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LARGE SAMPLE OPTIMALITY OF LEAST SQUARES
CROSS-VALIDATION IN DENSITY ESTIMATION

BY PETER HALL

Australian National University

We prove that the method of cross-validation suggested by A. W. Bowman
and M. Rudemo achieves its goal of minimising integrated square error, in an
asymptotic sense. The tail conditions we impose are only slightly more severe
than the hypothesis of finite variance, and so least squares cross-validation
does not exhibit the pathological behaviour which has been observed for
Kullback-Leibler cross-validation. This is apparently the first time that a
cross-validatory procedure for density estimation has been shown to be
asymptotically optimal, rather then simply consistent.

1. Introduction. Cross-validatory methods in density estimation have generated
considerable interest in recent years. They were introduced on an ad hoc basis by Habbema,
Hermans and van den Broek (1974) and Duin (1976), and shown to be cross-validatory
by Titterington (1978, 1980). Their strong intuitive appeal and relative simplicity have
caused them to be adopted by several workers. However, support for cross-validation is
not universal. For example, it is rather disturbing to learn that the common cross-
validatory methods produce inconsistent estimators unless the distribution tails are very
small; see Schuster and Gregory (1981) and Chow, Geman and Wu (1982). In particular,
the cross-validatory estimators are inconsistent when used with a distribution which has
regularly varying tails, such as Student’s t. They are even inconsistent in the case of the
exponential distribution. Chow, Geman and Wu (1982) have proved consistency in the
case of a distribution with bounded support. Bowman (1980) has established consistency
in the categorical case. Stone (1974a, 1977) has discussed general properties of cross-
validatory techniques.

Given the popularity of cross-validatory methods, and the problems encountered with
them for moderately long-tailed distributions, it is important to consider modifications
which make them more robust. The most obvious approach is to truncate the sampling
distribution, although Hall (1982a) has shown that this procedure can lead to poor
performance. (But see Marron, 1983.) An alternative, delightfully simple method has been
suggested by Bowman (1982, 1983) and Rudemo (1982). Following Titterington (1978,
1980), Bowman points out that the commonly used cross-validation can be derived by
minimising the Kullback-Leibler loss function,

(11 I(p, q) = f p(x)log{p(x)/q(x)} dx,

averaged over the sample, in which p(x) is taken as the Dirac delta function at the sample
point X;, and q(x) is a kernel density estimate based on the sample excluding X;. If we
have reservations about the estimator derived using this loss function, we might consider
employing a different measure of loss. The most widely accepted means of determining
the performance of an estimator f, of a density f is in terms of its mean integrated square
error,

MISE = fE{fn(x) — f(x)}? dx.
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CROSS-VALIDATION 1157
This suggests that we might change I to

(1.2) I(p, q) = f{p(x) — q(x)}? dx.

In order to describe the estimator resulting from the loss function (1.2), we shall
introduce some notation. Given a random sample X, - - -, X,, from a common distribution
with density f, let

fa(x) = (nh)™ T K{(x — X;)/h}
denote a kernel estimator of £, and let
fm‘(x) = ‘(n - l)h’_l Ej#i K{(x - X‘,)/h’, l1=:= n,

denote the estimator computed with the ith observation deleted from the sample. Of
course, the quantities f, and f,; depend on the window size, h, and when it is necessary to
stress this dependence we shall write them as f,,(x | h) and f,.:(x | h), respectively. Bowman
(1982) showed that the cross- vahdatory estimator based on the loss function (1.2), is
obtained by using the value of h, say A, which minimises

an(h) = n7' ¥, ff?u'(xlh) dx — 2n7" 3 fu(Xi| ).

Rudemo (1982) introduced the same technique from a slightly different viewpoint. In
many practical cases the integral in the definition of a, can be calculated analytncally, and
does not require numerical computation.

A simple analytic argument shows that

nEL ffrzn(x) de=(1-n""72%1-2n"1
(1.3) . ff?l(x) dx + (n —_ 1)—2h—l sz(x) dx

= ff?,(x) dx + O(1/n?h)

in probability, as n — . It follows from our proofs in Section 3 that one of the terms in
an expansion of a,(h) is of order 1/nh, and so the remainder term in (1.3) is negligible in
comparison. Therefore the cross-validatory criterion could be changed from «, (k) to

ﬂn(h) = ff?l(x) dx — 2n7! = fm(x I h),

which is slightly simpler to compute, without affecting the asymptotics. However, as
Bowman (1982) and Rudemo (1982) have pointed out,

Elan(h)} = fEif,._l(x) = f(x)}? dx — ffz(x) dx,

and so an(h) is perhaps more closely related to the concept of mean integrated square
error. Our aim in the present paper is to prove that the Bowman-Rudemo method of least
squares cross-validation achieves its goal of minimising integrated square error, in an
asymptotic sense.

