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ADJUSTMENT BY MINIMUM DISCRIMINANT INFORMATION!

BY SHELBY J. HABERMAN

Hebrew University

Minimum discriminant information adjustment has primarily been used
in the analysis of multinomial data; however, no such restriction is necessary.
Let P be a distribution on R? and let ¥ be a convex set of distributions on
R Let X;, 1 =i < n, be independent and identically distributed observations
‘with common distribution P. The minimum discriminant information adjust-
ment (MDIA) of P relative to ¥ is the element @ of ¥ that is closest to P
in the sense of Kullback-Leibler discriminant information. If P, is the
empirical distribution of the X;, 1 < i < n, and @, is the MDIA of P, relative
to %, then @, is the maximum likelihood estimate in %, Let & consist of
distributions A on R°® such that [ T dA = t, where T is a measurable
transformation from R° to R® and t € R®. It is shown that under mild regularity
conditions @, converges weakly to @, the MDIA of the true P, with probability
1 and that E,(D) = [ DdQ, is an asymptotically normal and asymptotically
unbiased estimate of E(D) = [ D dQ.

1. Introduction. Adjustment of distributions by the minimum discrimi-
nant information criterion has received attention from a variety of probabilists
and statisticians, especially i the case of multinomial data. Among many relevant
works are Good (1963), Ireland and Kullback (1968a, 1968b), Ireland, Ku, and
Kullback (1969), Kullback (1959, 1971), and Csiszar (1975). Nonetheless, statis-
tical properties of this adjustment technique are relatively unexplored except
when observations are multinomial. In this paper, it is contended that adjustment
by minimum discriminant information is also important when data are continu-
ous, and statistical properties of this technique are explored.

The basic notion of minimum discriminant information adjustment is readily
described. Let P be a probability distribution on R% 1 < a < o, and let % be a
convex set of probability distributions on R® For distributions A, B on R let

(1.1) I(A, B) = f dA log(dA/dB), A < B,
= otherwise,

denote the Kullback-Leibler discriminant information measure for A against B.
The minimum disc¢riminant information adjustment (MDIA) @ of P (relative to
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%) is the unique element of ¥ such that
(1.2) 1(Q, P) = minse ¢I(A, P).

That is, @ is the closest element of ¥ to P, where closeness is defined in terms
of discriminant information.

In this paper, estimation of @ is examined for P unknown and ¥ known.
Given independent observations X; = ( X;,;: 1 < h < a) with common distribution
P, Q is estimated by @,, the MDIA relative to £ of the empirical distribution
P, of the X;, 1 < i < n. Since P, is the maximum likelihood estimate of P in the
sense of Kiefer and Wolfowitz (1956), @, may be regarded as the maximum
likelihood estimate of Q. This paper considers computation and large-sample
properties of @,. To simplify results, % is always assumed to consist of the
distributions A on R° such that

(1.3) f T dA = t,

where t is a known element of R® and T is a known measurable transformation
from R° to R®.

To relate results in this paper to previous work, it is helpful to consider a
classical example of Deming and Stephan (1940) which has received considerable
attention in the literature. Let p;, > 0,1 <j <r,1 < k < s, be cell probabilities
in an r by s contingency table. Adjust the pj, to form new cell probabilities g;,
satisfying the constraints that the row and column marginal totals are specified
positive values ¢,. and q ., respectively. In effect, Deming and Stephan (1940)
find constants a; > 0 and b, > 0 such that

(14) qjk=ajbkpjk, ].Ser, l<k=<s.

As noted in Ireland and Kullback (1968a) and Csiszar (1975), their g, correspond
to minimum discriminant information adjustment where P is specified by the
(p;x) and ¥ is determined by the constraints on the marginal probabilities.

In practice, problems arise in which the cell probabilities p;; are unknown, but
the adjusted marginal totals g;. and q., are given. Typically, independent obser-
vations X; = ( X,;, X5;), 1 < i < n, are available such that Pr(X;; = j, Xy, = k)
=pjr, 1 =j<r,1=<k=<s. Let the empirical distribution P, of the X;, 1 <i<n,
assign probability p ;.. to (j, k). At least when all p;, are positive, the MDIA @,
of P, takes the form (1.4), i.e.,

(1.5) (jjkn = djngknﬁjkn’ 1 ‘5] <r, 1< k=< S,

where @,, > 0 and b, > 0. Algorithms for computation of G, are well known.
For example, see Deming and Stephan (1940), Mosteller (1968), Ireland and
Kullback (1968a), and Haberman (1974, Chapter 9; 1979, Chapter 9).

