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COMPONENT VECTORS

By Davip E. TYLER
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In this paper, the hypothesis that a set of vectors lie in the subspace
spanned by a prescribed subset of the principal component vectors for a
normal population is considered. A class of invariant asymptotic tests based
on the sample covariance matrix is derived. Tests in this class are shown to
be consistent and their local power functions are given. The arguments used
in deriving the class of tests are not heavily dependent on the assumption of
normality nor on the use of the sample covariance matrix. The results are
shown to generalize when the procedures are based on any affine-invariant
M-estimate of scatter and when the population is elliptical.

1. Introduction and summary. LetY,, Y, ---, Y, be a sample of n independent
p-dimensional Normal (u, ¥) random vectors with ¥ nonsingular, and let S, be the sample
covariance matrix. The population and sample principal component roots are the eigen-
values of ¥ and S, respectively, say A\, = A2 = -+ = A\, > 0 and PVED VIS Xp = 0.
The population and sample principal component vectors are the corresponding eigenvec-
tors of ¥ and S, respectively. By studying the asymptotic distribution of the sample
vectors, Anderson (1963) has shown under the assumption \;_; # \; # A\, that

(1.1) n(\a’S;'a + A\'a’S,a — 2) — X2

in distribution, whenever ¥a = \;a and a’a = 1. This classic result is often used to test if
a hypothesized vector is a principal component vector associated with the ith largest root.

In this paper, rather than considering the principal component vectors individually,
asymptotic inferences for the subspace generated by a set of principal component vectors
are studied. Let ¢ and m be fixed positive integers with i + m — 1 < p, and assume
throughout the paper that A\;—; < X\; (if i > 1) and Nypm—y < My (if i + m < p). Interest is
to be focused on the eigenspace spanned by the eigenvectors of ¥ associated with the roots
Miy +++, Ni+m-1, OF equivalently on the p X p orthogonal projection matrix P, which projects
onto this eigenspace. In particular, for a p X r matrix A with rank(A) = r < m, the
following null hypothesis is considered,

(12) HoZ PoA = A.
This null hypothesis states that the columns of A lie iri the eigenspace spanned by the
eigenvectors of ¥ associated with \;, -+ -, Aim-1.

‘The problem of testing H, is treated by the author in an earlier paper, Tyler (1981).
There, an asymptotic chi-squared test is given. In Section 3 of the present paper, an r X r
matrix-valued statistic is derived and its asymptotic distribution is shown to be Wishart.
A class of invariant asymptotic tests for H, based on the roots of this matrix-valued
statistic is then proposed. Tests in this class are shown to be consistent, and their local
power functions are given. The arguments used in deriving the results in Section 3 are not
heavily dependent on the assumption that the population is multivariate normal nor on
the use of S, as an estimate of X. The results readily generalize to any affine-invariant
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M-estimate of scatter when sampling from a population with an elliptical distribution
(Section 4).

For a p X s matrix B with rank(B) = s > m, one may wish to test whether the eigenspace
spanned by the eigenvectors of ¥ associated with X;, - - -, Aism—1 lies in the space spanned
by the columns of B. This testing problem is similar to the problem of testing H, and so
is not discussed further, see Remark 3 in Tyler (1981).

For motivation, consider the following hypothetical example. A battery of six tests, (yi,
¥s, +++, Ye), are given to a group of subjects. The first three tests are considered measures
of mathematical ability and the last three measures of verbal ability. Suppose that an
analysis of the principal component roots indicates that most of the variability in the tests
can be accounted for by the first two principal component variables. One may then wish
to test whether the space spanned by the first two principal component vectors corresponds
to the space spanned by the vectors (1, 1,1, 0, 0, 0)’ and (0, 0, 0, 1, 1, 1)’. Alternatively,
one may wish to test whether the space spanned by the first two principal component
vectors measures verbal ability only. This can be tested by considering the hypothesis
that the set of vectors {(1, 0, 0,0, 0, 0)’, (0,1, 0, 0, 0, 0), (0,0, 1, 0, 0, 0)’} lie in the space
spanned by the last four principal component vectors.