2. Results. Let K be a bounded, symmetric density function with finite second
moment. Define k = V2 [2?K(z) dz. Under quite mild conditions on f, the mean integrated
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square error admits the expansion

fEifn(x) — f(x)}? dx
(2.1)

= (nh)™ f K*(2) dz + h*k? f {f7(2)}? dx + ol(nh)™ + h*}

as n — « and h — 0; see for example Rosenblatt (1971). (Here and below, an unqualified
integral denotes integration over the whole real line.) The “asymptotically optimal”
window size with respect to mean integrated square error is that value A* which minimises
the sum of the first and second terms on the right hand side of (2.1). Thus, h* = yn™'/,
where the constant v depends on f as well as K. Hall (1982b) has shown that integrated
square error is asymptotically equivalent to mean integrated square error. In particular,

[f{f,,(xlh*) — f(x)}? dx] / [fE{f,,(xlh*) — fx)}? dx] -1

in probability as n — . Thus, an estimated window £ will be asymptotically as good as
the “best” window h*, if

2.2) [ f oz B) = FCOP dx] / [ f Elfu(x|h*) = [(0)F dx]—» 1

in probability.

Our aim is to prove the result (2.2), in the case where £ is the least squares Cross-
validated window size. In practice, an experimenter implementing cross-validation would
be aware that h* is of order n™"/%, and would seek a window of this order of magnitude.
Therefore we shall prove that with probability tending to one as n — o, choosing a value
of h of order n™'/% to minimise a,(h), is asymptotically equivalent to choosing h of order
n~'% to minimise integrated square error. For this reason we confine attention to h within
the interval [en™'/°, An™"/®], for arbitrarily small ¢ and large \. At the end of this section
we shall prove that A/h* — 1 in probability.

The proof of (2.2) involves three steps, which are described by Theorems 1, 2 and 3,
respectively. The first step consists of deriving an asymptotic expansion for «,(h). We
assume throughout that f has two bounded derivatives on (—, ©), and in Theorem 1 we
suppose in addition that

(2.3) f” exists, is bounded and is uniformly continuous on (—o, ),
and
(2.4) flf'(x)l dx < o and f[F(x)[l — F(x)}]"? dx < o,

where F is the distribution function corresponding to f. The second part of condition (2.4)
holds if E(X?|log| X||?**) < = for some ¢ > 0. Our assumption that K be symmetric can
be avoided by using a slightly longer proof of Theorem 1, but since symmetric kernels are
the rule in practice, it seems pointless to use a weaker condition. In Theorem 1 we assume
that K has two bounded derivations, and that

(2.5) fzziK(z) + |K'(2)| + | K"(2)]} dz < .

Note that 22K (z) = — [7 {2uK(u) + u’K’(u)} du, and so (2.5) implies that 2°K(z) — 0 as
z — . The smoothness condition on K does not appear to be intrinsically important.
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THEOREM 1. Under conditions (2.3) — (2.5), the criterion a,(h) admits the expansion

(2.6)  an(h) = flfn(x|h) = f@} dx — 2n7' 3T f(X)) + ffz(x) dx + 0,(n™*?)
uniformly inen™® < h < An™® forany 0 <e < A <,

The conclusion of uniform convergence in this theorem means that the remainder term
r.(h) denoted by o,(n~*%) in (2.6), satisfies

n*® Supen"/sshs)m"/sl r.(h)] — 0
in probaAbility asn — o,
Let A be the value of h in the range en™®* < h < An~"® which minimises a,(h). The

second and third terms on the right hand side in (2.6) do not depend on h, and so an
immediate corollary of Theorem is that

(2'7) f‘fn(x I };) - f(x)}2 dx = infcn‘”‘shs)\n'm f‘fn(x I h) - f(x)}z dx + Op(n_4/5).

Our next theorem provides us with a lower bound to the infimum on the right hand side
of (2.7).
Assume that K is of bounded variation on (—o, =), and that

(2.8) f|z|5/2K(z) dz <o and flzll dK(z)| < .

