that for |, — y| < r, h(w) < hj(w; ¥;) <
h(w) and

(1.6) ;;f_ﬂﬂtr{itj(w) - iLJ(w)} dw <,

given ¢ > 0, where the inequality A < B implies that B — A is nonnegative
definite.

(B.2) A j(¥) = H(¥) + 2m) Y7 tr{hj(w; ¥)f(w)} do has a unique zero at
V=Y, V.

(B.3) There is a compact neighborhood C of ¥, such that for y € ¥\ C,

(1.7) clj(¢)g~j(“’) Shj("-’;o) Sc2j(“’)§j(“’)’

where c¢,; and c,; are real-valued and &, and g; are Hermitian square-inte-
grable matrices.
(B.4) There exists b(d) = b, > 0 such that

(i) liminf, ., A)|/b(#) = 1,
(if) limsup, _,,,@7) Y7, T, trl{ey ($)8,(@) = €, ($)&,(0)}f(@)] dw/b(#)?

<
(1i’ii) limsup, , ,, |, ($)|/b(8) < oo and limsup, _, , |c2;($)|/b(0) < cc.
(B.5) The spectral density f satisfies for some a > 0,
18) sup [ erl(f(@) = flo =) (1(e) - f(a = N)}] do = O(e")
as ¢ = 0, where f is extended so f(w) = f(w + 2m).
THEOREM 1.1. Suppose 1[3,, is a sequence of measurable functions of

(z(1),...,2(n)) taking values in ¥ such that Sn(‘/:n) — 0 in probability as
n — . Then under Assumptions (B.1)-(B.5), {,, tends to { in probability.



BRACKETING CONDITION FOR LIMIT THEOREMS 405

A value x[jn such that Sn(‘l:n) = 0 is said to be a quasi maximum-likelihood
(QML) estimate of ¢ and the above theorem asserts the consistency of it. The
central limit theorems and the related results are established below under the
following assumptions [(C.4) is for Lemma 2.4]:

(C.1) For some a > 1, (1.8) holds.

lin(l) sup tr[{hj("-’§ ¥) - hj(w; 4’0)}
re0 T s
(C2)
X {h(w; ¢) — h(w; 1[/0)}*] dw=0
Jj=1,...,p +gq.
(C.3) Given ¢ > 0, there exist an integer m(¢) and a partition UY(r),..., U™9(r)
of the ball in ¥ with center y, and radius r and square-integrable Herrmtlan

matrix-valued functions h‘(w), h‘(w) such that, for all sufficiently small r and
for all j, h‘(w) < h(w; Y) < h‘(w) if y € U{(r) and

(1.9) j_ tr{Ri(w) — Ri(w)} < er.
(C4) |A(Y)| = a4|¢ — Y| for some a, > 0 in a neighborhood of .

THEOREM 1.2. Suppose both Vn S ({,) = 0 and §, — ¥, = 0 in probability
as n — o, and (C.1) and (C.3) are true. If M is differentiable at = {, and the
maltrix of the derivatives A;; = d\;/3¢; is denoted as A, Vn(J — Yo) has the
asymptotic normal distributzon with mean 0 and covariance matrix A~U(A")7},
where U is the matrix whose ( j, l)th element is represented as

Uy = % /_"ﬂtr[ F(@) (@3 %) F(@)y(w; @5)] de

110+t T wa g [ RO bok(e) da]

(27T)abcd—1 ab

X

2 [ B @0 k() o]

where [ ],, denotes the (a, b)th element.

Assume henceforth that the process {z(¢))} is the process as defined in the first
paragraph of this section but also that its spectral density given in (1.2) satisfies
f(w) = f(w; ¥4), Yo € ¥. Moreover assume the following:

(D.1) The h(w; ¢) are jointly measurable with respect to (w; ), where ¥ is
endowed with the Borel subsets.
(D.2) There exists a neighborhood N of ¢, such that

@) /7, tr[(3/0¢;)f(w; ¥)(3/dY,) f(w; ¥)*]dw is bounded in N for j, k =
1,...,p+q,
(i) f7, tel f(w; ¥)f(w; ¥)*]dw < oo for ¢ € N and
(iif) /7, el f(w; $)*h,(w; $)hy(w; ¥)*] dw < o for ¢ € N.
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(D3) V() = (1/2)mf7 o] f(; )b, (5 (5 ¥)hy(ws $)] deo is continu-
ous at Y =y, and the matrix V(¢,) = {V,,(¥,), 1 < j, k < p + q} is invertible.
(D.4) H(¥) is continuous in a neighborhood of y,,.

THEOREM 1.3. Suppose that (C.1)-(C.3) and (D.1)~(D.4) are true and sup-
pose also that ynS,({,) — 0 and v, — Yo — 0 in probability as n — o,. Then
Vn (8, — 6,) and Vn (i, — n,) are asymptotically independently normally distrib-
uted with mean 0 and the covariance matrices which are given, respectively, by
Vo' and Vig)'Uo)Vip)', where ¥, = (8, fi,)) and Vy, Vg, Uy, are submatrices of V
and U such that Vi) = (V51 <i, j<p}, Vo ={(Visp+1<i j<p+q)and
Up={Uwpp+1=<j,k<p+q).

The following theorem is important in order to derive the asymptotic distri-
bution of the likelihood ratio statistics. Set

(1.11) L (¢) = —n|logdet K(¢) + %f_ﬂﬂtr{f_l(w; V) (0)} dw|.

THEOREM 1.4. Under the assumptions of Theorem 1.3,
zn({pn) - En(‘l’o)
%Z ZVU(‘PO)\/’T({[;;; - lpo)i‘/’?(lpn - ‘PO)J + Op(l)
J

(1.12) A 5 -
) = é Z Z ‘/lj(lp())m(on - 00)im(0n - 0O)j
i=1j=1
7 q
+é Z E ‘/q+k,q+l(‘p0)‘/;(ﬁn - F’O)k‘/g(ﬂn - lu‘O)l + Op(l)'
k=11=1
Suppose a nested model is given as follows. Let g, 4q1,---,q, be positive
integers such that ¢, < ¢, < -+ < q,- Let ©, be a nonempty open region of
R% and let ©,= {a € 0, a,,, =0,...,a, =0}, where a, denotes the g;th

coordinate of the g,-vector a. Let 0 = (a € ©,;a ¢ 0, ;) forI=1,..., p and
let ©f = ©,. Denote by a(l) a q,-vector, I =0,..., p, and sometimes a € 0,
such that a; = a,(l), i=1,..., g, and a, = 0 for i > g, is identified with a(l).
Then consider again the vector-valued stationary process {z(t): t € J} given in
the first paragraph; suppose that the basic parametric model is structured as
(1.3) but this time © has the hierarchical structure ®, c ®, c --- c ©,, where
the ©’s are defined above. Let M be an open set in R” and define the
alternative hypothesis H* as H* = {(0,p): 0 € 6* and p € M} and the null
hypothesis as H* = {(0,p): 6 € ©, and p € Mj.

Set y = (8, p) as before. Assume that for each 7, I = 0,1,.. ., D, there exists a
sequence of statistics \fz\n(l) = (0;(1 ), (1)) in ©F X M such that

(E.1) Vn S,(¥,(1)) - 0 in probability as n — oo and
(E:2) ¥,(1) = ¥y = (8, py) € ©y X M in probability as n —» .
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Define the quasi log-likelihood ratio L, as L,;;=L0,),0,0) -
L (0 (), (), where L, is defined in (1.11).

THEOREM 1.5. Assume the conditions (C.1)-(C.4) and (D.1)~(D.3) are true
and also suppose that (E.1) and (E.2) hold Then L,, Olr+-<» Ln op are asymptoti-
cally Jozntly distributed as — —Z‘,l x2 Hi=1..,p, where the x2 2’s are inde-
pendent x? random variables wzth q;,— q;-, d. f

2. Proofs of theorems. This section provides the proofs of theorems in
Section 1 and also the necessary lemmas and their proofs. Let {z(¢)} be the
fourth-order process given in the first paragraph there. Let L? be the Banach
space of square-integrable complex-valued function with respect to the Lebesgue
measure on (—=, 7] and let || || be the norm. Set

1 =
A)=— -
%) = 5 [ 8(w)K,(A = @) do,
where K, is the Fejér kernel.

LEMMA 2.1. Suppose g € L? and that there is an a > 0 such that

(2.1) sup [ 1g(«) - g(w — N)|* dw = O(e")

Al<e® —7

as € > 0. Then
lo, - &11° = —f lon(w) = g(@)P” do = O(n™").

ProOOF. For any & € L? such that ||| < 1, the relationship
= (0.(0) - g@)h(@) do

holds where f__ denotes the shift g_ (A) = g(A — w). On the other hand, it
follows from the relationship
K, (w) < mln{(n +1), al/[(n + 1)w2]}

for a constant a, that

1 ﬂK
< o [ Kul0)lg - g de

S d
or | Kul)lg = gl de

(2.2) n+1
<

f g — &-.ll

1/n
dw + —
el IR A neioien (0 T 1)

2@

where a, > 0 is a constant. Now for sufficiently large n, (2.1) implies that

n+1l i \“?n+1
(2.3) [ e ||dws(;) :

2 mn
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whereas there exists a; > 0 such that

|w|*2/w? dw

—g wdw <
g — &g-.ll/ n+ 1% ngjoi<n

n+1 ‘/;/nslwISW
(2.4)

- 2a3{,ﬂ.(a/2—l) _ (l/n)(a/Z—l)}
+{(n+1)(a/2-1)}.
The lemma then is a consequence of (2.2)-(2.4). O

LEMMA 2.2. If the spectral density f satisfies (2.1), then
E [ |EL, u(w) = fu(w)*de = O(n™*).

LEMMA 2.3. Under Assumptions (B.1)-(B.5), there exist a positive constant ¢
and a compact neighborhood C of ¢ such that

,}er;oﬂ{¢égf\clsn(¢)l > e} = 1.

Proor. Thanks to (B.4)(i), given & > 0 there is a compact set C such that
IAl/b(¢) > 1 — ¢ on ¢y € ¥\ C. Then

sup {Snj(‘l/) - Aj(‘l’)}/b(‘!’)
w\C

< {supICQJ'(‘P)I/b(tI/)}(%r)_1 f” tr{g;(«)(I,— f)} do
w\C Lg

+(277)—1 fjﬂtr{(%,’(‘l/)g,’("-’) - clj(‘!’)gj(w))f(w)} dw/b(8),

where the first term in the right-hand side — 0 in probability, since the integral
is equal to

[ (@)L, - B@)) do+ [ trg,(a)(E(L) ~ 1(@)) da

and the first term — 0 in probability and the second term — 0 in view of
the Schwarz inequality and Lemma 2.1. A similar relationship holds for
inf(S, (¢) — A;}/b(¥) and so in view of Assumption (B.4)(ii) there is an &, > 0
such that given n > 0,

B{S.(¥) = AM¥)I/b(¢) <1—e} >1—1n

for sufficiently large n. The result then follows from the relationship

1S.(¥)1 2 {IN¥)I/b(¥) = 1S,(¥) = AM¥)/b(¥) } b

by the choice of ¢, and ¢ so that & < ¢, and & < (&g, — £)b,. O
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PROOF oF THEOREM 1.1. Given ¢ > 0, let B(r(y)) be the open ball {y:
¥, — ¢| < r(¢)} and R ;(w) and h (@) be the bracketing functions which satisfy
(1.6) for & and r = r( 4/) Since there is a constant ¢ and the identity matrix I
such that cI — E(I)) is positive definite for all n,

sup 15,,(y2) = 8,,(9)1 5 (@m) e[ tr(By(0) = () do

B(r(y))
+(277)_1f_ﬂwtr{7zj(w) h(0)){I, - E(1,)} de

S cg +0,(1)
so that

sup |S,(¢,) = S,(¥)| < c(p + q)e + 0,(1).
B(r(y))

Since ¥/(A) is continuous thanks to Assumption (B.1), given an open neighbor-
hood N of 4/0, there is e, > 0 such that info 5 AN(¥)| > ,. Suppose that
B; = B(r(y;), j =1,..., K, be a open finite subcover of C\ N. Then

inf |S,(¢)| 2 ln,fl7\(¢)l — sup sup|S,(¥) — S,(¥,)| + sup|S,(¥;) — A(¢),|
C\N J A J

282—c(p+q)£1+0(1)

since sup;|S(¢,) — A(¢,)| = 0 in probability. Now choose & so that e, —
c(p + q)e;, > 0 and set & = e;,c( p + q)e;. Then the proof is complete. O

The next lemma essentially parallels Pollard’s Lemma 4.