In the above example, hypotheses on the individual vectors may also be of interest
provided the corresponding roots A; and A\, are “well spaced”, see Remark 1 in Tyler
(1981). Other motivations for comparing principal component spaces rather than solely
comparing principal component vectors are discussed for the two populations case by
Krzanowski (1979), wherein an illuminating example can be found.

In practice, principal components analysis is usually used as an exploratory procedure.
As such, one may not have any a priori hypotheses concerning the principal component
vectors, but rather use principal components analysis to discover interesting linear
combinations of the original variables. The sample vectors, however, are often cumbersome
and difficult to interpret. Thus, it is common practice to note that the sample vectors look
“close” to some more parsimonious or scientifically meaningful set of linear combinations,
or possibly to the principal component vectors of a known population. This concept of
closeness can be made more rigorous by considering the p-value of an appropriate test of
hypothesis for the vectors.

2. Sample principal component spaces. The asymptotic distribution of S, as
n — o when sampling from a normal population can be expressed in the following manner:

(2.1) n'?{vec(S, — ¥)} — Normal{0, (I + K, ,)(¥ ® )}

in distribution. If B is a b X t matrix, then vec(B) is the bt-dimensional vector formed by
stacking the columns of B, while if C is ¢ X u, then B ® C is the bc X tu Kronecker product
of B and C. The commutation matrix or permuted identity matrix is the ab X ab matrix
K., = ZLIE?;,‘EU ® E’; where E;; is an a X b matrix with a one in the (i, j) position and
zeroes elsewhere. Algebraic properties involving the “vec” transformation, the Kronecker
product and the commutation matrix have been extensively investigated by Magnus and
Neudecker (1979). Three important properties are

(2.2) vec(ABC) = (C’ ® A)vec(B),
(2.3) K, vec(Aaxs) = vec(A'),
(2.4) Ka,b(Aaxc ® Bbxd) = (B ® A)Kc,d-

The spectral representation of ¥ is ¥ = ¥, AP», where s represents the set of distinct
roots of ¥ and P, is the unique orthogonal projection onto the space spanned by the
eigenvectors of ¥ associated with the eigenvalue A. The matrix P, defined in Section 1 is
thus P, = Yecw P where w represents the set of distinct values from {\;, -+, Aism—1}.
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Corresponding, for n > p, let i = {Xi, e s ,+,,._1} and 150 Yacio Py, where P, is obtained
from S, = Y,e\P,. The elements of £ = {X,, ---, X p} are distinct and nonzero with
probability one if n > p. Also, whether H, is true or false, if n> p, then

(2.5) rank(PyA) = r almost surely.

Statement (2.5) can be verified by noting that if rank( B,A) < r, then rank(S,A) < r and
hence rank(S )< p The last inequality can occur only on a set with probablhty zero.

Let X;, Xiv1, - - -, Xi+m—1 be a set of orthonormal eigenvectors of S, with'S,%X; = A ;X; for
j=1, .-+, 1+ m — 1. The asymptotic distribution of these sample principal component
vectors depend upon the multiplicities of the elements in w, see Anderson (1963). For a
multiple root, the sample vectors are not asymptotically normal. To develop tests for H,
by using the asymptotic distribution of the sample vectors, assumptions concerning the
multiplicities of the elements in w are needed. It would then be necessary to show that
any resulting test does not depend on these additional assumptions. These complications
can be avoided by using the sample projection P, in formulating tests for Ho. Some basic
results concerning the asymptotic distribution of P, are given below.

LEMMA 2.1.

() If P,A = A, then vec{n*2(I — P;)A} — Normal{0, }JO(A)} in distribution, where
¥o(A) = ¥,euU(n, A) ® P,and U(p, A) = A'[Trewirn/(X — )’} P,]A.

(ii) Let io(A) = YuesUn (#,A)‘X’P where U,(p, A) = A'[SreafAn/(A — w)?} P,)A, then
}Qo(A) — To(PoA) in probabzhty

(iii) rank{%,(A)} = (p — m)rank(P,A) and rank(}lo(A)} = (p — m)r almost surely.

