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A BERRY-ESSEEN BOUND FOR FUNCTIONS OF
INDEPENDENT RANDOM VARIABLES!

By KARL O. FRIEDRICH
Institut fiir Mathematische Stochastik der Albert- Ludwigs-Universitit

The rate of convergence in the central limit theorem for functions of
independent random variables is studied in a unifying approach. The basic
_ result sharpens and extends a theorem of van Zwet. Applications to U-, L-
and R-statistics are also given, improving or extending the results of Helmers
and van Zwet, Helmers and Hu8kov4a, Does and van Es and Helmers.

1. Introduction. It is well known that many statistics occurring in estima-
tion and testing problems behave asymptotically like sums of independent
random variables. In particular, their distribution may often be approximated by
a normal one. As this is of theoretical and practical importance, limit theorems
and certain asymptotic properties of higher order have been the subject of many
articles.

The next step after proving asymptotic normality is to establish bounds for
the rate of convergence. Berry-Esseen bounds of order O(n~'/2?) have been
obtained for several classes of U-, L- and R-statistics, but the methods of proof
and the statements themselves were adjusted to the individual structure of these
examples. Significant progress towards a general Berry-Esseen theory was
achieved by van Zwet (1984), who studied the rate of convergence for symmetric
functions of i.i.d. random variables.

The basic result of the present paper (Theorem 2.1) is another unifying
Berry-Esseen type theorem, improving van Zwet’s result in two directions: The
restriction to symmetric statistics is dispensed with, and the moment condition
itself is relaxed.

The first type of extension is not primarily of mathematical significance [see
van Zwet (1984), where its possibility was indicated], but it is important from
the point of view of application: The theorem applies to functions of indepen-
dent but not necessarily identically distributed random variables under rela-
tively simple moment conditions, and no additional assumption concerning the
function or the sample model is required.

More interesting from a theoretical point of view is the second improvement.
Though it applies to a broad range of very different statistics, the theorem
nevertheless provides sharp estimates in various particular situations. It even
improves or generalizes some results that were proved earlier for such special
types of statistics. Applied to U-statistics, it leads to a moment of order exactly 2
which has been conjectured in Korolyuk and Borovskikh (1985).
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As in most papers on Berry—Esseen bounds, the proof is based on Esseen’s
smoothing lemma. The difference with van Zwet’s proof is the use of a reverse
martingale structure instead of Hoeffding’s expansion and the use of a new
technique in the analysis of the characteristic function of the statistic.

To be more concrete, let us consider a U-statistic of order 2, defined as

(1.1) U= XYY h(X,X), neN,
1<i<j<n
where h:R2?2 > R is a symmetric function and X,, X,,... are i.i.d. random
variables. Assume that
(1.2) Eh(X,, X,) =0, EH(X,, X,)’ < oo,
and define

(18  U=(r-DTa(X), &)= B(h(X, X)X, = ).

A crucial point in proving a Berry-Esseen theorem for U, is handling the
difference of the statistic and its projection, i.e.,

(1'4) A= Un_ ﬁn= ZZ (h(XvXJ) _g(Xi)_g(Xj))'
1<i<j<n
The same problem arises for general functions of independent random variables,
but in this case A may not have the simple sum decomposition of (1.4) anymore.
Defining

A, =E(AX,,...,X,) - E(AX,,,,...,X,), i=1,...,n,
A, ,=E(AMX,, X;,...,X,) - E(AJX;, X;11,...,X,), 1<i<j<n,

n

the decomposition (1.4) can be generalized to

(1.5) A= ZE Ai,j,

1<i<j<n
which reduces to (1.4) since in that case
A, =h(X,X;) -g(X,) -g(X;) as,1<i<j<n.

The conditional expectations appearing so far are defined for a general statistic
as well if its first moment exists. From the definitions it follows directly that A,
i=1...,n,and A; ;, j=i+1,...,n for fixed i with 1 <i < n, are reverse
martingale differences.