In practice, two rather distinct applications are encountered. In the first case,
considered by Deming and Stephan (1940) and Ireland and Kullback (1968a),
among others, the unknown true P is to be estimated, where marginal totals are
known in advance. Thus P € ¥ and @ = P, so G, is an estimate of the original



ADJUSTMENT BY MINIMUM DISCRIMINANT 973

probability p;.. This estimate has the advantage over p;., that the supplementary
information has been exploited. Large-sample properties are explored by Ireland
and Kullback (1968a), who sketch a proof of asymptotic efficiency. More detailed
proofs of large-sample properties appear in Haberman (1974, Chapter 9).

In the second case the true marginal totals are not known, but the relationships
between the row and column variables of the table are to be examined in such a
fashion that marginal distributions of row and column variables can be ignored.
For example, Mosteller (1968) seeks to compare social mobility tables without
concern for variations in the relative sizes of social classes. He suggests stan-
dardization to uniform marginal distributions, so that g;. = 1/r and q., = 1/r.
(Since a mobility table is used, r = s). In this case, p;. is not generally equal to
g;- and p.; is not generally equal to q.,. Thus the cell probabilities g; are distinct
from the pj., and the adjusted probabilities §;., estimate g;, but not p;:. In this
case, asymptotic properties are also well known. See Haberman (1974, Chapter
9; 1979, Chapter 9) and Causey (1972).

A simple change in the problem of Deming and Stephan (1940) results in a
less familiar problem. Suppose that instead of a contingency table, a continuous
bivariate distribution P is to be studied. Let P be adjusted so that the new
distribution @ has marginal means

(1.6) f f x1 dQ(x1, x2) = t

and

(1.7) f f %o dQ(x1, x2) = to.

Let X; = (Xy;, X2:), 1 < i < n, be independent observations with common
distribution P. Then two questions arise: how should @ be defined, and how
should @ be estimated? In this paper, the suggestion is made that it is often
appropriate that @ be the MDIA of P relative to £ and that @ be estimated by
Q.. In contrast to the preceding example of Deming and Stephan (1940), this
case does not appear to be considered in the literature. Thus the proposed
approach to computation of @, and the discussion of large-sample properties of
@, are both new for this case.

Once again, there exist two rather distinct versions of the adjustment problem.
In one case, P is known to have marginal means [ [ x; dP(x;, x2) = t, and
J [ x2 dP(x1, x2) = ts, so that P = ) and Q. and P, are both estimates of P. Here
Q. has the advantage over P, that the supplemental information concerning P
has been exploited. In the second case, the relationship between the two variables
under study is to be examined without regard to marginal distributions. For
instance, the relationship of height and weight might be examined for several
groups of humans after an adjustment for variations between group marginal
means of height and group marginal means of weight.

More generally, results in this paper will be previously known whenever P has
all mass on a finite set. In the case P € %, work by Kullback and associates can
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be consulted. For the general case P ¢ %, Haberman (1974, Chapter 9; 1979,
Chapter 9) provides general results. When P does not have support on a finite
set, then results presented here apparently are new.

1.1. Computation of adjustments. As shown by Csiszar (1975), the essential
relationship between an MDIA @ and an original distribution P involves
the Radon-Nikodym derivative d@/dP. One has a linear dependence of
log[(dQ/dP)(x)] on T(x) for x € M, where M is a Borel set such that Q(M) = 1.
More generally, M is assigned probability 1 by every distribution A € ¥ such
that the discriminant information I(A, P) is finite. Let (- , +) denote the Euclidean
inner product on R®. Let I, be the indicator function of M. Then for some ¢ > 0
and § € R®,

dQ
(1.8) P - clyexp(8, T).
Since @ € %, one also has
(1.9) c f Iyexp(6, T)dP =1
and
(1.10) c f TIyexp(, T) dP = t.

If any ¢ > 0, 8 € R®, and M satisfy (1.9) and (1.10) and also the condition that
A(M) =1for all A € ¥ such that I(A, P) < o, then @ exists and a version of
dQ/dP satisfies (1.8).

Csiszar’s (1975) results simplify dramatically when P is replaced by the
empirical distribution P,. Let 2 be the class of Borel sets of R® Let I be the
indicator function of B € 4. Then

(1.11) Fn(B) = Z?=1 <f_ll) IB(X;‘), B e -@7

only has mass at X;, 1 =i =<n. Thus Q. only has mass at the X;, 1 < i < n, and
one may write @, as a weighted average

(1.12) Q.(B) = Tl winls(X)).

Since @, is a probability distribution and Iz(X;) =1,1<i<n, for B = R it is
obvious that ‘

(1.13) Y win = 1.

Let T;= T(X:),1 <i<n.Since @, € %, [ T dQ, satisfies
(1.14) Y wi,T; =t.