Proor. Part (i) is a special case of Theorem 4.1 in Tyler (1981). The form of ¥o(A)
given here follows from (2.1), (2.4) and the facts P’\ = P,, P\P, = 0 for u # \. Similarly,
part (ii) is a special case of Equation (4.3) and Theorem 4.2 in Tyler (1981). Part (iii) is a
consequence of Theorem 5.1. ii and Corollary 5.2.ii in Tyler (1981) and statement (2.5)
above. O

REMARK 2.1. For computational purposes, the expression U,(u,A) = A’ X, A, (p) X, A
can be used, where A,(u) isan m X m dlagonal matrix with entries u}; /()\ —uw?j=i,
ceyi+m—1land X, = [X; Xisp - -+ Xirm—1] with' %; being defined prior to Lemma 2.1.

3. A class of invariant tests. The results of Lemma 2.1 can be used to develop an
asymptotic chi-squared statistic for testing Ho, as in Tyler (1981). However, a more general
asymptotic Wishart statistic can be constructed. This is done in Theorem 3.1. Before
presenting the theorem and its proof, some additional notation and preliminary results
are needed.

If vec(X,xq4) ~ Normal{vec(C,xa), Taxa ® I,} with T’ nonsingular, then X’'X ~ Wis-
harty(», T, %2 T7'C’C), a noncentral Wishart distribution of order d on v degrees of
freedom with covariance matrix argument I and noncentrality matrix argument %2 I *CC".
If T = I, then the distribution of the noncentral Wishart depends on the noncentrality
matrix only through its roots. If C = 0, then X’'X ~ Wishart,(», T'), a central Wishart
distribution.

For a symmetric nonnegative definite matrix M, let M'/? represent the unique sym-
metric square-root of M and let M™* represent the Moore-Penrose generalized inverse.
These operations have the property

(3.1) (@'MQ)”” = Q'M'Q and (Q'MQ)" =Q'M*'Q

for any orthogonal Q. Furthermore, if M, represents a sequence of symmetric nonnegative
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definite random matrices which converge in probability to the nonrandom matrix M , then

(3.2) M}/? — MY? in probability.
If, in addition, rank(M,,) < rank(M) almost surely, then
(3.3) M} — M* in probability.

Statement (3.2) follows from the continuity of the square-root operation, and statement
(3.3) is a special case of Lemma 2.1 in Tyler (1981).

Finally, it should be noted that the matrix U,(u, A), defined in Lemma 2.1, is almost
surely nonsingular whether H, is true or false. This statement easily follows from (2.5),
Remark 2.1, and the identity P, = X, X/,.

THEOREM 3.1. Let W,(A) = nZ,¢; {Un(, A)}72A'P,A{U,(n, A)}) 2
(i) If PoA = A, then W,(A) — Wishart.(p — m, I) in distribution.
(ii) If PoA # A, then for any fixed x, Prob[trace{ W,(A)} > x] — 1.

PROOF. (i) Let ¢,(A) be a p X r matrix defined such that
(3.4) : vec{ta(A)} = {$o(A) 2} vecin X1 — Py)A).

It then follows from Lemma 2.1 and statements (3.2) and (3.3) that vec{t,(A)} —
Normal{0, I ® (I — P,)} in distribution. The asymptotic covariance of vec{t,(A)} is
obtained as a special case of Theorem 5.1.i in Tyler (1981). By using properties (2.2) —
(2.4) it can be shown that t.(A) = n"? Z,e; P,A{U.(n, A)J™2 since {$o(A)2) =
Zues Un(p, A2 ® P, and P,(I — Py) = P, for u & 1. Also, since B, P, = 0 for u # A

A

and P, = P/, it follows that
(3.5) W.(A) = {t.(A)} {t.(A)}.