The difference from van Zwet’s approach is the following: Using the reverse
martingale structure one has to deal with far fewer terms than with Hoeffding’s
expansion, which implicitly contains it. Later on it will be seen that van Zwet’s
key assumption may be interpreted as a moment bound for the reverse martin-
gale differences. Therefore their use clarifies the proof and the result, whereas
Hoeffding’s decomposition appears to be a roundabout way. Indeed, it seems
possible to simplify van Zwet’s proof and simultaneously sharpen his theorem to
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comparable strength as in Helmers and van Zwet (1982), adapting the techniques
used there.

In the present paper we use a different expansion for the characteristic
function leading to a somewhat stronger result. The idea is to continue the work
which Chan and Wierman (1977) began and which has led to new and better
Berry-Esseen type results for U-statistics. These improvements are based on the
approximation of the characteristic function ¢, = E exp(itU,) in the critical
region t € I, = [—n% n®], 0 < ¢ < 3, by ¢, = E exp(itS,,), where S,, denotes the
projection defined by

Su=(n-1) % &(X)) + EUJXor1r..., X,)

J=1

for suitable 0 < m < n. Helmers and van Zwet succeeded in proving the
Berry-Esseen result by choosing m < n depending on ¢ & I, and for all ¢ € I,
using the same (linear) projection S, = U,. Here we shall use a more refined
procedure.

Splitting ¢, — ¢, into X (¢;_, — ¢,) and writing

Q1 — = Eexp(itSj)(exp(itAj) - 1)

we can expand the second factor in the stochastically small quantities A; =
S;_; — S;. Another decomposition of S; into the reverse martingale differences
A; , for the linear expansion terms yields—via a telescoping argument as above
—a sum of products whose factors are either sufficiently small or independent
such that the resulting estimate can be integrated over the desired range
[—Cn'/2%,Cn'?].

Thus many small steps seem to be better than a few large steps in estimating

q)O - q)m‘
The application of Theorem 2.1 to specific statistics is mainly a technical
problem: One has to determine some conditional expectations which define the
random variables appearing in the bound and then to estimate their moments.
This can be done without difficulties in the case of U-statistics of a higher order,
and the result sharpens that obtained by Helmers and van Zwet (1982). Theorem
2.1 can also be used to slightly improve a recent result of van Es and Helmers
(1986) for elementary symmetric polynomials.

The final conclusion concerning L- and R-statistics (Theorem 4.1) requires
some additional checks and computations, which are omitted here. For a detailed
proof, see Friedrich (1985). Only the representation of the random variables
appearing in the bound is given, as this result may be used to derive other
versions of the theorem, replacing smoothness of the weights by stronger condi-
tions on the distributions.

In the case of L-statistics, Theorem 4.1 weakens the assumptions of Helmers
and Huskova (1984). For R-statistics, it may be looked at as an extension of Does
(1982) to the non-i.i.d. case under a somewhat stronger condition. Of course, for
the special case of the null hypothesis a better result can be given. See Bolthausen
(1984) for such a result based on the method of Charles Stein.
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2. Main result. Suppose we are given independent and real random vari-
ables X|,..., X,, and a measurable function 7: R* - R, n € N, and put

(2.1) T=r(X,..., X,).

This is the general form of a statistic with which we shall be concerned. At the

moment we only assume that ET = 0 for convenience, but later we will need

E|T|? < oo for some p > 3. Define

(2.2) T=YT, T,=E[TX], Jj=1,..,n,
Jj=1

(2.3) A=T-T

and

(2.4) Sp= L T+ E[T|X,s1,-.., X,] for0<m<n.
Jj=1

With S, = T, S, = T it then follows that

(2.5) A,=8,..—-8, as,m=1,...,n.