THEOREM 2. Under conditions (2.3) and (2.8),

2(x|h) — f(0)}* d =(h)_l{ ()d}{ Kz()d}
29) Id{f x| f(x)}? dx n J:dfx X f z) dz

d
+ h*k? f {f7(x)}2 dx + 0,(n™*%)
~d
uniformly inen™® < h < An™"? forany0 <e<A<wand 0 <d < .
Choose ¢ so small and A so large that ¢ < v < \. (Indeed, it is not difficult to see that

Theorems 1 and 2 remain true if ¢ = ¢(n) — 0 and A = A(n) — « sufficiently slowly.)
Then if f” is square integrable, it follows from (2.7) and (2.9) that

f {fulx | B) = f(}* dx
(2.10) = (nh*)™ fKQ(z) dz + (h*)*k? f{f”(x)}"’ dx + 0,(n™*")

= fE[f,,(x|h*) — f()}? dx + 0,(n™*?).

In order to prove the reverse inequality, we note the following special case of Theorem 2
of Hall (1982b).

THEOREM 3. Assume condition (2.8), and that f” is square integrable. If h = h(n)
denotes a deterministic sequence converging to zero and such that nh(log n)™* — o, then

(2.11) flf,.(x [h) = f(x)}* dx = fElf,,(x [h) = f(x)}* dx + o,{(nh)™" + h*}

asn— o,
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Taking h = h* in (2.11), and combining that result with (2.7), we obtain

f‘fn(xl h) - f()) dx < fE{f,,(x]h*) — f(x)1? dx + 0,(n™**).

The limit theorem (2.2) follows from this inequality and (2.10).
We shall prove finally that under the conditions of Theorems 1-3,

(2.12) h/h* — 1

in probability. Using Helly’s extraction principle, we may choose a subsequence {rn,} such
that 2/h* has a limiting distribution as n — o along the subsequence. Since £ lies within
the interval [en™/%, \n~/%], the limiting distribution is proper and confined to [/, A/v].
Let I > 0 be a point of support of the distribution. If condition (2.12) fails then we may
choose the subsequence {n;} in such a way that [ # 1. Let us suppose that 0 < ! < 1; the
case | > 1 may be treated similarly. Define ¢ = % min(l, 1 — ), and choose d so large that
for some p > 1,

d d
(nh*z)™! {.[4 f(x) dx} {fKZ(y) dy} + (h*2)*k? Id {f”(x)}? dx

(nh*)~ fK2(y) dy + (h*)*k? f{f”(ap)}2 dx

>p

whenever z € [l — ¢, [ + ¢]. Note that the ratio on the left hand side does not depend on n,
and that the existence of such a d is ensured by the fact that A* minimises the denominator.
From Theorem 2 we may deduce that

. d
f{fn(x | ) — f(x)}? dx = (nh)™ {L f(x) dx} Jl K*(2) dZ}

d
+ hik? I 7@ dx + o,(n7*7).

(2.13)

When A/h* € [l — ¢, | + ¢], the right hand side of (2.13) exceeds

pr{fn(xlh*) = f(x)}? dx + 0,(n™*?),
and since [ is a point of support of the subsequence limit of A/h*,
lim sup,_..P{h/h* € [l — ¢, | + ¢]} > 0.

These results contradict the limit theorem (2.2), and so the result (2.12) follows by
contradiction.

Note that we have proved (2.12) as a corollary of the asymptotic optimality of &, which
is quite the reverse of the usual approach. Theorem 2 may be extended to the case d =
under slightly more restrictive conditions, and thus it may be proved that the result (2.2)
holds for any sequence of random window sizes h satisfying h/h* — 1 in probability.
Having derived the relation (2.12), we may apply the results of Krieger and Pickands
(1981) to prove that f,(x | h ) satisfies the same central limit theorem as f,(x | h*).

3. Proofs.

PROOF OF THEOREM 1. Observe that withm=n -1,
(3.1) 1 fu(XD) = (n/m) Tia fo(Xi) — (n/mh)K(0),
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and that
n7t Xin fa(X0) = ffn(x) dF.(x)
(3:2) = ffn(x)f(x) dx — fEFn(x) = F(x)}f'(x) dx

- f{Fn(x) — F()}{f(x) — f'(x)} dx,

where F, is the empiric distribution function. Therefore the proof of Theorem 1 consists
largely of deriving information about the term

I, (h) = fan(x) = