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POWER COMPARISONS FOR INVARIANT VARIANCE RATIO
TESTS IN MIXED ANOVA MODELS

By PETER H. WESTFALL

Texas Tech University

A class of invariant hypothesis tests is considered for the purpose of
testing a variance ratio arising in mixed models. Members of the class are
most powerful for specific alternatives and limiting members of the class are

- Wald’s test and the locally most powerful test. It is demonstrated that the
locally most powerful test has the highest and Wald’s test has the lowest
asymptotic power when an asymptotically unbalanced sequence of ANOVA
designs is considered under Pitman alternatives.

1. Introduction. In mixed linear models it is frequently of interest to test
hypotheses concerning components of variance; for example, one may be con-
cerned that a variance “between” items (02) is too large relative to a variance
“within” items (¢2). Such a problem may be formulated as a test of hypothesis
for the ratio p = 02/0? of the between to within variances.

For unbalanced experimental designs it is not generally possible to find a
uniformly most powerful test under the usual invariance and/or unbiasedness
constraints. Spjetvoll (1967) derived the most powerful invariant (MPI) test for p
in case of a simple null and alternative (H,: p = p, versus H;: p = p,). Since the
resulting test has the undesirable feature of depending on the value p;, he
derived a corresponding test which is independent of p, by letting p; — co. He
noted that the test resulting from this procedure achieves high power for distant
alternatives and that the test is exactly equivalent to a test which was proposed
by Wald (1947) and has been discussed more recently by Seely and El-Bassiouni
(1983) and Harville and Fenech (1985).

In this article the class of tests considered is the set of MPI critical functions
along with the Wald test and the locally most powerful invariant (LMPI) test
(obtained by letting p, —» p, in the MPI test). When experimental designs
become “large” under Pitman alternatives the LMPI test emerges with the
largest asymptotic power. The asymptotic powers of the remaining members of
the class of tests form a monotonically decreasing function as p, = co. The
limiting and smallest asymptotic power obtains for the Wald test.

2. A class of tests. The notation is similar to that of Seely and El-
Bassiouni: Let R(A) and r(A) denote the range and rank of a matrix A, let S
denote the orthogonal complement of a set S and let N/(p, Z) denote the
s-dimensional normal distribution with mean p and covariance matrix 2.

The model considered is

(2.1) Y=XII+ Bb+e,
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where IT is a p X 1 vector of unknown constants, b ~ N0, 62I), e ~ N,(0, 0%I),
b and e are independent and X and B are n X p and n X ¢ matrices.

All tests we consider shall be invariant under a certain group of transforma-
tions. Letting K, L and F be matrices whose columns form orthonormal bases
for R(X), R{(X: B) N R(X)* and R([X: B])*, respectively, consider trans-
forming the data to the canonical variables

A=[K:L:F]Y=[(KY):(LY):(FY)] =[Yy:U:27
(say).

Define a group of transformations whose elements are gA = g,8,8,A, where
g,A =[(Y,+v):U:Z7(v an arbitrary r(X)-vector), g,A = [Yy: U :(QZ)]
(@ an arbitrary f X f orthogonal matrix), g;4 = cA (c an arbitrary nonzero
scalar); then a maximal invariant is T = f /2U/(Z'Z)'/?, using Theorem 2 of
Lehmann [(1959), page 218]. The density of T' is a k-component multivariate
Student’s ¢ with f degrees of freedom, location vector zero and dispersion matrix
3(p) = pL’'BB’L + I.

Thus the MPI test for Hy. p = p, versus H;: H;:p = p, rejects when
(f + T'"{Z(p)} " 'T)/(f + T'{Z(py)} 'T) < c,; letting 2, = Z(p;) for i =0,1
and T(Y; po, p1) = U{(Z5" — 27)/(py — p))U/(Z'Z + U'S5'U), it will be
convenient to express the rejection region of the MPI test as T(Y; py, p;) >
¢, =(1-rcy)/(p, — pp)- Letting p, = p, yields the LMPI test: Note that
lim, _, , T(Y; po, p,) = UZ;L'BB'LE,;'U/{Z'Z + UZ5'U} = T(Y; po» Po)
(say) for all Y € R™. Using Rao [(1973), page 454], it may be shown that the
LMPI test rejects when T(Y; py, p,) > (constant); see also the development of
the locally most powerful tests in El-Bassiouni (1977)

Letting p, > oo leads to the Wald test: lim, _ . (p; — po)T(Y; po, p1) =
UZ,'U/{Z'Z + U'Z;'U}, which is a monotonic function of the ratio of
UZ;U/Z'Z = T(Y; py, ) (say), for all Y € R™. Since T(Y; py, ) is a constant
multiple (k/f) of the Wald statistic (Seely and El-Bassiouni), the Wald test is
equivalent to the test based on 7(Y; p,, 00).

The set of test statistics will be denoted

T (po) = {T(Y; po, p1); 0 < py < 00, py < p; < 0}

3. Finite sample properties. Let x,, x;,...,x, be independently distrib-
uted central chi-squared variables with degrees of freedom f,1,...,1, respec-
tively. Letting A ,..., A, denote the eigenvalues of L’'BB’L, the distribution of
T(Y; py, py) for p, < p; < oo and arbitrary p > 0 is that of

k k
T A(1+ pA) (L + poA;) (A + pl}‘i)_lxi/{xo + Z (L+pA)(1+ pOAi)—lxi}

i=1 i=1
and the distribution of T(Y; p,, o) is that of
k

> (14 pA) (1 + poh;) " xy /x,

i=1

Computing the distribution of these statistics requires special techniques in most
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TABLE 1
Power functions for the Wald and LMPI tests at a = 0.05, with gain in power for the LM PI test

ny,=n,=1,n3=n,=10

Variance ratio

Test 0.5 1.0 1.5 2.0 2.5

Wald 0.381 0.560 0.665 0.733 0.780

LMPI 0.400 0.529 0.598 0.643 0.675

Gain of LMPI 0.019 —-0.031 —0.067 -0.090 -0.105
ny= e =np=1,n, = =ny=10

Variance ratio

Test 0.1 0.2 0.3 04 0.5

Wald 0.352 0.651 0.821 0.907 0.950
LMPI 0.451 0.739 0.871 0.932 0.961
Gain of LMPI 0.099 0.088 0.050 0.025 0.011

cases. The technique of Davies (1980) is extremely useful: His algorithm com-
putes P(X*_ Ax; + 0z < ¢), where x; are independently distributed (possibly
noncentral) chi-squared variables with arbitrary integral degrees of freedom, z is
independently distributed as standard normal, ¢ is an arbitrary nonnegative
constant and the A; and c are arbitrary real constants.

This algorithm was used to compare power functions in the context of the
one-way random effects model,

Yy=p+ B te; i=1,...,t, j=1,...,n,,

where p is a fixed unknown parameter, the B; are i.i.d. N(0, 03), the ¢;; are i.i.d.
N(0, 6%) and the B; are independent of the ¢, ;. Consider a small design with ¢ =
4, n, =ny,=1, ny=n, =10 and a large design with ¢t =20, n, = - n;, =1,
n,, = -+ = Ny = 10. The power functions for a = 0.05 level tests of H,: p = 0
versus H,: p > 0 are evaluated in Table 1.

While the LMPI test is more powerful for close alternatives in the small
design, the gain in power is minor compared to the more serious loss of power for
more distant alternatives. In this case one might prefer the Wald test. However,
in the large design, the LMPI test is superior for the entire range of alternatives
of interest, which is an indication that the LMPI test might be preferred in
designs where the number of groups is large.

4. Asymptotic results.

4.1. Asymptotic design sequence. Consider a sequence of models (2.1) with
t = oo. For the asymptotic theory we make the following assumptions:

(Al) B = diag(1,;), where 1, denotes the n-dimensional column vector
of 1’s.
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Thus there is exactly one 1 in each row of B and the remaining elements 0’s. To
simplify notation, let 1, = 1,;) and n; = n(i).

(A2) The number of columns of X is bounded uniformly in ¢.

(A3) The elements n, always take values from a finite set S = {m,,..., m}.

(A4) Define a,(m;) = [# of n; in {n,,..., n,} which equal m;] and assume
t~la(m;) = p; + o(t"'/?). Further if m; = 1is in S, assume p, < 1. (Note that
if p;=1 when m; =1, then the B-effects are asymptotically confounded with
the e-effects.)

(A5) The variance ratio p = 63/0? is a function of t: p = p, = p, + At™1/2 +
o(t~1/2), for A > 0. Thus the alternatives are of the Pitman form, and the null
case is included when A = 0.