From (1.8), (1.11), and (1.12), it is also clear that one may write
(1.15) Win = cnlyn)(Xi)exp(0,, T)

for some ¢, > 0, 0, € R°, and M(n) € %. Clearly A(M(n)) = 1 whenever A € ¥
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and I(A, P) < «. Given (1.11), A € ¥ and I(A, P) < « if and only if for some
z=0,1<i<n,

(1.16) Thizi=1,

(1.17) A(B) = YL, 2:d5(X;), BE %,
and

(1.18) Y, 2T = t.

If A(M(n)) = 1, then X; € M(n) whenever z; > 0. Given (1.16) and (1.18), it
follows that @, only exists if t € K(n), the convex hull of the T;, 1 <i < n. If
t € K(n) and L(n) is the unique face of K(n) that contains t in its relative
interior (Rockafellar, 1970, page 164), then one may let M(n) = T (L(n)), so
that (1.15) may be replaced by

(119) Wip = CnIL(n)(Ti)exp(on, Ti)’ l<si=<n

In typical examples, t is in the relative interior of K(n), so that I, (T;) = 1,
l<i=<n.

Equations (1.13)-(1.15) appear in the literature on log-linear models and
exponential families. For example, see Dempster (1971). Solution by the Newton-
Raphson algorithm is straightforward. At the beginning of iteration v = 0, let 6,,,
be the current approximation to 6,,. Then the current approximation to w;, is

(120) Winy = CnuIL(n)(Ti)exp(onu, Ti)’ 1 = " = n’
where
(1.21) ¢ = 1/X70 Inn)(T:)exp(8,,, T).

Given the weights, the T;, 1 < i < n, have weighted mean
(1.22) m,, = Y Wi 'T;

and weighted covariance matrix

(1.23) I,nu = }:?=1 21 Win (T — my, )(T; — my,)’

(’ denotes a transpose). A new parameter approximation 8,4 is found by
solving the equation

(1~24) Inu(on(u+1) - onu) = t —m,.

It is not necessary that 8,,.1) be uniquely determined by (1.24). Typically, w;,,
converges rapidly to w;,. If L(n) has nonempty interior, then 6,1y is uniquely
determined and 6,, — 0, in typical cases. Use of the algorithm is described in
Gokhale and Kullback (1980, Chapter 5) and Haberman (1979, Chapter 9). If
P € %, then 0, is usually chosen to be 0. This choice is often, but not always,
helpful in the general case.

Much of the discussion in this paper concerns estimation of linear functionals
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of Q. Let D be a Borel-measurable real function of R? and let

(1.25) E(D) = f D dQ
be finite. Let D; = D(X;), 1 <i < n. Then E(D) has estimate

(126) En(D) = f D dQn = E?=l winDi-
Given the w;,, computation of E,(D) is trivial.

1.2 Strong consistency. As shown in Section 3, the estimate @, is strongly
consistent under general conditions. Let € exist and satisfy [ exp(w, T) dQ < o
for all w in a neighborhood N of 0. Then Pr(@, —, @) = 1, where —,
denotes weak convergence. More generally, Pr(E.(D) — E(D)) = 1 if
J (1 + | D|)exp(w, T) d@ < = for some open neighborhood N of 0.

1.3 Asymptotic normality. As shown in Section 4, asymptotic normality
results require slightly stronger conditions than those for strong consistency.
Assume @ exists and assume [ exp(w, T) d@ < », w € N, for some open
neighborhood N of 0. Let | x|? = (x, x), x € R®, be the squared Euclidean
norm on R®. Assume [ | T |%(dQ/dP) dQ < «. Let [ | D|exp(w, T) dQ < ® and
[ D*(dQ/dP) dQ < . Then

n'”[E,(D) — E(D)] - o N(0, r*(D)),

where — 4 denotes convergence in distribution. The asymptotic variance

(1.2) o - [ - eomp(%2) aq
where cp(T) is the linear predictor

(1.28) ¢p(T) = E(D) + (6p, T — t),

dp is any solution of

(1.29) Lo | - BONT -0 dg,
and '

(1.30) I= f (T —t)(T —t)’ dQ

is the covariance matrix of T(X*), where X* has distribution Q. A slight
simplification occurs if P € ¥ so that @ = P. Then the condition

Jrmi(%) aq <=
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is redundant and

(1.31) 7%D) = 74D) = f [D = cp(T))? dP
is the residual variance from linear regression of D; on T;.

1.4 Confidence intervals. Using the above results, confidence intervals for an
expected value E(D) are readily obtained. If P is assumed in &% then some
simplifications occur. Assume [ (D? + 1)exp(w, T) dP < o, w € N, for an open
neighborhood N of 0. Assume 75(D) > 0, so that D, is not equal with probability
1 to a linear function of T;. Let

(1.32) 7tn(D) = Ti1 win[D; — En(D) — (8ps, Ti — t)]%,
where

(1.33) T o0 = X1 win D(T; — t)

and z,, is the estimated covariance matrix

(1.34) In = ¥ win(T; — t)(T; — ¢t)".

