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SECOND ORDER AND L”-COMPARISONS BETWEEN THE
BOOTSTRAP AND EMPIRICAL EDGEWORTH EXPANSION
METHODOLOGIES

BY RABI BHATTACHARYA! AND MAHER QUMSIYEH
Indiana University and University of Bethlehem

The bootstrap estimate of distribution functions of studentized statistics

is shown to be more accurate than even the two-term empirical Edgeworth

" expansion, thus strengthening the claim of superiority of the bootstrap over

the normal approximation method. The two methods are compared not only

with respect to bounded bowl-shaped loss functions but also with respect to
squared error loss and, more generally, in LP-norms.

1. Introduction. Efron’s bootstrap [Efron (1979)] often provides “better
than normal” estimates of distribution functions of studentized statistics T,.
This has been proved by Singh (1981) [also see Bickel and Freedman (1980)] by
deriving a two-term Edgeworth expansion of the Student’s statistic under the
empirical. One may use this last expansion, called here a two-term E.E-expan-
sion (or, empirical Edgeworth expansion), as an alternative to the bootstrap.
Since the errors of the two estimates are both o(n~'/?) a.s.,, it is important to
compare the O(n~!) error terms of the two. Crucial to this and higher order
comparisons is a result of Babu and Singh (1984), as extended in Bhattacharya
(1987), according to which the bootstrap estimate differs from an (s — 1)-term
E.E-expansion (s > 3) only by o(n~¢~2/2) as,, if Cramér’s condition holds and
sufficiently many moments are finite. It is shown in Section 2 with the help of
this result that the bootstrap outperforms the two-term E.E-expansion for
classical statistics, if comparisons are made with respect to bounded bowl-shaped
loss functions. In view of the importance of the squared error loss, in Section 3
we carry out the comparison in the L”-norm (1 < p < «) for the case of the
Student’s ¢, although the method is easily seen to generalize. The uniform
integrability considerations for this last comparison are nontrivial, and several
estimates of independent interest are obtained in the Appendix.

Certain other advantages enjoyed by the bootstrap over the E.E-expansion
are mentioned in Hall (1986).

Finally, Qumsiyeh (1986) has recently shown that the three-term and higher
order E.E-expansion are not in general inferior to the bootstrap.

2. Second order comparison with bounded loss. Let {Z;} be a sequence
of k-dimensional i.i.d. random vectors. We will assume that the distribution of Z,
satisfies Cramér’s condition:

(2.1) limsup |E exp{i¢ - Z,}| < 1.
1€l — o0
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Here ||x|| and x - y denote Euclidean norm and inner product. Consider a real
valued studentized statistic

(2.2) T,=VnH(Z),

where H is an s-times continuously differentiable function on an open set
containing EZ, and H(EZ,) = 0. Then the distribution function of T, has an
(s — 1)-term E-expansion (or, Edgeworth expansion) with a density
[Bhattacharya and Ghosh (1978)]

(2.3) Yooz, n(x) = |1+ Zn 7’p(x) |(x),

provided E|Z,||° < co. Here ¢ is the standard normal density and p, is a
polynomial of degree 3r whose coefficients are functions of moments of Z,. The
corresponding (s — 1)-term E.E-expansion has density

(24) Yoz, n(x) = (14 Z n="%p(x) |¢(x),

where p, is obtained by substituting sample moments for population moments
in p,.

Let P*(T* < x) denote the (bootstrap) distribution function of the resampled
statistic 7,* under the empirical. Then according to Babu and Singh (1984) and
Bhattacharya (1987),

25)  PTrsx)= [ (0 dyto(n ) as.

Therefore, with s = 4 above, the error of estimation of the bootstrap estimate of
P(T, <x)is

PYTx* <x) - P(T, < x)

= n‘l[n” f;(ﬁl(y) - pi(3))e() dy]

(26) [ (30) = na)() ) + 0(n™) e

= a2 |2 [ (55~ p()e() ] + (a7 as.