4.2. Asymptotic distributions.

THEOREM 1. Define

S
Mmapl01) = X ij7(1 + Pomj)—b(l + lej) 5
j=1

and let
m=my(p;) = 2 bm;
j=1
and

my = myo(p,) = ¥ pym;(1 + pem;) "
J=1
Consider model (2.1) with t — oo and (Al)-(A5). Then tY*T(Y; py, p;) —
myy(p,)/m} has an asymptotically normal distribution with mean
A{mmg,\(p,) — myymygi(p,)}/m® and variance 2(mm yu(p,) — min(py)}/m? for
0<py<p, <o and tY*T(Y;py, ) — (m — 1)~} has an asymptotically
normal distribution with mean Am,,/(m — 1) and variance 2m/(m — 1),

The proof is carried out in Section 5.

4.3. Inefficiency of the Wald test. Let p(p,) and o%(p,) denote the asymp-
totic means and variances of the statistics T(Y; py, p;), for p, < oo and
po < p; < 00. Using Theorem 1, define the efficiency of the Wald test relative to
the LMPI test as E(W, L) = {p(o0)/0(0)}2/{u(py)/0(py)}?. For example, in
the case Hy: p = 0 and s = 2 we have

E(W,L) = (pym; + pm,)(pym, + pymy — 1)
+{pymy(m; — 1) + pymy(m, — 1)}.
When p, < ; we have p, < E(W, L) <1, with E(W, L) - p, as m,/m, — 0.

Thus the efficiency of the Wald test may be made arbitrary small in design
sequences where there is a small proportion of relatively large group sizes.
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4.4. Asymptotic power comparisons.

THEOREM 2. Consider a sequence of models (2.1) along with t— o
and (Al)-(A5). For fixed a € (0,1) and 0 < p, < o0, let B(p,) =
1 - ®(Z, — u(p,)/0(p,)), which denotes the asymptotic power of the a-level test
using T(Y; pg, p1), Po < Py < 00. Then for fixed A > 0

(i) Bp,) is a continuous function of p, with lim, _, . B.(p,) = B(0) and

(ii) if the design is asymptotically unbalanced, i.e., if there exist m; and m;
in Swithm;+ m;, p; + 0 and p; # 0, then B,(p,) is a monotonically decreasing
function of p,.

ProoF. To prove part (i), note that lim, _, .p,u(p,) = Am,(m — 1)/m? and
lim, _, opl0%(p,) = 2(m — 1)/m? so that lim, _, ,u(p,)/0(p;) = p(e0)/0(0).

Suppose without loss of generality that the set S consists of elements
{my,..., m,}, where m; <mfori <jand p;>0Oforalll <i<s.Since p, <1
when m; =1, we have u(p) > 0 for all p > 0; hence to show (ii) it will suffice
that the derivative of u%(p)/0%(p) is negative for p > p, when s > 1.

Note that u?(p)/0%(p) is a positive multiple of

f(p) = {mm211(p) - m11m101(P)}2/{mm202(P) - mfm(P)}
and that f’(p) has the same sign as

g(p) = {mm202(p) - mfm(P)}
X {mmml(P) - mllmIOI(p)} {m11m202(p) - mm312(P)}

- {mmzu(P) - mnmlm(p)}2{m101(p)m202(p) - mm303(p)}.
It will suffice to consider

&(p) =g(p)/{m?u(p)/A}

= Z Z Z Zpipjpkplmimjmkm%(l + ij)_l(l + sz)_2
i j k1

X [{mj(l + pomj)_1 -1+ pomi)_l}
X {ml(l +om) ' —(1+ pmk)_l}
—{mj(l + pmj)_l -1+ pmi)fl}{m,(l +pom;) = (1 + pomk)_l}].
Note that the [-] term in g,(p) is expressible as
(po — p)m,;m,(m, - mj)(]' + Pomj)_l(l + ij)_l(l + Pomz)_l(l +pm;) "
—(pp — p)m;(m,, — mj)(]' + Pomj)_l(l + ij)_l
X(1+ pomy) (1 + pmy) ™"
= (po = p)my(m; = m)(1 + pom;) (1 + pm;) N1 + pom;) (L + pmy) 7
+(po = p)(my — m)(L + pom;) (1 + pm,) (1 + pomy) (1 + pmy)
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Factoring out (p, — p), writing g,(p) as four separate sums, one for each of
the terms above, using straightforward algebraic manipulations and noting that
the last sum becomes 0 yields

g:(p) = &(p)/(py—p)

=Y Y p;ppymm,), p;ip(m; — mj~)2m§m?
ik I>j

x(1+ pomj)_l(l + pom;) (1 + pmj)_3(1 +pom,;)"?