The main drawback, from which the variables A;,..., A and A; ,,1<j<k<n
suffer, is that they depend on the special form of T and the order of X,..., X,.
To avoid this disadvantage, we define

X=(Xp o X, Xjnse s X)),

J

(2.6) . . .
=T+ E[TIX], DIT]-T-1,
for j =1,..., n, and furthermore for 1 <j < k < n,
Xp=(X, 0 X, 1, X000, Xy, X0 X,),
(2.7) 7. = E[T1X,] + E[TIX,] - E[TIX,],

Du[T]1=T-T,.
The relation of these quantities to the A’s is given by the equalities

9 A;=E[D[T]IX,,...,X,] as,forj=1,...,n,
' Ay = E[Dy[T1IX,, Xs,..., X,| as,1<j<k<n,

which follow directly from the definitions.

Though it will not be used in the present paper, it is interesting to note that
T,...,T, and f}k, J # k, can be defined as projections, if T has a finite
variance. Because of ET = 0, this can be drawn from Héajek’s projection lemma
in the first case. In the second case and with a slight generalization, we find ’f’jk
to be (in L,) the best approximation of T by a sum of functions of the
dependent random variables X - and X » J # k. Some projection results that go
further were stated by Riischendorf (1985).
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Our main result now reads as follows:
THEOREM 2.1. Suppose ET = 0,0 < 0% = Var(’f’) < o0, and define
Yo = o? Zn: E|’-’}|3,
j=1
n=o”t max (BT

Y2,p=o—p max Ell)j[T]lp fO"le,
l<j<n

Ys,, =0 ' max (E|Djk[T]|")1/p forp > 1.

l1<j<k<n
Then:
(a) If 3< p < 2, there exists a constant C € R, such that

1
sup |P(6 " 'T<x) — ®(x)| < Cly, + 3 n3/27172,p + nzyfy3’3/2 ,

x€R -
where ® denotes the distribution function of the standard normal distribution.
(b) The estimate remains true for p = 2, if 1/(2 — p) is replaced by log n.
(¢) In both (a) and (b), v, , may be replaced by nyf ,.

REMARK 1. The term v, results from T, and it is the usual Berry-Esseen
bound for sums of independent random variables. To achieve the order of
convergence O(n~'/?) for the general statistic 7, one has to show that not only
Yo, but also v, is of this order, which is a somewhat stronger requirement.

REMARK 2. Moreover, one has to establish a set of inequalities, such as

(2.9) Ys,3/2 < Cn=%?

and

2.10 Yo ,<Cn"3% or yf_ < Cn=57?
2,p 3,p

for some p € [2,2). Alternatively, one can combine (2.9) with
(2.11) Yo,2 < Clogn) 'n™®2 or y2,< C(logn) 'n=52
instead of (2.10). ‘
REMARK 3. Because of the moment inequality Y3, p>Ys,q fOr p>q=1,(29)
and the second relation in (2.10) are ensured by
(2.12) Ys,5,3 < Cn™%2.
This form is adequate for U-statistics, but it may be harder to verify in

general. In the case of L- and R-statistics for instance, we will use (2.9) and
(2.11).
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REMARK 4. (2.9)-(2.12) are the counterparts of van Zwet’s condition
1+ E(E(T\X,,...,X,_,))" - 2E(E(T|X,,..., X,_,))* < Bn~3

for a B € R. Note that under van Zwet’s general assumption ET? =1,
ED,_, ,[T]? coincides with the left-hand side.

n

REMARK 5. In the case of a U-type-statistic

(2.13) - U= XX Y ...
l<iyy< -+ <i.<n
with Y, ., =h;  (X;,...,X;) and measurable functions 2; _,: R" - R,
1<i < -+ <i,<n,it follows that
(214) D,[U]= XY  DulY,...| as.l1<j<k<n.
l<iyy<--- <i.<n

{ilv""ir}g{jr k}

Employing Minkowski’s inequality, (2.12) is now guaranteed by

(2.15) max o Y(EY,  ,”*)”° <Bnv?"", BeR,

1sh< -+ <j=n

where 0?2 denotes the variance of the projection of U. This also proves the result
for U-statistics mentioned in the Introduction.

REMARK 6. For sequences of U-statistics where the kernel length tends to
infinity, a detailed analysis of the random variables in (2.14) may provide a
better result. As an example, we mention elementary symmetric polynomials

(2.16) s;k>=(2)_l Y X X

Y i)
1<i)< -+ <p<n

where X,,..., X, are iid. with p = EX, # 0, 0 < 02 = Var(X,), E|X,|? < o0.
Here we get

-1
@17) D, W[SP] = (3) (72 2)(Xums - m)(X, - 0SS s,

The application of Theorem 2.1 leads to the rate of convergence O(k/n'/?)
provided k = O(n'/?/logn), therefore improving the result of van Es and
Helmers (1986). These authors also demonstrated that this bound is sharp and
that k& = o(n!/?) is needed to prove asymptotic normality.

3. Proof of Theorem 2.1. For abbreviation, we first write

Y, = (X,

J

W, ;i =E(AX,, X;0,...,X,), 1<k<j<n.

X), Jj=1,...,n,

SIRRRE) n
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Note that we have S, =S, , = 7T, and therefore A,=0. Also put S, =T
A,=0,W,,=0and A, ,=0fork=1,...,n—-1,r>n.

The reverse martingale structure of the terms in (1.5) will be used throughout
the proof. On the one hand, it will be exploited in some conditioning arguments,
on the other hand, it leads to useful moment-bounds.

Applying Lemma 1 of Chatterji (1969), we find for each p € [1,2],

l
E|S,-S|?P<2*? ) EAI”, 0O0<m<l<n,
. J=m+1
(3.1) .
EW, ,— W, a|?<2%? Y |A, I, 1<k<l<m<n.
J=Il+1

In the cases m = 0, I = n or [ = k, m = n, these relations are inequalities for the
absolute moments of A, respectively, A,. Employing Jensen’s inequality, it
follows from (2.8) that it suffices to prove (a) and (b).

As the bound remains the same for all statistics T, = T, a € R, we have to
prove the theorem only for o® = 1. Applying Esseen’s smoothing lemma, we

obtain
8= sup|P(T < x) — ®(x)|
x€R
1 - . 24
< = (M Ee — et de ¢ — =M
(3.2) mJ-m m/2m

1 M : o
+= [7 [t BT — BT dt
T _M
=8, + 8, + 8,

where M may be chosen arbitrarily. To estimate the first two terms, we proceed
as in the proof of the Berry—Esseen theorem for sums of independent random
variables [cf. Feller (1971), page 544]. Let us agree to prove the theorem for a
constant C > 6. Then we may assume that y, < %, because & cannot exceed 1.
With M = 8/(9y,) Feller arrived at

(3.3) 8, + 8, < 6y,.
Moreover, we may adapt some of his intermediate results, namely,
|Eel| < e~ for|t|<M, j=1,...,n,
with «; = § Var(T)) — 2E|T)°M, and
n . n 2
(84) [lI|Ee"T| <exp|—t*} ;| <e */® for|f|<M,1<k<n.
J=1

/ J=1
J*k J*k
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It does not affect the generality of our theorem to assume k, > --- > «,. Then
from (3.4) we conclude that

r 1r-1 r
35 Ee''T| < exp| - - —— 2] < C, (——t2)
(3.5) T11Be %) < oxp{ - 5 7—2°] < Coemo
J*k

forte[-M,M],1<k<r<n,withC,=e"/".

After these preparations, we turn to 8,. In the first step we show how the
decomposition of A may be used to achieve an estimate for the difference of the
characteristic functions of T and 7.

Let us define m(k) = max{r € N|rk <n}, S, = T, A, =0, W,,=0,4,,=0
fork=1,...,n—1,r>n,and

Z,,(t) = Ee¥St (e — 1 — ith,),
Zy s, j(t) = E(e"% - ews‘“””)Wk,jk’
Zs g, () = Ee'Susvrp,

forl<k<n-1,1<j<m(k),l=jk+1,...,(j+ 1)k. Simple computations
show

n—1 n-1
(36)  Ee'T—Ee'T= Y Z,(t) +it ¥ Be",
k=1 k=1
and
Eeits”Ak — EeitSka,k _ Eeits(”'“”“)ka,(m(k)+l)k
m(k)
- Z (Ee"sW), 4 — Ee"So W, ;. 1yx)
m(k)
(3.7) = X E(e" —e"uni )W, 4
j=1
m(k)
+ Y Ee’ts“”’"(Wk,jk - Wk,(j+1)k)
j=1
m(k) m(k) (j+Dk
- zz“j(t)+ Y Y Zg, ().
j= Jj=1l=jk+1

Our next task is to estimate the various terms just obtained. To begin with Z,,,
we use the independence of X, ..., X,,, (3.5) for r = k and |e”* — 1 — ix| < 2|x|?
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for p €[1,2], x € R, and find

k-1

|Z1k(t)| = Eeiﬂ} IEeitE'[SIJYk](eitAk -1- ltAk)l
-1

J
< 2C,E|A4|P|t|Pe~k/BmE
< 2Coy,, plt|Pe~ /38 for |t <M, k=1,...,n — 1,

with Y, = (X,,..., X)).
AsforZ, , ;,1 <k <n-1,1<j< m(k), we have the identities

Zy 1, j(t) = Ee'S(1 — e™Susm=S0) W, jk

(3.8)

Eeil(Tk“‘E(Tle&n))(l — Sy~ jk))Wk Jk

Jk
- | [T Eem
=1

l+k

Jk
= { HE'e‘tTI}E(ewTk - l)e‘tE(le}kH)(]_ — elt(S(j+l)k_Sj"))Wk,jk‘
=1
l+k

Here the first step is obvious from the definition, the second follows, because
W, j» depends only on (X, X, ,,..., X,) and S j+nr — Sjx is independent of
X,..., X3, whereas the third equality follows from E (W, elYiei1] =0 as.
Using (3.5) and Holder’s inequality we now get

1Z, 5, ;(2)] < Coe ™ VR/BMEE | gitTk — 1[I — e Survw=Sw) (We, il
< Coe—(jk/en)tz(EIeitTk _ llqll _ eit(s(j+1)k_ jk)lq)l/g(Elw/k jklp)l/P

with ¢ =p/(p - 1). Exploiting the independence of the sample once more and
then using |e™* — 1| < |x|and |e™* — 1| < 2|x|?~! for x € R, p € [1,2], we obtain

(E|eilTk - 191 - eit(s(j+1)k—%k)|¢1)1/q

(3.10) = (E|e"Tx — 1|")1/q(E|1 - e”(5<j+1>k'%k)|q)1/q

1-1/
< 20t17(E|T,1%) " (EISj ~ Sijurul )~ 7"

Beécause of g < 3 for p > 3/2, the moment inequality entails

(3.11) (EIT9)"* < (E1T°)7" < v,

From (1.5), (2.8) and Jensen’s inequality we conclude that

/.

(312)  (EW, 4l7)"" < (EIAP)7 < (BID,[T]17)” < /2

and (3.9)-(3.12) together with (2.11) yield

(813) 1Zy 4, (1) < 4Cqvyvo, k1P|t Pe~R/BDE for (¢ < M.