Let z,,, be the upper —(a/2) point of the standard normal distribution. For
0 < a <1, P(E.D) — z.270a(D)/n"?* = E(D) = E.(D) + z.270,(D)/n"?
approaches 1 — a as n — . Thus

[En(D) = zupzTon(D)/n'?, En(D) + 24970n(D)/n'?]

is an approximate level —(1 — «) confidence interval for E(D).
If P need not be in %, then

[E.(D) — zo272(D)/n'2, Eo(D) + z.27,(D)/n'?
is an approximate level —(1 — «) confidence interval for E(D) when

ﬁ)dQ<0t>, w € N,

f 1+ Dz)exp(w)T)<dP

for an open neighborhood N of 0 and D(X*) is not equal with probability 1 to a
linear function of T(X*). Here

(1.35) 7HD) = n Yy wi[D; = E,(D) — (8,, T: — t)]*.

1.5 The form of Q. A refinement of Csiszar (1975) is helpful in subsequent
sections. The set M may be related to the convex hull K of the support of PT™.

Obviously, (1.9) and (1.10) can only hold if t € K. If t is in the relative interior
of the face L of K, then Pr(T(X;) € M) > 0 and Pr(T(X;,) E L|T(X,) E M) =
1, as is evident from Rockafellar (1970, pages 162-164). Given the restraints on
M, one may assume without loss of generality that M C T '(L).

A sharper result is available under the condition [ exp(w, T) d@ < o, w € N,
for an open neighborhood N of 0. One may then assume without loss of generality



978 S. J. HABERMAN

that M = T™'(L). By Berk (1972), a set L’, open relative to L, exists such that
any z € L’ equals an expected value [ T dA, where dA/dP = ¢’ exp(0’, T)I) for
some ¢’ > 0 and 8’ € R°. Furthermore, I(4, P) < . If P(T"}(L) — M) > 0,
then a Borel set U C T™(L) — M exists with P(U) > 0 and T(U) bounded.
Clearly, I(A’, P) < o, where dA’/dP = I;/P(U). Thus for some o, 0 < a < 1,
some ¢’ > 0, some 6’ € R and some A such that dA/dP = ¢’ exp(8’, T)Iy,
JT(@A + (1 —a)A’) =tand I(eaA + (1 — a)A’, P) < al(A, P) + (1 — a)I(A’,
P) < . Since A’(M) =0, aA(M) + (1 — a)A’(M) = a < 1, a contradiction since
A+ (1 — a)A’ € Z Therefore, P(T'(L) — M) = 0; i.e., one may assume without
loss of generality that M = T '(L). This practice is followed throughout this
paper.

2. Special cases. Several special cases help show the relationship between
the general results of Section 1 and familiar results from the literature. Case 1,
the unrestricted case, illustrates reduction of results to those for the empirical
distribution. Case 2, the multinomial case, is the case considered by Kullback
and his associates and by Haberman (1974, Chapter 9; 1979, Chapter 9). Case 3
describes a general approach to adjustment by sizes of overlapping strata, and
Case 4 describes adjustment of moments.

CASE 1. % unrestricted. This case illustrates the case of the unadjusted
empirical distribution P,. It arises if b =1, T = 0, and t = 0. Thus % contains
all probability distributions on R® Since P, € ¥ and PE % Q, = P, and Q =
P. The Newton-Raphson algorithm is unnecessary, and regularity conditions are
trivial. As in the Glivenko-Cantelli theorem, Pr(P, —, P) = 1. As in the strong
law of large numbers, E,(D) = D, = (1/n) Y%, D; = E(D) = [ D dP with
probability 1 whenever [ | D | dP < «. As in the central limit theorem, [ D* dP
< o implies n*(D, — E(D)) =4 N(0, ¢%(D)), where ¢%(D) = [ [D — E(D))* dP.
For an approximate level (1 — «) confidence interval for E(D), one has
[Dn = 2a/25,(D)/n"?, Dy + 2a/254(D)/n"?], where 5%(D) = (1/n) Y2, (D; — D,)>
This confidence interval is appropriate if E(D}) = [ D? dP < « and PD7}, the
distribution of D, is not supported on a single point.

CASE 2. The multinomial case. Let P have all mass on a finite set Y. Then
one obtains standard results of Kullback and associates and of Haberman (1974,
Chapter 9; 1979, Chapter 9). To summarize results, let p(y) = P({y}), q(y) =

Q({y}), pu(y) = Pu({y}), and gu(y) = Qu(ly}) fory € Y.
The condition [ T dQ = t is now the condition

Yvey T(¥)q(y) = t,

and @ exists if and only if t € K, the convex hull of all T(y) such that P(y) > 0.
If Q exists and t is in the relative interior of the face L of K, then

q(y) = cI(T(y))p(y)exp(8, T(y))

for some ¢ > 0 and 6 € R°. The constant ¢ and 0 are determined by the equations
2yey cI(T(y))T(y)p(y)exp(6, T(y)) = t
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and
Yyevcl (T(y))p(y)exp(d, T(y)) = 1.