LEMMA 24. If (C.1)-(C.4) are true,
Lo 1S (¥) = Su(¥) = MW/ {n™ 2+ A(¥)]} = 0

in probability as n — o for small erough d,, where v, is the value defined in
(B.2).

ProoF. Denote for simplicity A Aw;¥) — h(w; ¢,) as h— h, and set
T(8) = @m)~7, tr{(g — ho)XI, —E(I )} do and denote ||g, — &l° =
@m) Y7 tr{(8 — 82)(& — &)*} dw. Also set

Q(r) = (2m) /7, sup tr((h — ho)(h = hy)") do.

l=sr

Without loss of generality assume d, = 1 and Q(1) < oo. Since

@) [ (k= h)(T, - )} de

sup
l¥l=1

< sup |T,(h)| + sup
Wis1 =1

[ a((h = ho)(EL = )} d
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and since the second term above is not greater than @(1)||EL, — f|| which is of
order O(n~%?)(a > 1) in view of Lemma 2.2, it suffices to show that as n — oo,

sup |T,(h)l/(n™2 + A(¥)]) = 0.

¥l=1
Choose k&, such that n/2 < 4%*! < n and let B(k) be the ball with center
and radius 27% k& = 0,1,..., k,, and let A(k) be the difference B(k)\ B(k — 1).
Given ¢ > 0, let U%,...,U™ be a partition of B(k) for which (1.9) holds for ¢
which is determined below. Without loss of generality, the bracketing functions
Ri, h% can be assumed to satisfy ||A’ — k|| < Q27*) and ||&' — Ayl < Q27*).
As in the proof of Theorem 1.1, since E(I,) is bounded uniformly in n and w,
there is a constant ¢, such that ¢, — E(I)) is positive definite where I is the
identity matrix. Then since 2 and I, are Hermitian and I, is nonnegative
definite,

(25) T.(h) < T(%') + (27)~ f_ﬂtr{(ﬁi - RYE(L,)} dw

< T (R') + c,e27*

for y € U'. Set ¢ = a,¢/(4c,) for a, in Assumption (C.4). It follows from (2.5)
that

Pl sup T,(h)/ (n "2 + N($)I) > ]
(2.6) AR

< m(¢)max P{Vn T, (h') > ea,yn 2~ **}.

By an argument similar to that in Walker [(1964), pages 373-374], a constant c,
can be fixed so that

Var{Tn(iti)} < 02||7li — holl” < c,@(27).

Thus in view of the Chebyshev inequality, the right-hand side in (2.6) is not
greater than

m(&)e,Q2*)/(eayn2=* )" = m(e)c,Q27*) 4+ /(ne?).

A similar bracketing method is applied to bound P{inf acy T(h) > —¢} and
consequently

P,[sup TR/ {n 2 + M)} > ] < 8m()c,Q(2 )4k /(ne?).
A(k)
Furthermore, it is shown in a similar way that

P,[ sup [T,(R))/ {2 + \(9)]) > ] < @2 %) /e,

B(ky)
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Set k’ so that for k > &/, 8m(&')c,Q@(2%)/e% < ¢; then

R[sumT,.(h)v{n—l/? ) > ]
B,

k-1 ko
é( T+ k,)R[suplTn(h)l/(n_l/“IA(\P)I) >e]

k=0 A(k)

+P,

sup |T,(h)|/(n™2 + N (¥))) > e]
B(kgy)

< 8m(&)c,Q(1)(4* — 1)/(3ne?) + e(4%™1 = 1)/(3n) + c,Q(27*0) /¢”.