To estimate the second sum on the right-hand side of (3.7), note that we have
E(A | X, Y, 1) =0 as. and E(A, |Y;) =0 as. for 1 < k < I < n. Proceeding
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as above, we thus get

-1
|Ee“SrAk’l| = HEettTj Ee‘t(Tk+n+E[Sr|l/l+l])Ak’l

J=1
J*k

-1
l‘[ EeitTj E(eitTk _ 1)(eitTl _ l)eitE[SrlY,H]Ak’l
Jj=1

J*k
- ; ; 1/3 2/3
Ce « 1)/8n)t7(E|ethk _ 1|3|ewT, _ 1|3) / (EIAk,l|3/2) /

< CO(ElTk|3)1/3(E|T11|3)1/3(ElAk’1|3/2)2/3t2e_((l—1)/8")t2

(3.14)

IA

< Coylr"y:;,3/2t2e_((l"1)/8"”2 for|t|]<M,1<k<l<n,r>lL
Summarizing (3.6)-(3.8), (3.13) and (3.14) and inserting

oo , 1 t+1
f xle ™M dx = —A~¢HV20[—— | ¢t> —1,A>0,
0 2 2

we arrive at
n—1 m(k)

8 < Z[ 02Ol £ 8 [° 1 (D)

k=1 j=1
n—1 m(k) (jJ+Dk

+X X X

k=1 j=1 I=jk+1"—

M
|Z3,k,j,l(t)|dt

IA

n-1 )
4Covy , X fo tp=le~ k/BVE gy
k=1

n—1 m(k)

FaCY, & L RV [ (e dy
k=1 j=1
n—1 m(k) min(n,(j+1)k)

oo
fCeap XY X[ et gy

k=1 j=1 l=jk+1 —o0

IA

2COF( )Sp/anﬂ Z p—p/2

p+ 1 n-1 m(k)
+4008("+1)/2F(—2——)71}/2’pn(”+1)/2 z pl-1/p=(p+1)/2 Z j—(p+1)/2
k=1 Jj=1

n—1
+C F( )83/2n3/2Y12Y3 3/2 Z Z (l 1)_3/2-
k=11l=k+1

Note that

1 p+1 1 (2-p)

1-— - =—(p-1)2-p)-1>
- =g (P D2-p) -

-1 forpe[3/2,2).
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The assertion follows now from (3.2) and (3.3) after applying well-known esti-
mates for geometric series.

4. Application to L- and R-statistics. Let X),..., X, be independent and
real random variables and £, g,..., &, R = R be measurable functions, and
put
V-=h(X<), Y;.=gj(Xj), Jj=1,...,n.

J J

The distribution functions F,,..., F, of V,,...,V, are assumed to be continuous.
Suppose a(1),..., a(n) € R are constants, put u(x) = 1for x > 0 and u(x) =0
for x < 0 and define

rj= ZU(V]_Vk), .]=1’ I,
(4.1)
T = Zla(rj)Y;
j=

The statistics which are our objective may be regarded as special examples of
this general type of random variables:

(a) If A is the identity and g,,..., g, are constants, then T is a simple linear
rank statistic.

(b) In the special case h(x) = |x|, g(x) = -+ = g,(x) = sgn(x) for x € R,
T defines a signed rank statistic.

(c) For a given L-statistic, a statistic of the above type can be defined, which
is distributed according to the same law. [Hint: Use i.i.d. random variables from
the uniform distribution in (0, 1), if the continuity assumption is not fulfilled.]

The conditions for the scores a(l),..., a(n) are written using their first and
second differences:

b(k) =a(k+1) - a(k), k=1,...,n-1,
d(k)=a(k) —2a(k+1)+a(k+2), k=1,...,n—2.
As we are mainly interested in the case of unbounded scores, we impose

conditions that look similar to those used by Chernoff and Savage (1958). If
& > 0 is given, we say that (C1) is fulfilled, if there exists a constant A € R, such

that
k E—1Y\]7°
—(1— ) R k=1,...,n,
n n

(C)(a) la(k)<A

B k —-(1+8)

(b) |b(k)|sAn’1L;(1—;)  k=1,...n-1,
[k k+1\]7¢*9

(¢) |d(k)|<An? —(1— ) , k=1,...,n—-2
| n n
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Note that & is assumed to be positive only in order to exclude some uninteresting
cases. In the theorem to follow it has to be bounded from above, which is more
restrictive.