On the other hand, the error of estimation of the two-term E.E-expansion is

" G dy— P(T,<x) = n‘l[n” [ (Bi(») = pA(9)8(3) dy
27 7 o

—nt [ po(3)9(y) dy +o(n”Y) as.
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Now one has [see Bhattacharya and Ghosh (1978)]

(2.8) [ p)6(3) dy = (e + ex*)o(x),

where, on computing moments by the delta method, one can easily show that
¢, ¢, are polynomial functions of the derivatives of H of orders three and less at
EZ, and of moments of Z, of orders four and less. Therefore, by a first order
Taylor expansion around the true moments and using the classical central limit
theorem {see Cramér (1946), page 367], one gets

@9) [ (5(3) = pi)#(2) dy 22 N(0, 03()),

if E||Z))|® < oo and H is four times continuously differentiable. Here o2(x) =
a(x)¢?(x), a(x) being a polynomial of degree four. Also write

~-

(2.10) [ pa(3)6(5) dy = as(x)a(),

where g, is a fifth degree polynomial in x. From (2.5)-(2.11) we arrive at the
following theorem. For this assume studentization, i.e.,

(2.11) H(EZ)=0, (grad H)(EZ)) - V(grad H)(EZ,) =1,
where V is the dispersion matrix of Z,.

THEOREM 2.1. Assume E|Z,||® < o and Cramér’s condition (2.1). If, in
addition, H is a real valued function on R* which is four times continuously
differentiable in a neighborhood of EZ, and (2.11) holds then, as n — oo,

n(P*(T* <x) — P(T, < x)) e N(0, 0(x)),

(2.12)

n(/_xooli;Ln(y) dy — P( x) (—q2(x)¢(x), og(x))

weakly

Theorem 2.1 has the following immediate corollary [see Pfanzagl (1980), page
20 or Anderson (1955), page 172, Corollary 2]. Define a function L on R” to be
bowl-shaped if {x € R?: L(x) < ¢} is convex for all ¢, symmetric if L(x) =
L(—x) for all x and a loss function if L(0) = 0, L(x) > 0, for all x # 0.

COROLLARY 2.2. Under the hypotheses of Theorem 2.1 one has, for every
symmetric, bowl-shaped, bounded loss function L, the inequality
lim EL(n[P*(T* < x) — P(T, < x)])
n—oo
(2.13) x
< lim EL(n[f V1 () dy - P(T, < x)])
— 00

n— oo

for every x such that q,(x) # 0. If g(x) = 0, then equality holds in (2.13).
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By regarding the left sides of (2.12) as stochastic processes, indexed by x € R,
one may assert their weak convergence (in sup norm) to rather trivial types of
Gaussian processes, under the hypothesis of Corollary 2.2.

The above results immediately extend to vector valued statistics T,.

3. LP-comparisons. The calculations are carried out and results stated
only for the Student’s statistic in this section, for the sake of simplicity. The
method can be extended to all statistics Vn H(Z) mentioned in Section 2.

Let X, X,,..., X,,,..., be independent random variables with common dis-
tribution F, mean p and variance o® > 0. Conditionally given X,..., X,, let
X*,..., X} be n independent random variables with common distribution F,,
where F, is the empirical distribution of X,,..., X,.

We will write P* and E* to denote conditional probabilities and expectations
(given X,,..., X)) associated with X*,..., X* while P, E will denote the
corresponding unconditional quantities. A superscript * indicates a statistic
obtained by replacing unstarred observations by starred ones in statistics such as
X, s2 = ¥(X, — X)?/n. A wiggle " on top indicates replacement of F by F,ina
functional T(F'). If a statistic also involves population moments, in the starred
version these are replaced by corresponding sample moments.

Define the statistics

3.1) T,=Vn(X - p)/s,, Tx=Vn(X*-X)/s}.

If one writes

S| -

Z; = (Xir XiQ)’ Zx = (Xi*’ Xi*2), Z=

n
Z,,
=1

13

(3.2) .
Z=— Y28 p=EZ= (s’ +4Y),

then T, = n'/?H(Z), T,* = n*/>H(Z*) where for z = (2, z®) € R?,

(3.3) H(z®,2®) = (2 - #)/(2(2) _ (2(1))2)1/2.

Denote by V the dispersion matrix of (X, X2) and by V the dispersion
matrix of (X*, X;*?) under F,.
Also write

(3.4) n, = E((2, - p)v-Y(2, - )

Let y,_, , denote the density of the (s — 1)-term E-expansion of n'/%(Z — p)
and ¥,_, , that of n'/%(Z* — Z) under P*. Also [see, e.g., Qumsiyeh (1986)], ~

s/2

X

[ ta)ay=0(x) + 0 )22 + Da(a),

(3.5)
| Vo) dy= f_w\lfl,n(y) dy + n”'gy(x)9(x),
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where ¢, is a polynomial of degree five whose coeflicients are constant multiples
of 1, u2/u3, u,/ps Here p, = E(X, — p)" and ®(x) is the standard normal
distribution function.