Part (i) then follows by noting that I — P, is idempotent with rank p—m.
(ii) This is a special case of Theorem 5.3.iii in Tyler (1981). O

A sequence of local alternatives to H, can be constructed in the following manner. Let
X. be a sequence of nonrandom symmetric positive definite matrices of érder p with the
roots of ¥, independent of n, and where as n — o, ¥. — ¥ with ¥ satisfying H,. By the
continuity of eigenvalues, the roots of ¥ are the same as the roots of Xn. Let Py, be
the orthogonal projection matrix which projects onto the space spanned by the eigen-
vectors of ¥, associated with the roots in w. Furthermore, let X, be defined so that
n'/*(I — Py,) A — D. Note that P,D = 0 since P,,, — Po. Define the sequence of hypotheses

(3.6) H, ,: Yj ~ Normal (4, £.), 1<j=n

with Yy, Yy, - -+, Y, mutually independent.

THEOREM 3.2. Under the sequence of hypotheses H; ,, W,(A) — Wishart,{p — m, I,
(A, D)} in distribution, where Q(A, D) = 4Y,¢, {U(n, A)}™2D’P,D{U(, A2 and
with U(u, A) defined in Lemma 2.1.

PROOF.  Since the roots of ¥, are the same as the roots of ¥, there exists a sequence
of orthogonal matrices @, such that ¥, = Q.31Q: with @, — I. The transformation
S, — Q,S,Q", induces the transformations P, — Q,P.Q’, and P, — Q.PoQ, and so it
follows from (3.1) that the distribution of W,(A) under H. 1,n 1s the same as the distribution
of W,.(QA) under H,. Thus, it suffices to find the asymptotic distribution of the latter.
By expressing i?o(Q’,.A) =(A'Q, ® I){ﬁo(lp)}(Q’nA ® I) it follows from Lemma 2.1.i
that ﬁo(Q;A) — (A" ® D{¥o (P)}(A ® I) = %4(A) in probability. Furthermore,
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vec{n'/2(I -~ Py)Q,A} — Normal{vec(D), Fo(A)} in distribution. To verify, expand
n*(I — P)QLA = nV%(I — Py)A + D, where D, = nV%(I — Py)(Q/, — I)A. Note that
nY% (I — Po,)A = n*?Q,(I — Py)Q"A = n'?Q.(I — Po)(Q, — I)A and so D, —» D
in probability. The aforementioned statement then follows from Lemma 2.1.i. The re-
mainder of the proof of the theorem is analogous to the proof of Theorem 3.1.i. O

The problem of testing H, is invariant under the transformations Y; - QY; + b, 1 <j
< n, A — QAB, where @ is an orthogonal matrix, b is a p X 1 vector, and B is a nonsingular
matrix. After reduction by sufficiency, it is easily shown that any invariant test is defined
by a test statistic 7'(S,, A) having the property

(3.7) T(Sa, A) = T(QS.Q’, QAB),

for any orthogonal matrix @ and any nonsingular matrix B. The asymptotic Chi squared
statistic proposed in Tyler (1981), which in terms of the notation of the present paper is
trace{ W,(A)}, possesses this property. More generally,

THEOREM 3.3. Let Ao = A(A’A)™2 and let wy(S,, A) = --- = w,(S., A) represent
the ordered eigenvalues of W,(Ao). Any function of wi(S,, A), ---, w.(S,, A) satisfies
praoperty (3.7)

PROOF. The transformation A — QAB induces the transformation Ao — QAoR, where
R = (A’A)?B(B’A’AB)~'? is an orthogonal matrix. The transformation S, — QS,Q’
induces the transformations P, — QP,Q’ and U,(u, A) — U,(u, Q’A). By using property
(3.1), these results imply that the transformation (S,, A) — (QS.Q’, QAB) induces the
transformation W,(Ao) — Q@W,.(Ao)Q’. Part (i) then follows since the roots of W,(A,) and
QW,.(A) Q' are the same for any orthogonal matrix @. 0

REMARK 3.1. (i) Theorem 3.3 generalizes the Chi squared statistic in Tyler (1981) since
trace{W,(A)} = trace{ W,.(Ao)} = ¥} w;(S,, A). (i) The roots of W,(A) itself do not
possess the invariance property (3.7). Introducing the matrix A, can be viewed as express-
ing the null hypothesis Hy in a more canonical form, namely Hy: PpAo = Ao with Ao having
orthonormal columns. This form is unique up to post-multiplication of A, by an orthogonal
matrix. (iii) It can be shown that the only functions of ¢,(A,), the studentized difference
between PyA, and A, defined by (3.4), which satisfy (3.7) are functions of w,(S,, A), ---,
we(Sy, A).