As for Y},...,Y, we need some moment conditions. Let

IYll, = (E[Y|7)”” for p & [1, c0)
and
IYll, = sup{c € R|P(]Y|>c) <1}
denote the p-norms of a random variable Y, as usual. We will need an estimate
(c2) p,= max |Y), < Bn /2

1<j<n
with a constant B € R, where p will be coupled with a § in a suitable way.
In the third condition, the distribution functions F,..., F, are related to
their mean

G(x)=n"! éllf}(x), x € R.

(C3) There exists a constant C € R, such that
F(x) <CG(x), 1-F(x)=<C(l-G(x)) foralxeR,j=1,...,n.

In multisample problems, (C3) may easily be checked even under fixed alterna-
tives, i.e., nonidentical distributions. For if m denotes the number of observa-
tions in the smallest subpopulation and if we have m/n > A > 0, we find that
(C3) is fulfilled with C = A1,

As before, we use the variance of the projection 7' as a norming factor for 7.
Then our result reads as follows.

THEOREM 4.1. Let (C1)-(C3) be fulfilled with 8§ > 0, p € (4, 0] such that
8 + 1/p < 1/4. Then there exists a constant K € R, such that 6% = Var(T) > 0
implies
sup|P(¢"Y(T — ET) < x) — ®(x)| < Kn~2,

x€R

REMARK 1. The constant K does not depend on the sample-size n, but it is a
function of A, B, C and the parameters § and p. From the proof it becomes clear
that the last dependence only comes about via the term 1 — 8 — 1/p, which has
to be bounded away from 0.

REMARK 2. The variance condition is adjusted for series (7)), <n, Which
possess nondegenerate limit distributions.

REMARK 3. In the case of a simple linear rank statistic, Theorem 4.1 may be
applied with p = 0 and 0 < § < ;. Condition (C2) says, that the maximum of
the regression constants has to behave like O(n~'/?) to achieve this rate of
convergence. This is somewhat stronger than Does’ (1982) condition.
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REMARK 4. The result may directly be compared with that of Helmers and
Huskova (1984) on L-statistics. These authors also need a technical condition for
the pseudoinverse of the common distribution function of the sample.

In order to apply Theorem 2.1, one has first to determine the terms used
there. For the statistic (4.1), this is easily achieved using relative ranks of
Vi,..., V, in suitable subsamples. Define

n

ri=Lu(V,-V.), 1<jks<n,j#k,

rjkl= Z u(‘/j_‘/s)7 1—<—])kylSn7.]¢kylyk<l)

qk(x)y)zu(x_y)_Fk(x)) xER,k=1,...,n

Then one gets the following representations, which also hold in situations other
than those of Theorem 4.1.

LEMMA. Let T be given as in (4.1) and suppose E|T| < o. Then
(a) E[T|X,] - ET = E[a(r)Y,|X,] — Ea(7,)Y,

+ }: E[b(ry)Ya(V;, Vi) Xe] as,1<k<n,

j#k
(b) Djk[T] =b(’}k)Yij( E[b( k)Y(Ik( j7Vk)|Xj]
+b(rkj)qu1'(Vk’V;' - E[b(rkj)quj(Vk’Vj)le]

Y dru)Yg(Vi, V))au(V, Vi) as,1<k<j<n.
=1
1%k, j

The proofs of (a) and (b) are similar. Distinguishing the cases V, < min(V}, V),
min(V;, V) <V, <max(V,,V,) and max(V, V,) < Vi for1 <j <k <n, 1+ ),k
one gets

a(r) = d(rljk)u(Vl - th)u(Vl - V')

J

+a(ry + 1)(”(Vz - V) +u(V, - V))

J
+a(rljk)(1 —u(V,= V) —u(V, - Vj))

Similarly, one finds a(r;) = a(ry) + b(ry)uw(V;—V,) for 1 <j,k<n, j+k.
The assertions then follow evaluating the expressions on the left-hand sides.