Since &’ is independent of n, the first and the third terms above — 0 as n — «
and the second term is less than &, whence the lemma follows. O

LEMMA 25. ‘/E{Sn(%) + A(zfx,k)} — 0 in probability as n - oo if
VnS(¥) — 0 in probability and Py, —vYol<dy) > lasn -

Proor. The lemma can be deduced from Lemma 2.4 in a way quite similar
to that in Huber [(1967), page 230]. O

PROOF OF THEOREM 1.2. It is shown that yn S,(y,) tends to a multivariate
normal distribution with mean 0 and with covariance matrix U; then the
theorem is a straightforward consequence of Lemma 2.5. First of all, note that
E{(VnS (y,)} » 0as n - oo since

RS, (4) < 5 [ (T (05 vo)hy (i 40)*) do

x oo 7w e) = 1) (fiw) - ()" de

and Lemma 2.3 is applied to the second factor in the right-hand side, where
flw)=1/2af" K, (A)f(w —A)dA. Set

1 =
a9(¢) = 2—[ exp(iwt)h (; ¥y)dw, a=1,...,p+gq
7 g

and denote by «{?)(t) the elements of the matrix. Given arbitrarily fixed con-
stants A, @ = 1,..., p + ¢, consider the linear combination

Yn = Z}\a[sn(‘ljo) - E(Sn(‘l’o))] a

n—1

- ¥ tr[{%kaa(“)(s)}\/ﬁ{COV(s)—E(Cov(s))}

s=—(n—-1)
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and set Y, =Y, , +w, ,, where
-y tr[{Z)\ a<a>(s)}r{00v(s) — E(Cov(s))} |.
|s|<m

It can be shown that

(2.7) lim sup lim sup E(w, ,,)* = 0,

m— oo n—oo

because

ptgq p+q

Ew, )= ¥ n Y L Al (s)ap(t)

h,i,j, k=1 m<|s|,|t|<n—1 a,b=1
XE[{Covhi(s) — E(Cov,(s))) {Covjk(t) - E(Covjk(t))}]

< XX XN a$2(s)]1ad(2))]

h,i,j,ks,ta,b

X 1 X_‘. [IYhJ(l)| V(L + ¢ = 8)| + |vp(l + t)v;,(1—s)]

+lk7 (0,8, 1, L+ 2)]],

where v, (t) = E{z,(0)z (8)} and k3, 4(0,s,1, 1+ ¢t) is the fourth cumulant of
2,(0), 2; (s), z{(1), z;(1 + t), whereas it holds that

L lafP(s)| Ia§2)(t)l;‘;. {asD1a(Z+ ¢ = )1+ a2+ 8) v, (2 - 5)1)

<of ¥ n,,,-(z>|}2{ S (o) Y |ajk(t>|2}l/2

l=—o0 |Is|=m J=—o
and

L1ebP(s) ()] 165,40, 5, 1, 1+ 1)]

s, t

< max |Kabcd|<maxla )(s)|}{max|a(b)(t)|}

a,b,c,

4

x{z 1 gogla,-,-(m} :

whence (2.7) follows in view of 3 _ |a{?)(s)|? < co.



BRACKETING CONDITION FOR LIMIT THEOREMS 413

For fixed m, the application of Theorem 2.2 of Hosoya and Taniguchi (1982)
can show that V, , has the limiting normal distribution with mean 0 and

variance

om= X Y X AAP(s)aP(2)

h,i, j,k0<|s|,|t|I<xm a, b

0

x ¥ {th(l)m(l b t—s) + i+ Or(l—s)

+ Y i chethc(r)Gid(r+s)Gje(r+l)ka(r+ l+ t)}

c,d,e,fr=—o0
Since the series
Y e (b)(t){ > Dyl +t - 3)}
s, t=—o0 l=—o0
is absolutely convergent, the repeated use of the Parseval equality leads to
lim ) > "‘}u)(s)a(b)(t)Zth(l)Yik(l +t—s)
m=0 pog, jk1<|s|, |t|<m l
(2.8)
=2m [ tr] f(w)ho(w; o) ()R $0)] do.
Similarly

> > af?(s)af )(t)Zth(l +t)y;(1—s)

h,i, j,k1<|s|, |t|I<m
tends to the same quantity in the right-hand side of (2.8). On the other hand, by
the application of the Parseval equality again,

im Y Y a(s)all)

m— 0 Is], [t|<m p=—o0

X 3 Gu(p)Gu(p + 8)Gu(p + )Gy (p + 1+ 1)

I=—-o0
1 = 1 =
=_{—[ E* ()R o xpo)k(w)dw} {——f E* (@) Ry (; \po)k(w)dw}
27 J_, cal 2w g ef
Consequently
ptq
lim o2= Y AU,
m= o0 a,b=1

and since the constants A, are arbitrary, the theorem follows. O
The following three lemmas are for Theorems 1.3 and 1.4. Set

1 (=
N5 (1, ) = Hi(9) + 5 [ tr{B(ws ) (@3 92) )} do
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LEMMA 2.6. If (D.1)-(D.4) hold, there exists a neighborhood N, of y, such
that

A (¢,¢) =0 fory € Nandj=1,...,p+q.