Let W ~ Wishart,(p — m, I, A) where A is an r X r diagonal matrix with diagonal
elements 6, = --- 26,20, and w = {w,, ---, w,} where w, = ... = w, = 0 are the roots
of W. Let h be a continuous function on R" and let A, be defined so that Prob{h(w) > h,}
= a whenever A = 0. Furthermore, let h be defined so that the following conditions hold:

CONDITION 3.1. h(v) — sup{h(v)} as v'v — o0,

CONDITION 3.2. The function ¢(A) = Prob{h(w) > h.} is monotonically increasing
ineaché;,1<j=<r.

Functions satisfying Condition 3.2 have been studied in relationship to MANOVA
problems with known covariance matrices. In general, it is not easy to show that a given
function h satisfies Condition 3.2. Perlman and Olkin (1980) give sufficient conditions on
h for Condition 3.2 to hold. Examples of functions which satisfy both Condition 3.1 and
3.2 are h(v) = vy, h(v) = 77_;(1 + v;) and h(v) = X7 v;.

A consistent invariant asymptotic a-level test for Hy, with monotonically increasing
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local power function can then be obtained by defining as the rejection region
(3.8) C(S,, A) = {S,: h[wy(S,, A), ---, w(S,, A)] > h.}.

More specifically, as a consequence of the continuity property of eigenvalues, the following
corollary to Theorems 3.1, 3.2 and 3.3 is obtained.

COROLLARY 3.1.
i) C(S,, A) = C(QS.Q’, QAB) for any orthogonal matrix @ and any nonsingular

matrix B.

(ii) If P,A = A, then Prob{C(S,, A)} = a.

(iii) If PobA # A, then Prob{C(S,, A)} — 1.

(iv) Under the sequence H, ,,, Prob{C(S,,A)} = ¢{A(A, D)} where A(A, D) is a diagonal
matrix whose diagonal entries are the ordered eigenvalues of Q(Ao, Do) with Dy =
D(A’A)™2, and where the function ¢ is defined in Condition 5.2.

The matrix D and the diagonal matrix A(A, D) have the following relationships. Since
P,D =0, D can be expressed as Y jesd;Xx;q where {x;, j € J} is a fixed set of orthonormal
eigenvectors of ¥ which span the range of (I — P,), and {q;, j € J} is a set of vectors in
R’. For any fixed set of vector {q;, j € J}, the diagonal elements of A(A, D) are increasing
functions in each d?, with at least one of the diagonal elements of A(A, D) strictly
increasing. This shows that Condition 5.2 is desirable. Furthermore, Condition 5.2 insures
that asymptotically the rejection region C(S,, A) is locally unbiased.

REMARK 3.2. It can be shown that W,(A,) is asymptotically equivalent to W,(A4,),
where A, = A(A’P,A)™2, in the sense that W,(A4,) — W,.(4,) — 0 in probability under
both H, and under the sequence H, .. Furthermore, tr{ W,(A4o)} = tr{W,(A,)}, and the
roots of W,(A,) satisfy property (3.7). Thus, Corollary 3.1 holds if the roots of W, (A,) are
replaced by the roots of W,(A,) in defining C(S,, A).

For the special case r = m, the roots of W,(A;) are the same as the roots of W,(A,)
where A, = A(X,A)™" and X, is defined as in Remark 2.1. This follows since the roots of
Wn(Al) are unchanged if A is postmultiplied by the nonsingular matrix (X7, 4)™" and since
P, = X,X,.If A; and W,(A,) are represented by A, = [a; a;41 - -+ Ai4m-1] and W, (4p) =
{tje} for j, k=1, - .-, i+ m — 1 respectively, then

(3.9) W = n[(AA)2a/ S a, + (AAe) 2l Shar — {(A;/A0)Y2 + (Ae/A;) V22l ).