By a result of Babu and Singh (1984) one has

P*(Vn(Z*-Z) € A) - _/A?s—l (2)dz| =0o(n"C/27%) as,

(3.6) sup
Aed

provided Crameér’s condition (2.1) holds and E||Z,||* < . Here .« is any class of
Borel subsets of R? satisfying

(3.7) sup ¢;(2) dz = O(¢*) for some a > 0, €| 0.

Aex’(IA)
We have denoted by dA the boundary of the set A and by (dA)¢ the set of all
points at a distance less than ¢ form dA. Also, ¢, is the standard normal density
on R2 The result (3.6) has been extended to smooth functions of Z in
Bhattacharya (1987), and as a special case one has

* - [y - —(s—2)/2
(38) ;‘;% p (Tn* € B) j;¢s—2,n(x) Clx‘ O(n ) a.s.,

asn — .
Here % is any class of Borel subsets of R! satisfying

(3.9) sup o(x) dx = O(&*) forsome a >0, 0.
Be % (IB)

Our first result provides L P-analogues of (3.6) and (3.8). We write, for any
random variable Y,

(3.10) IYll, = (E|YP)””, 1<p<oo.
ProposITION 3.1. Assume (2.1) and E|X1|s2 < 00. Then, forl <p < oo,
(311) sup|[P*(Vn(Z* = Z) € A) = [ 9,4 ,(2) dall, = o(n~"27%),
Aey A

for every class s/ of Borel subsets of R? satisfying (3.7). Also, for every class #
of Borel subsets of R! satisfying (3.9) one has

(3.12) sup | P*(T,* € B) = [,y o(x) dx
B

BeZz

= O(n_(s_2)/2).
p

The proof of this proposition is given in the Appendix.
Proposition 3.1 enables us to prove the main result of this section.

THEOREM 3.2. Let 1 <p < co. Assume (2.1) and E|X;|'??*™ < . Then
one has the strict inequality
lim n|P*(T* <x) - P(T, <x)|,
n-—oo
(3.13)

< lim n
n-— oo

[ Bin(2)dy ~ P(T, < x)

p
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for all points x except the roots of the polynomial equation q,(x) = 0. At the 0’s
of q.(x) equality holds in (3.13).

REMARK 3.2.1. If s? = 0, the expressions within || - || p» in (3.13) may be given
arbitrary values between 0 and 1. A similar consideration applies to (3.11) if V is
singular.

We need the following lemma whose proof is given in the Appendix.

LEMMA 3.3. (a) If E|X,|>™P*D+2 < o for some integers r, m with r > 2
and m > 1, and for some p € [1, x0), then

~m m P
(3.14) E[ ,ur:n - M—rrm— -l{sz>0}}—>0 asn - .
sh o n
(b) If E|X,|'?P*1 < oo for some p € [1, ©0), then for all c € RY, d > 0,
~ 4
. fis  ng cP
(315) nlLI'I:OE d\/f_l,(g - '0—3) . 1{33>0} —Cc| = dp/ y - -d— ddlsz(y)

for some 82 > 0. Here ®;: denotes the normal distribution with mean 0 and
variance 8.

PROOF OF THEOREM 3.2. By Theorem 2 in Bhattacharya and Ghosh (1978),
one may replace P(T, < x) by [* ¥, (¥)dy. In view of (3.12),

| P*(T* <x) — P(T, < x)|,

3.16 . x
(219 S - [ @] o
- — o0 p
By Lemma 3.3(a), (b) it follows that [see (3.5)]
al [ Fan(y)dy - [ ) dy
(3.17) . e i
= 5|/ praee(n] "t + Do) + o).
Similarly,
n| [ By a(3)dy - P(T, < x)
o N
(3.18) =l [ D dy= [ da () | +o(1)
-0 — o0 p

p 1/p
" Jr= 5l ane] et + o,

where d = (2x% + 1)/6, ¢ = 6g,(x).0 _

=d(f°°|y—§
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APPENDIX

To prove Proposition 3.1 we begin with some lemmas. Below the constants c,
(r=1,2,...) are positive nonrandom quantities which do not depend on » or
arguments x, y, z, &, etc.