Similarly, let f.(y) = np,(y) be the number of observations X; equal to y € Y.
Then @, exists whenever t is in the convex hull K(n) of those T(y) for which
f.(y) > 0. If t € K(n), then

Gn(y) = caliny)(T(¥))fa(y)exp(8,, T(y)),

where L(n) is the face of K(n) that contains t in its relative interior. One has
2yey cnlrm(T(¥))fa(y)exp(6,, T(y)) =1
and
Yyey enlLm(T(Y))T(¥)fa(y)exp(6,, T(y)) = t.
In the Newton-Raphson algorithm, (1.20)-(1.23) may be replaced by
4n(y) = CnlL(T(Y)fu(y)exp (6, T(¥)), y €Y,
¢ = 1/ Lyevlum(T(¥)fa(y)exp(@,.,, T(y)),
m,, = Yyey ¢u(¥)T(y),
In = Zyey ¢u(W[T(y) — m,][T(y) — m,,]".
Similarly,
E(D) = Zyey D(y)q(y)
E.(D) = Zyey D(y)gn(y)-
All regularity conditions are trivial. If @ exists,
Pr(Q. —, @) =1, Pr(g.y) > q(y),y €Y) =1, Pr(E.(D) — E(D)) =1,

and

and

n'*[E.(D) = E(D)] -2 N(0, 7*(D)).

One has
(D) = Tyey [P [g)AD(y) — E(D) = (5p, T(y) — t)]?
for
T = Syey [T () = t][T(y) — t]’
and

T op = Yyev[D(y) — E(D)][T(y) — tlg(y).
If [ TdP = Yyey T(y)p(y) = t(P € ¥), then
(D) = 7§(D) = Yyey p(y)[D(y) — E(D) — (5p, T(y) — t)I%
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To find confidence intervals, note that

_9 — [Gn(}’)]2 o _ (5 — t)1?
7a(D) = Tyey {—_i)n(y) }’[D(Y) E.(D) — (8pn, T(y) — VI,

78(D) = Tyey @x(¥)[D(y) = En(D) — (8pn, T(y) — t)F,

Er = Yyey G(V)[T(y) — t][T(y) — t]’,
and

Xn 80n = TyerID(y) — E(D)][T(y) — tlgn(y).

All results presented here are found in Haberman (1974, Chapter 9; 1979,
Chapter 9). Kullback and associates also provide some sketches of proofs, and
Causey (1972) presents a special case. Kullback and associates note that MDIA
leads to asymptotically efficient estimates in this example under the model
J T dP = t, even though MDIA and maximum likelihood estimation need not
coincide in such a model. If p(y) > 0, y € Y, this claim is supported by results of
Haberman (1977).

The example of Deming and Stephan (1940) presented earlier is included in
this case. Other examples of constraints on marginal totals of contingency tables
are considered by Deming and Stephan (1940), Ireland and Kullback (1968a),
Mosteller (1968), Causey (1972), and Haberman (1974, Chapter 9; 1979, Chapter
9), among others. Applications to symmetry assumptions are considered in
Ireland and Kullback (1968b) and Kullback (1971), who also provide other
applications. See also Gokhale and Kullback (1980).

CASE 3. Overlapping strata. Suppose that the distribution P is to be adjusted
so that some selected probabilities have desired values. Thus for Borel sets G(k),
1 <k < b, P is to be adjusted so that the new distribution @ assigns probability
trto G(k),1<k<b.

It is quite acceptable to have G(k) that are not disjoint. The earlier example
of Deming and Stephan (1940) illustrates such a problem. In that case, P had
mass at (j, k), 1 = j<r 1<k =<s, and the G(k) were the sets {(J, k):1 = k
<sl,1<j<r and {{(J, k):1 = j=<r}, 1 <k <s. Nonetheless, this example is
meaningful even if P is a continuous distribution. For example, a sample might
be available in which income and age are accurately observed; however, in the
reference population all that is available are relative sizes of age groups and
income groups, with no reference cross-classification of age group by income
group.

In this example, [ TdP =t ift = (tx;:1 <k <b)and T = (Igw:1 < k < b).
Since T\ = Iy, is bounded, regularity conditions are little problem here. The
adjustment @ exists if and only if t is in K, the convex support of PT™!. The
adjustment @, exists if and only if for some z;, =2 0,1 <i<n, 3%, 2;, = 1 and
Yt Zindow(Xi) = te, 1 =k < b.