+Y Y pipmmi(l + Pml)_2 )y pjpk(mk - m‘j)2
i 1 k>j

Xm;m,(1+ pm;)(1 + pm,)

X (1 + pom;) (1 + pomy) (1 + pm,) 21 + pmy) 7

=Y Y ppummy(1 +pm;) " Y pip(m, — m,)?
J k I>i

Xm;m,(m; + m,+ 2pm;m,;)
X(1+ pom;) (1 + pom;) (1 + pm;) 31 + pm,) .
Letting
ay = prp(my — m) mumy(1 + pom;) "
X (1 + pomy) (1 + pmy) (1 + pm,) 72,
b,; = p,pym;m;
and relabeling indices, we have

& (p) = Z Zbij Z aQpm,m,;

J k>1

+3 Zbijmi(l +pm) 2 Y akl(l + pm, + pm; + P2mkm1)
P J kol

-2 Ebij(]- +pom) " Y ay(my, + m,+ 2pm,m,)
i g k>1 .

= Z akzZ : bij{(mk -1)(m;— 1)+ (m; - 1)

k>1 i

+2pmymy(m; — 1) + pPm;m,m,(m; — 1)} /(1 + pm,)* > 0. O

5. Proof of Theorem 1. First, we note some computing formulas for the
statistics in I (p,).

For any real matrix A, define P, = A(A’A)~ A’ for any choice of a generalized
inverse and let Py = I — P,. Letting S, = Y'Pfy. 5;Y we have for 0 < p, < p, <
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oo that
T(Y; o, p1)
(5‘1) 7] —17 =17 4 —1y
= Y{(LZ5'L = LE7'L) /(py — po) ) Y/{S, + Y'LZ; L'Y}.
Letting C; = I + p,B'Pg¢B, i = 0,1, t, we have £; ! = I — p,L’BC; 'B’L; further
if Y, = B'PgY and Sy = Y'P{Y we have
T(Y; po, p1) = Y1’{(I)1C1_1 - POCO_I)/(P1 - pO)}Yl/{SX - POYfCo_lYl}-
Since (p,C; ! = pCq 1) /(py — po) = Cy 'Cy Y, we have
(5-2) T( Y; Po> P1) = Y1'C1_ ICo_ 1Y1/{SX - P()Yl'Co_ 1Y1}
which holds for 0 < p, < p, < . (By continuity, the result holds for p, = Po»

which defines the LMPI statistic.)
The Wald statistic is similarly computed as

(5.3) T(Y; py, o) = {Y/(P[X:B] - PX)Y - P0Y1'Co_1Y1}/Se'

A substantial portion of the proof of Theorem 1 is devoted to showing that
the effect of making the statistics invariant to XII is asymptotically negligible.
To this end, we suppose without loss of generality that XII = 0 and consider
which invariant statistics obtain when it is known in advance that XII = 0.
Letting L, denote a matrix whose columns form an orthonormal basis for R(B)
and 2, =1+ p,L'BB’L,, i = 0,1, ¢, these statistics are

Too(Y; Po> Pl) = Y/{(le(;xluLi - lel_oolLi)/(pl - Po)}Y
+{YPgY + YL35 LY} for0<p, <p, < o0
and
T..(Y; py,0) = YL,Z, LY/ Y PgY.
Using algebraic manipulation and letting D, = I + p,B'B, i = 0,1, ¢, we have

(5.4) T.(Y; po, 1) = YBD'D;'B'Y/{Y'Y — p,Y'BD; 'B'Y},
which holds for 0 < p, < p, < o (the case p, = p, obtains by continuity) and
(5.5) T(Y; py, 0) = {Y'PyY — p,Y'BD; 'B'Y} /Y'P5Y.

The equivalence of statistics (5.2) and (5.3) with (5.4) and (5.5), respectively, is
established in

LEMMA 1. As t— oo under (Al)-(A5), T(Y; py, ;) — T.(Y; py, 1) =
0,(t"'/2) for py < o0 and 0 < p, < p, < 0.