First, the following lemma follows easily from standard moderate deviation
estimates [Bhattacharya and Ranga Rao (1986), Corollary 17.12] for sample
moments XX/ /n.

LEMMA A.l. If Vis nonsingular and E|X,|*’ < oo for some s > 6, then there
exists a constant ¢, such that

(A1) P(#, > ¢;) = o(n~(¢~2/2),
Also,
(A2) P(IV=" = V7> V) = o(n~¢7272),

LEMMA A2. Letr> 2, k> 1, be integers.
(a) Assume that EXX™**V < co. Then writing 8, = E\X, — p/’,

5\ k
B,
ST "Lz gy | < o0.

n

(A.3) limsup E

n—oo

(b) If V is nonsingular, then
(A.4) n~(=2725 < 9/2,

PRrOOF. (a) One has

| o

__ Q/mEiX - X1

(/n)Er (X, - X))
(A5) o
< (l/n)( (X - X) ) /

n (s (X, - X))

s r/2

S

= /21,

Next,
~ \ k B~ k. B' k
(A8) E (S—) “lg2so | = E (:) -1,,1} +E{ :) -1A2} =dJ, + dJ,
say, where

n

(A7) A, = {0< Z(X,.—)_()2<o2}, A2={§:1(Xi—)_()2202}.

i=1
Using the assumption EXX™+D < o it follows by moderate deviations that
(A.8) P(A)) =o(n™"*).



BOOTSTRAP AND EMPIRICAL EDGEWORTH EXPANSIONS 167
By (A.5) and (A.8), limsup J, = 0. Also,

(A.9) gy < (EB)"(E(s77™ - 1,,))

Furthermore, writing G,(t) = P(¢%/s? < t),

1/2 )1/2

< czE(s;Z’k ‘1,
(A10) E(s;?*-1,)= o—szfnt’k dG,(t) < o‘z’krkfnt’k_l(l - G,(t)) dt.
0 0

For 2 < t < n one has, by a moderate deviation estimate [see (A.8)], 1 — G,(¢) =
o(n~"*). Hence limsup J, < .

(b) One has
1 . .,
i, = — ((Zi - Z)'V_I(Zi - Z)) "
i
A1l 1(xr - _\7?
(A1) <L (z-2)v(z-2)
i=1

— nr/2—1ﬁ72'/2 = nr/2—12r/2,
since 7, = trace of V-V =2. 0O

The next lemma follows from Lemma A.2(b) and the nature of the algebraic
dependence of the coefficients of the polynomials in y,_, , on cumulants [see
Bhattacharya and Ranga Rao (1986), Lemma 6.3 and page 52].

LEMMA A.3. On the set {w: V,(w) nonsingular} one has

(A12) [ ooz < ey

PROOF OF PROPOSITION 3.1. Let G, denote the common distribution of
Z¥* — Z under P* and Q,, the distribution of yn (Z* — Z) under P*. Writing
for the Fourier transform of a finite signed measure m, one has Q,,(g) =
G™M&/Vn). Let fs—2,n denote the signed measure with density ¥;_, ,. By
Corollary 11.5 in Bhattacharya and Ranga Rao (1986), one has, for every Borel
set A and every & > 0, the inequality

1Q.(A) - T,_, .(4)

(A.13) NIV
< (2o = 1)@, — Ty ) KLl + [ ws_z,n(z»dz],
(aA)Zs

where ||m||, denotes variation norm of a signed measure m, K, is a probability
measure on R? having a finite third absolute moment, K, vanishes outside the

unit ball, «’ > 1/2, and K, is the probability measure K (A) = K (¢ 'A). By
Lemma 11.6 in Bhattacharya and Ranga Rao (1986), one has, writing |»| for the
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sum of coordinates of the multiindex »,

Q. — To_s, n) Kol
< ¢, max fID”{( Qu() — Ty o(8)) - B ()10,
Now let R, denote the set

(A.15) Ro={IV' = VY < HIV Y, 7, < ¢}

By Thebrem 9.10 in Bhattacharya and Ranga Rao (1986) (with n,,, < o) one
has on R, for all |v'| < s,

(8.16) 1D*(Qu(8) = Tua () < s (1 + D<)

for ||§|| < cgn'/% Let 6 be defined by

(A.17) sup |EediXi+&Xi| =1 — ¢,
[1€11= cq

By a result of Babu and Singh (1984) there exists a constant 8§ > 0 such that

(A.14)

(A.18) P| sup |G (&) <1- ¢ =1-o(n " "b2),
co<llll<en? 2

Let R, denote the set within parentheses on the left side in (A.18), and let

(A.19) R=R, NR,.