Use of the Newton-Raphson algorithm is routine here; however, the iterative
proportional fitting algorithm is also available. For descriptions, see Deming and
Stephan (1940).
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Given that Q exists, Pr(@, —, Q) = 1 and Pr(E,(D) — E(D)) = 1 whenever
J D dP is finite. If [ D? dP < o, then n**[E,(D) — E(D)] > N(0, 7%(D)) and
confidence intervals may be obtained in the usual fashion. No special simplifi-
cations are found in formulas.

CASE 4. Moment adjustment. The continuous analogous of Section 1 to the
Deming-Stephan problem illustrates adjustment by moments. Let the distribu-
tion P be adjusted so that the mean y, of X, is transformed to t;, 1 <k < a=0b.
Then one requires that [ X d@ =t;i.e., T is the identity. No special simplifications
occur here. One simply replaces T by X and T; by X; in all formulas.

3. Strong consistency. To prove strong consistency, it is important to
reduce the estimation problem to one of maximization of strictly concave func-
tions. To begin, the behavior of the convex hull K(n) of T;, 1 < i < n, will be
considered.

THEOREM 1. Assume t € K. Then with probability 1, Q, exists for all but at
most a finite number of n.

PrROOF. By Section 1.1, it suffices to show that with probability 1, t € K(n)
for n sufficiently large. Since K(n) C K(n + 1), one may consider K(») =
Up=1 K(n). One must show that Pr(t € K(«)) = 1. The vector t is in K if and
only if for some points x;, 1 < j < ¢, t = Y5, a;X;, where Yoy a; =1, ;> 0,1 <
J = ¢, and for every open neighborhood U of an x;, 1 < j < ¢, P(U) > 0. For some
open Uj, 1 = j < ¢, one thus has P(U) > 0, 1 < j < ¢, with t in the relative
interior of the convex hull of y;, 1 < j < ¢, for any y; € U,1=j=<c The
probability that no T; € U;, 1 < i < o, is 0, so with probability 1, some T; is in
eachU;,1=j=<c,andt € K(x).0

The same method of proof may be used in the following theorem.

THEOREM 2. Assume t € K. Then the probability is 1 that L(n) is a relatively
open subset of L for all sufficiently large n.

At this point, a related maximization problem needs to be considered. Assume
Q exists. Let H = spanfu — t :u € L} Assume [ exp(w, T) d@ <  for | w|
<, for some ¢ > 0. Let

Z(w) = —log [m exp(w, T) dP + (w, t)

3.1
(8.1) = —log [, exp(w, u) dPT (u) + (w, t), weE H
and
(W) = —log[(1/n) 3%, exp(w, T)I(X; )]+ (w, t)
3.2)

—log[(1/n) Y. I(T)exp(w, T)] + (w, t), w € H.

The function # is a strictly concave function (Berk, 1972). In (1.9) and (1.10),
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addition to or subtraction from 6 of any vector 8 in the orthogonal complement
7 of H has no effect on the equations, so one may assume without loss of
generality that 6 € H. As in Berk (1972), /7 has its unique maximum at 4.
Similarly, if L(n) is open relative to L, 6, may be assumed to be in H and #,, is a
strictly concave function with unique maximum at 6,,. Given this relationship of
Z to 0 and 7, to 0, the following basic consistency result can be proven.

THEOREM 3. Assume Q exists and [ exp(w, T) dQ < o, w € N, where N is
an open neighborhood of 8. Let 8 € H and 6,, € H for ri L(n) open relative to L.
Then Pr(9, — 0) = 1.

PrROOF. By the strong law of large numbers,

(3.3) n~t ¥t Iv(Xy)exp(w, T) — L exp(w, T) dP

with probability 1 for each w € H. For any countable dense subset Z of H, (3.3)
implies Pr{Z,.(w) — Z(w), w € Z} = 1. Let J C H be closed and convex and let
0 be in the relative interior of J. Let ri J be open relative to H, and let J — 0 =
{w — 0:w € J} C N. Since 7, is concave, Rockafellar (1970, page 90, Theorem
10.8) implies that maxwe,s| Z,(W) — 7 (W) | — 0 with probability 1. Let 3/ be the
relative boundary of J. Then maxyesZ(W) < Z(0) and with probability 1,
max wesZ n(W) < #n(8) for all but a finite number of n. Thus the probability is
1 that 0, € ri J for n sufficiently large. Since ¢/ is arbitrary, Pr(6, — 6) = 1.0

The remaining consistency results follow from Theorem 3. An important
preliminary result is Lemma 1.

LEMMA 1. Let D be a real measurable function on R°® such that
[ (1 + | D|)exp(w, T) dQ < =, for all w in an open neighborhood N of 6. Assume
Q exists. Then
(3.4) Fn(D) = % Yi1 In(X)D;exp(6,, T)) — F(D) = L D exp(9, T) dQ
with probability 1.