Note the similarity between (3.9) and (1.1). For computational purposes, it is simpler to
calculate W,(A,) by using (3.9) than it is to calculate W, (Ao).

For r < m, the author has not been able to derive in general a simple computational
form either for W,(A,) or for any matrix whose roots are asymptotically equivalent to the
roots of W,(Ao). However, if one makes the additional assumption that \; = \jy; = ..+ =
Ai+m-1, then it can be shown under both H, and under the sequence H, , that W,(A,) is
asymptotically equivalent to

I 1) a
(3.10) n{AA LS4, + A4 48,4, — 21,
where A = m™! Yirrt X,

REMARK 3:3. For comparing two subspaces of order m, Krzanowski (1979) suggests
using the angular values {Cos™!(y}/?), 1 =j < m} where y; = ... = v, are the roots of
MM, MM, with M, and M, being p X m matrices whose columns are orthonormal and
span the respective spaces. Applying this concept to the problem of testing H, for the case
r = m, it suggests comparing the sample and hypothesized principal component spaces via
the statistics {Cos™(¥}/%), 1 < j < m} where 4, = - .- = ¥,, are the roots of A ;PoA,. These
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statistics possess the invariance property (3.7). The asymptotic distribution, however, is
somewhat intractable. Under Ho, n(A 4 PyAo — I) = {n'/2(I — Py) Ao}’ {n*2(I — Py) Ao} which
converges in distribution to N N, where vec(N,) ~ Normal{0, ¥¢(Ao)}. Thus, the limiting
null distribution of {nCos™ (v}?), 1 < j < m} corresponds to the joint distribution of the
Arcosines of the square-roots of the ordered eigenvalues of N ;N

4. Robustness. In this section assume that Y;, Yy, ---, Y, is a random sample
from a p-dimensional population with density function of the form f,(y; g, A) =
| A Y2%g{(y — u)’A™(y — u)} for some symmetric positive definite matrix A and some
nonnegative function g, where g is not dependent on u or A. Properties of distributions
with elliptically contoured density functions have been studied by Kelker (1970). In
particular, if the second moments of the distribution exist, then the population covariance
matrix is proportion to A.

Maronna (1976) defines affine-invariant M-estimates of location and scatter
to be solutions to a system of equations of the form n3Zu,(d;)(Y; — ) = 0, and
n 12 uy(d?) (Y; — w)(Y: — @)’ = V, where d? = (Y, — &)’ V™Y, — ). The functions u,
and u, satisfy a set of general assumptions given in Section 2 of Maronna’s paper. The
solutions (4, V) are estimates for the parameters (u, V) where V = ¢7'A. The parameter
o is the solution of an integral equation and depends on the function g. Maronna (1976)
shows that nV2(V — V) — Z in distribution, where Z is multivariate normal with mean
zero. The covariance matrix of vec(Z) is given in Tyler (1982) as

(4.1) o1(I + K, , )(V® V) + ayfvec(V)}{vec(V))',

where ¢, and ¢, are parameters depending on g. For more details, see Tyler (1982).

Let the notation established in Section 1 be used when (¥, S,) is replaced by (V, V).
Since V is proportional to A, the hypothesis Hy: PbA = A is the same whether the
eigenprojection P, refers to the matrix V or the matrix A. Analogous to Lemma 2.1.i, it
can be shown that if PoA = A, then

(4.2) vec{n’*(I — Pg)A} — Normal{0, o, ¥o(A)}

in distribution, where $o(A) is defined as in Lemma 2.1 with ¥ replaced by V. This result
then leads to the following generalization of Corollary 3.1.

THEOREM 4.1. Corollary 3.1 holds whenever S, ¥, {wj(S,, A), 1 = j < r} and
A(Aq, Do) are replaced by V, V, {67'w; (V, A), 1 < j < r} and 67 'A(Ao, Do) respectively,
where G, represents a consistent estimate of ;.
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