Note that D )k is a linear operator and that D,[Z] = 0, j # k for any random
variable Z that is independent of X; or X.

To complete the proof of Theorem 4.1 as an application of Theorem 2.1, one
has next to establish inequalities for the moments of the random variables given
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in the lemma. These long and tedious calculations are omitted here. Detailed
proof is given in Friedrich (1985). See also Miiller-Funk (1979) for the technique
of using results on empirical processes.

It is interesting to note that under the assumptions of Theorem 4.1, the
inequalities (2.9) and (2.11), but not (2.12) can be proved. This also shows that
the statement of Theorem 2.1, which at first sight appears to be circumstantial,
is justified.

Acknowledgments. This work is part of my Ph.D. thesis, which was
submitted to the Mathematical Faculty of the University of Freiburg im Breis-
gau, West Germany.

I am grateful to Professor Dr. H. Witting for his stimulating interest in this
problem. Dr. U. Miiller-Funk has read the original text and given much construc-
tive advice. My thanks also go to a referee, an Associate Editor and Professor
van Zwet for their valuable suggestions and remarks.

REFERENCES

BOLTHAUSEN, E. (1984). An estimate of the remainder in a combinatorial central limit theorem. Z.
Wahrsch. verw. Gebiete 66 379-386.

CHAN, Y.-K. and WIERMAN, J. (1977). On the Berry-Esseen theorem for U-statistics. Ann. Probab.
5 136-139.

CHATTERJI, S. D. (1969). An LP”-convergence theorem. Ann. Math. Statist. 40 1068—1070.

CHERNOFF, H. and SAVAGE, 1. R. (1958). Asymptotic normality and efficiency of certain nonpara-
metric test statistics. Ann. Math. Statist. 29 972-994.

Doks, R. J. M. M. (1982). Berry—Esseen theorems for simple linear rank statistics under the
null-hypothesis. Ann. Probab. 10 982-991.

FELLER, W. (1971). An Introduction to Probability Theory and Its Applications 2, 2nd ed. Wiley,
New York.

FRrIEDRICH, K. O. (1985). Berry—Esseen Abschitzungen fiir nichtparametrische Statistiken. Ph.D.
thesis, Albert-Ludwigs Universitit, Freiburg im Breisgau.

HELMERs, R. and HuSkovaA, M. (1984). A Berry—Esseen bound for L-statistics with unbounded
weight functions. In Asymptotic Statistics 2, Proc. of the Third Prague Symposium on
Asymptotic Statistics (P. Mandl and M. Huskov4, eds.) 93-101. North-Holland, Amster-
dam.

HELMERS, R. and vAN ZWET, W. R. (1982). The Berry—Esseen bound for U-statistics. In Statistical
Decision Theory and Related Topics III (S. S. Gupta and J. O. Berger, eds.) 1 497-512.
Academic, New York.

KoOROLYUK, V. S. and BOROVSKIKH, YU. V. (1985). Approximation of nondegenerate U-statistics.
Theory Probab. Appl. 30 439-450.

MULLER-FUNK, U. (1979). Non-parametric sequential tests for symmetry. Z. Wahrsch. verw.
Gebiete 46 325-342.

RUSCHENDORF, L. (1985). Projections and iterative procedures. In Multivariate Analysis VI (P. R.
Krishnaiah, ed.) 485-493. North-Holland, Amsterdam.

VAN Es, A. J. and HELMERs, R. (1986). Elementary symmetric polynomials of increasing order.
Report MS-R8601, Centre for Mathematics and Computer Science, Amsterdam.

VAN ZWET, W. R. (1984). A Berry-Esseen bound for symmetric statistics. Z. Wahrsch. verw. Gebiete
66 425-440.

INSTITUT FOUR MATHEMATISCHE STOCHASTIK
DER ALBERT-LUDWIGS-UNIVERSITAT

D-7800 FREIBURG IM BREISGAU

FEDERAL REPUBLIC OF GERMANY