Proofr. The following equalities hold:

1 /=
log K(y1) —log K(42) + 5 [ [17(w; ¥) = 17(w3 ¥a)] £ (w3 ¥) do

- S o [ |He) - Hiv)
29)
+/Oltr{hj(w; Yo) f(w; ¥5) ) dt| dw - (Y; — ¥s);

= Z [N da)dt (4= 4),,
J

where ¢, = ty; + (1 — t)¢y, and the order of intergration is interchangeable in
the second equality because

1 - 1 - 1/2
E[_ﬂltr{hj(w; ¥ f(w; ¥y) } dow < [g[_ﬂtr{hj(w; Yo )h*(w; ¥,) ) dw]
. 1/2
X [-2.177/_,,&{ fw; ¥2) f*(w; ¢2)} d“’]

and each factor is finite, thanks to the assumptions. Since, according to Hosoya
and Taniguchi [(1982), page 149], the quantity in the left-hand side of (2.9)
cannot be positive and since A%({,, ¥,) is continuous with respect to ¢, A5(¢5, ¢,)
must be 0. O

LEmMA 2.7. If Assumptions (C.2)(ii) and (D.1)-(D.4) hold, the A (y) are
differentiable at y = Y, and I\ (Y,)/0y, = — Vy(¥,), where

Va8 = oo [ (1 9hy 03 )15 )il 9)) o

PROOF. Set y,= (1 — )y, + ty and set f(w; ) = df(w; ¥)/3Y;. In view
of the previous lemma, in a neighborhood of y,,

1«
Hy(y) + g/_ﬂhj(w; ¥)f(w; ) do =0;
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hence

>‘j(¢) - )\j(‘l’o)

1 v
= — %f_ﬂtr{hj(w; V)(f(w; ¥) = fw; ‘Po))} de

1 a 1
- E%/_ﬂtr[hj(‘% ‘P)j(; f(‘*’? ‘Pt)hk(‘*’i ‘Pt)f(w:‘Pk) dt dw(‘l’ - ‘Po)k-
On the ofher hand,
1 /=
2wl
-

Vi(¥,) dt + R(v),

“tr{ (w3 9)F(3 v Ra(w; 90 F(05 9,)} dedo

where

IR(4)I <5 [ (3 90) = by 9)) s 90)) dedo

< [%fjﬂj{;ltr{(hj(w; ¥,) — (e ‘P))
X (hj(w; ;) = hj(w; ¥))*} dtdw]w

X

1 1/2
-2-';/_ _/(‘)ltr{ fu(es o) falw; ¥,)*) dtdw] .

Since the first factor in the right-hand side above tends to 0 as ¢ — {,, thanks to
(C.2) and the second term is bounded, |R(y)| — 0 as ¢ — ¢,. Consequently,
since V), is continuous at y = v, the result follows. O

LEMMA 28. If 1 <i<p, then

(210) Uy =~ [ i )l 9)1(05 )5 9]y, o
and if 1si5pandp+1sk5p+c}, U, =0.
ProoF. The first assumption holds because
B* (w5 ¥)hi(w; $)k(w; ¢) = K(p) " k(w; ) (3R (w; ¥)/39;)

+(9k*(w; ) /9%, ) k*(w; ¥) K(p) ",

and the Fourier coefficients of &~ '(w; ¥ )(dk(w; ¥)/dY;) are 0 for the nonposi-
tive indices while those of (dk*(w; ¢)/d¢,)k*(w; ¥) ! are 0 for the nonnegative
indices. On the other hand,if 1 <i<pand p + 1 <j < p + q, the integrand of
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U;; is equal to

e[ o1 9B (5 ) —tr[{—k(w DjEw| 7 “(u)}k‘l(w;xl/)}

+tr[K(p){ 7,

where the first term in the right-hand side has nonzero Fourier coefficients only
for the positive indices and the second term only for the negative indices. Thus
the result follows. O

k(o w}k*(w ¢>{1K ‘(u)}],

Proor oF THEOREM 1.3. The theorem is obtained by incorporation of
Lemmas 2.6-2.8 in Theorem 1.2 in a straightforward way. O