ProoF. Consider ,
(3.5) Fon(D) = (1/n) ¥ In(X))Diexp(8, T)).

By the strong law of large numbers,
(3.6)
Fon(D) — F(D)

with probability 1. By Taylor’s theorem,
(3.7 F.(D) — Fou(D) = (6, — 0, (1/n) X% In(X;)D;exp(67, T))T))

for some 0} on a line segment between 6 and 6,. Let 6 be in the interior of the
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convex hull of w,, 1 < k < b + 1, where [ | D|exp(wy, T) dP < . Then the
probability is 1 that for all sufficiently large n,

(3.8) 0% = Y1 oWy

for some ay, = 0, 1 < k < b+ 1, such that %! e, = 1. For such n,

(3.9) exp(0%, T:) < Y22 apmexp(w, T)) < Y4 exp(w, T))

and

(3.10) | (1/n) Thes Lu(X)D;exp(6%, T | < B4 (1/n) iy | Di| exp(wi, T)).

With probability 1, the right-hand side of (3.10) has a finite limit as n — oo.
Since 8, — 6 — 0 with probability 1, (3.7)-(3.10) imply that F,(D) — F,,,(D) — 0
with probability 1. The conclusion of the lemma is immediate. 0

The first consequence of Lemma 1 and Theorem 1 is the following result
concerning strong consistency of E, (D).

THEOREM 4. Assume Q exists and D satisfies the conditions of Lemma 2. Then
(8.11) E.(D) — E(D)
with probability 1.

ProoF. Clearly

(3.12) E.(D) = F(D)/F,(1)
and
(3.13) E(D) = F(D)/FQ1),

where F(1) > 0. The conditions of Lemma 1 apply to D and to the constant
function 1. Thus F,(D) — F(D) and F,(1) — F(1) with probability 1. Hence
(3.11) holds. O

One special case, the indicator function D = I, leads to the desired result
concerning weak convergence. One has

COROLLARY 1. Let B be a Borel set in R®. Let the conditions of Theorem 1
hold. Then Q,(B) — Q(B) with probability 1.

PROOF. Just note that Q,(B) = E,(Iz) and E(Iz) = Q(B). Since
f | Ig | exp(w, T) dP < f exp(w, T) dP
is assumed finite in a neighborhood of 8, Theorem 2 applies. 0

The final result involves weak convergence.
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THEOREM 5. Assume € exists and [ exp(w, T) d@ < o for w in an open
neighborhood of 0. Then Pr(Q, —, @) = 1.

PrROOF. Note that R® is a separable metric space. By Corollary 1 and
Parthasarthy (1967, pages 47, 53), the result follows. 0

Results of this section are easily derived from Haberman (1974, Chapter 9) if
P has support on a finite number of points. They may be generalized somewhat
in two ways. First, use of R® matters little. Results apply to any probability
measure P on a separable metric space. Second, use of independent and identically
distributed observations is of only limited importance. The key requirement is
that (1/n) ¥ In(X))exp(w, T;) — [u exp(w, T) dP with probability 1 for w in
a nelghborhood of 6.

4. Asymptotic normality. Asymptotic normality results of Section 1.3
may be proven fairly easily given the basic structure established in Section 3. To
begin, consider the asymptotic behavior of 6,,.

THEOREM 6. Assume Q exists and [ exp(w, T) d@ < « for w in an open
neighborhood N of 0. Assume [ | T [|*(dQ/dP) dQ < . Let

(4.1) I*= f (T — t)(T - t)’ <dQ> dq.

Let 6,, € H whenever ri L(n) is open relative to L. Let ¥~ be the Moore-Penrose
generalized inverse of §.. Then

(4.2) n'*6, - 0) -9 NGO, I I* 1.
REMARK. In the special case of 0 =0(P=@Q), ¥ " X*¥ =% .

ProOF. For w € RY, let

(4.3) m,(w) = E Yim1 In(Xpexp(w, Tl)] % Y= In(X;)exp(w, T)T;

and

Lo(w) = E 2y Iy (X,)exp(w, 'L)]
(4.4) .
= =1 [Ti — m,(W)][T; — m,(w)]' I (X:)exp(w, T).

By Taylor’s theorem, the probability is 1 that for n sufficiently large and for
some functions w, from R® to R’ and «, from R® to (0, 1),

(4.5) Wa(X) = a,(x)0 + [1 — a,(x)]0,, x € R®,
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and
(46) (Xy mn(o)) + (X, }:n(wn(x))(on - 0)) = (Xy mn(on))
= (x, t),
As in the proof of Lemma 1,
(4.7) % 2= In(X,)exp(w,(x), T)) — fM exp(0, T) dP
(4.8) %EELI Iy(X;)exp(w,(x), T)T; — fM exp(d, T)T dP,

and

1
(49) B In(X)exp(wa(x), T)T.T, — f exp(6, T)TT" dP.
M

Thus
(4.10) T.(w,(x)) - X
with probability 1. Since

¢ = Jm exp(8, T)T dP
Jmexp(d, T) dP’

(4.11)

elementary large sample theory implies that
(4.12) n'[t — m,(0)] -2 N(0, L*).
Let x, € R, 1 < k < b, satisfy
(x4, X)) =1, k=Fk,
(4.13) =0, k#Ek'.