Take &£ = e~ in (A.14) and use (A 16) and (A.18) to get, on R,

(A.20) (@, = Typ ) Kill, < en =72,

Also, on R,,

(A.21) sup [Ys—2,n(2)| dz < cge®,  €]0.

Aea’(3A)*
Using (A.20) and (A.21) in (A. 13) one gets
(A.22) sup |Qn(A) T, 5 (A) <cen ¢"9/% on R,

where §, are nonrandom, §, - 0. By Lemma A.3,

(A.23) sup |Q (4) - T,_, (A)l <1+ c; on R°n {V, nonsingular}.

Since P(R¢) = o(n~¢~2/2), the proof of (3.11) is complete. In order to prove
(3.12) one may use the method Bhattacharya and Ghosh (1978), applied to
(A.22). O

ProoF oF LEMMA 3.3. (a) By Lemma A.2(a), the left side of (3.14), with p
replaced by p + 1, is bounded. Since i”/s'™ — u™/¢™™ — 0 a.s. as n — oo,
(3.14) follows.
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(b) Note that vVn(jis ,/s5 — ps/0%) - 1;2.0 converges to a normal law
N(0, 82) if EX? < oo [see Cramér (1946), page 367]. Also, the ( p + 1)th absolute
moment of

B3, n LT
Vn — — — |1
( s3 03) {s7>0)

n

(A.24)
=vn

ﬂ3,n 33 m
sg (1 - a_’;) ) 1{s,2.>0) + \/Y_l{(#s,n - #3)/03} ' 1(S3>0)

is easily shown to be a bounded sequence using the Schwarz inequality and
Lemma A.2(a).

Acknowledgments. The authors wish to thank the referees and, especially,
the Associate Editor for suggestions that substantially improved the exposition.
Thanks are also due to W. R. van Zwet and G. J. Babu for helpful comments.

REFERENCES

ANDERSON, T. W. (1955). The integral of a symmetric unimodal function over a symmetric convex
set and some probability inequalities. Proc. Amer. Math. Soc. 6 170-176.

BaBU, G. J. and SINGH, K. (1984). On one term Edgeworth correction by Efron’s bootstrap. Sankhya
Ser. A 46 219-232.

BHATTACHARYA, R. N. (1987). Some aspects of Edgeworth expansions in statistics and probability.
In New Perspectives in Theoretical and Applied Statistics (M. L. Puri, J. P. Vilaplana
and W. Wertz, eds.) 157-171. Wiley, New York.

BHATTACHARYA, R. N. and GHOsH, J. K. (1978). On the validity of the formal Edgeworth expansion.
Ann. Statist. 6 434-451.

BHATTACHARYA, R. N. and RaNGA Rao, R. (1986). Normal Approximation and Asymptotic Expan-
sions, 2nd revised reprint. Kreiger, Malabar, Fla.

BICKEL, P. J. and FREEDMAN, D. A. (1980). On Edgeworth expansions for the bootstrap. Unpub-
lished.

CRAMER, H. (1946). Mathematical Methods of Statistics. Princeton Univ. Press, Princeton, N.J.

EFRON, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist. 7 1-26.

HALL, P. (1986). On the bootstrap and confidence intervals. Ann. Statist. 14 1431-1452.

PraNzacL, J. (1980). Asymptotic expansions in parametric statistical theory. In Developments in
Statistics (P. R. Krishnaiah, ed.) 3 1-97. Academic, New York.

QUMSIYEH, M. (1986). Edgeworth expansions in regression and comparison of Edgeworth expansion
and bootstrap methodologies. Ph.D. dissertation, Indiana Univ.

SINGH, K. (1981). On the asymptotic accuracy of Efron’s bootstrap. Ann. Statist. 9 1187-1195.

DEPARTMENT OF MATHEMATICS ! UNIVERSITY OF BETHLEHEM
INDIANA UNIVERSITY P.O. Box 9
BLOOMINGTON, INDIANA 47405 BETHLEHEM

ISRAEL