ProoF oF THEOREM 1.4. It holds that
(211) OL,/04; = ~H,(¥) — 5= [ by V)T () do
in a neighborhood of y,, because
L,(41) = L(¥) = — (logdet K(y,) — logdet K(y,)}
- %g [ [ el v e)) dede - (4, - ),
where y* = ¢y, + (1 — t)y, and the integral
[ r{r (e )1(0)) d

is continuous at ¢ = y, in view of Assumption (C.2) and the Schwarz inequality.
It follows from (2.11) that

L,(¥) = L,(%o)
(2.12) Zf\/_ (W) = S, (8)) dt -V (9 = ) + 0,(1),

where S, /() is defined in (1.5) and ¢, = ¢y, + (1 — t)¥. On the other hand,
(2.13) sup V|8, (¥) = S,(9) = (M (3 = A, (9)}] = 0

0<t<
in probability since yn S J(\,l/) and Vn (S, A¥o) + A (\,b)} — 0 in probability and
since SuPosts1‘/_|Sn,(‘Pt S, i(¥o) + Ai(¢,)] is also shown to tend to 0 in
probability by an argument similar to Lemma 2.4. Consequently the relation-
ships (2.12) and (2.13) imply that

L(¥) = L(¥o) = - Z/(J‘ﬁ{xj(¢t) = N(9) ) dt - Vr(F = o), + 0,(1).
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But since
(N () =M () = (¢ - 1)§V,-k¢r7($ — o)+ o(Vnld — ¥,
it follows that
L(¥) - L(¥o) = é)jj%%ﬁ(@ —Yo) Vn (¥ = ¥o), +0,(1). O

ProOF oF THEOREM 1.5. It follows from Theorems 1.3 and 14 that
2(L,(¢,(1) = L,(¥y), I =1,..., p, have the same limiting distribution as

Q@

g ; ﬁ(é\n(l) - Ho)i\/r_z,(ﬂ:l(l) - ao)jVij(‘Po)
# X LA ial0) = wa) (1) = o) Ve (o).

On the other hand, it follows from Lemma 2.5 and the proof of Theorem 1.2
that {\/I—L(é\n(l) =0, Vn(fi, (1) — 1y}, I=1,..., p, are jointly distributed as
(V(1)"Wn S(1), Vg'Vn T,}, where V(1) = {V,,i, j = 1,...,q,} and S,({) and T,
are column vectors {S, (¥o), J=1,...,9;} and {S,(¥o), J=q, +1,...,9, +

r}, respectively. Therefore L,, o, ..., L, o, have the same limiting distribution as

~—é{ Y ¥ VH(E S, 0]V Sul¥0)

k=11=1

9 90
- Z Z Vkl(O)mSnk(‘PO)ﬁSnl(‘Po)}’ j= 1,---,[),
k=11=1

where V*4( ;) signifies the (k, ) element of V(). Since Vj;(¥,) is symmetric
and positive definite, there exists a lower-triangular nonsingular real matrix C
such that C'C = V;(¢,)~". Denote by C;; the (i, j) element of C and denote by
C® the triangular matrix {C, ; k, j=1i,...,q;}. Set w(n) = C~WnS,(p),
denote by w;(n) the ith element and denote by w”(n) the column g;-vector
{wi(n), j=1,...,q9;}). Then it follows from the triangularity of C*” that

COW(J)CW' ! = i . Consequently, the L, ,,’s are expressed as
noi = — 5 {w?(n)CO V() TICO O (n)
—wO(n)CO-1(0)"'COw®(n) }

q.

=-1 X w(n)? i=1,...,p.
J=gqo+1

|l

Since Vn S,(p) has the asymptotic normal distribution with mean 0 and covari-
ance matrix V(;)l in view of Theorem 1.2, wi(n), j = 1,..., q,, are asymptotically
independently standard-normally distributed; thus the theorem follows. O
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