Then

Thar (Xey t = mu(0)) = Thoy Xk, Ta(Wa(xk))(0, — 0))
= (on - 0; }: (on - 0))2 + en,

(4.14)

985

where ¢,/(6, — 0, ¥ (6, — 0))> - 0 with probability 1. Thus 6, — 0 is of order

n~'2 By (4.6), (4.10), and (4.12),

(4.15) (%, ¥ n'*(6, — 0)) 5o N(0, (x, T x)).

The conclusion of the theorem follows since 8, — § € H for n sufficiently large

with probability 1 and since x is arbitrary (Rao, 1973, page 128).0

LEMMA 2. Let D be a real measurable function on R® such that [ D*(dQ/dP)
dQ <, [ | T|*dQ/dP)dQ < x, and [ (1 + D*exp(w, T) dQ < » for w in an
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open neighborhood of 0. Let

(4.16) Tvw= J]; D exp(6, T)T dP

and

4.17) ¢*%D) = f [DIyexp(6, T) — F(D) — cIyexp(8, T)(T — t, 0p)])* dP.
Then
(4.18) n?[F,(D) — F(D)] — 2 N(0, ¢*(D)).

PrROOF. The proof of Theorem 6 also implies that
(4.19) n'%0,—0) —n'? ¥ % Y ely(X)exp(6, T;)(T; — t) —p 0,
where —, denotes convergence in probability. By (3.5) and (3.7)

n'*[F.(D) — F(D)] = n'? [}1 2= Dily(Xi)exp(8, Ti) — F(D)]
(4.20)

= <n”2(0n —90), % Y1 Didm(X))exp(67, Ti)Ti) .
By the same argument used in Lemma 1, one has
(4.21) % 2k Dily(X;)exp(8%, T)T; — L D exp(4, T)T dP

with probability 1. By (4.19) — (4.21),

(4.22) n'[F.(D) — F(D)] — n™"2 3, Ci(D) —, 0,

where

(4.23) Ci(D) = In(X;)D;exp(6, T:) — F(D) — In(X,)exp(6, T)(T; — t, vp)
has mean 0 and variance ¢%(D). By the central limit theorem

(4.24) n™2 ¥, Ci(D) -9 N(0, c*(D)).

By (4.22) and (4.24), (4.18) must hold. 0

Given Lemma 2, Theorem 7, the principal result of this section, readily follows.

THEOREM 7. Let the conditions of Lemma 2 hold. Then
(4.25) n'?[E,(D) — E(D)] -2 N(0, 7*(D)).

PROOF. Given Lemma 2, (3.12), and (3.13), it follows from standard large-
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sample theory that

F.(D) F(D)Fn(n} 0
P

v o _ —_ pnl/2
(4.26)  n'*E,(D) - E(D)] ~ n {F(l) [FQ)P

Since

FoD) F(D)Fu(1) _ . )0 oo
(4.27) ) FP =F,(D’") - F(D’)
for

,_ID-ED)]_

(4.28) D’ = ) =c¢[D — E(D)]
and since
(4.29) F(D') =0,

Lemma 2 and (4.26) imply that (4.25) holds. O

4.1. Confidence intervals. Given Theorem 7, asymptotic confidence intervals
for the expected value E(D) are readily constructed, as noted in Section 1.4. By
use of Lemma 1, one readily finds that 72(D) — 7% D) with probability 1
whenever D satisfies the conditions of Lemma 1, the conditions of Theorem 3
hold, and, in addition,

(4.30) f (1 + D?)exp(w, T)<Z—§) dQ < =
for w in an open neighborhood N of 0. Provided that 72(D) > 0, one then has

(4.31) Pr{mm - i—%‘—”—) < E(D) = E.(D) + ﬁ%’%@} Sl-a

for any a, 0 < a < 1. The condition 72(D) > 0 is satisfied if for no « € R and
B8 € R® is Pr{D(X*) = a + (8, T(X*))} = 1 for X* with distribution Q. If one
assumes in advance that P = @, then 72(D) may be replaced by 73,(D) without
changing results.

4.2. Remarks. As in Section 3, the results of this section can be further
generalized, although generalizations are not trivial. The main case of interest
involves complex sampling procedures in which the X; are not independent and
identically distributed. Typically, results are still available, but asymptotic vari-
ances are changed.
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