ProoF. Consider, using (5.2) and (5.4), the difference T(Y; Pos P1) —
T(Y; poy 1) = X/(U; — V,) = X /(Us® — Vi) (say). To prove the result for
these statistics it will suffice to prove that

(1) (U, — V,)/t and (U — V;*)/t are bounded in probability away from 0,
(i) X7/t = O,(1) and
(i) U, - U, V,— V° and X, — X all are 0o,(1).
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To prove (i), note from (5.1) that (U, — V,)/t > S,/t >, m — 1 > 0. Similarly,
U = V&2)/t = YPgY/t >, m — 1, so that (i) is valid.

To verify (ii) and (iii) it will suffice that the expectations and variances of the
terms in question are O(1). The expectation of an arbitrary real quadratic form
Y'AY is OQ1) if tr(B’AB) and tr(A) are O(1). Using the inequality ||AB| <
|A|||BJ, where |A| = N/2 (A’A) and ||B|| = tr'/%(B’B), one may use a symme-
trized version of A to verify that Var(Y’AY) = 0Q1) if ||A||?> = O(1).

Since X/t = Y'{BD;'D; 'B’'/t}Y, we have X/t = O,(1) since
tr(BD; 'Dy 'B’ /t), tr(B’BD; 'Dy lB'B/t) and |BD; 'D; 'B’ /t||* are all O(1), and
(ii) is venﬁed

To verify (iii), consider first U, — U* = Y’{ — Px}Y; note that

tr(Pyx) = r(X), tr(B’'PyB) = | B'Px||*> < |B|?|| Px||* = m,r(X)

are all O(1), so that U, — U = O,(1).
Now consider for p, # 0,

(V, = V*)/py = [Y'P{B{C; " — Dy '} B'P5Y]
+|Y'PyBD; 'B'PyY — 2Y'PyBD; 'B'Y].

The second bracketed term is seen to be O,(1) easily. [The inequality |tr( AB)|

[|A]l || B|| is useful.] To take care of the ﬁrst bracketed term, use C; ' — D, ! =
poDy 'B’K(I — pyK'BD; 'B’K)"'K'BD; ": The first bracketed term is O,(1)

s1nce |(I — poK'BDy 1B'K) ' <1+ pym,=0(Q)and |[K|?=1r(X)=0Q1).
Finally,

X, - X = YPZBC;'(C;' — Dy '} B'PgY + Y'PgBD; {Cr! — D'} B'PgY
+Y'PyBD; Dy 'B'P5Y — 2Y'PyBD;'D; 'B'Y

is seen to be O,(1) using the same essential techniques used for (V, — V,*)/p,.

To demonstrate the lemma for the Wald statistic, write (5.3) and (5.5) as
X,/U, and X* /U, respectively. It will still suffice to demonstrate conditions
(i)—(iii), as for the MPI tests, but now the terms {V,, V;*} are identically 0.
Conditions (i) and (ii) are satisfied in virtually the same manner as for the LMP
tests.

Consider U, — U = Y'(Pg — Px.p)Y, so that E(U,— U”)= 0(1) and
Var(U, — U*) = 01).

Now,
X,— XP = [Y(Pry.p— Py — Py)Y| — po|Y'P§BCy 'B'P5Y — Y'BD; 'B'Y].

We have already seen that the second bracketed term is O,(1); this
term is V,— V/ in the discussion of the LMP statistics. Noting that
E{(Y'(P;x.p)— Px — Pg)Y} = O(1) and Var{Y'(Px.p — Px — Pg)Y} = O(1),
the lemma is proven. O

ProoF oF THEOREM 1. Let x,, x,,,..., %, be independently distributed
central chi-squared variables, where x,, has n — t and x, has a,(i) degrees of
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freedom. Then the distribution of T, (Y; p,, p,) is that of

S
Y my(1+pm;)(1 + Pomi)_l(l + pym;) lxit

i=1

s
- {th + E 1+ pm)1+ pomi)_lxi,}

i=1

S L
= Z m;(1 + plmi)_lxit/{th + Z xit}

i=1 i=1

+e 2 A{mmzn(Pl) - ""11""101(91)}/""2 + Op(t_1/2)‘

The result of the theorem follows for the T, (Y; p,, p,) statistics by using the
asymptotic distribution of the vector t/*(x,,/t— (m —1),x,/t— p,,...,
x,/t — p,), a standard delta-method argument and Lemma 1.

Consider now T, (Y; p,, 00), which is distributed as

S
Y (1 +pm)1+ pomi)_lx”/xm
i=1

= Z Xi/Xo + t~1/? Amy,/(m—1) + Op(t_1/2)'
i=1
The result follows from a standard delta-method argument and Lemma 1. O
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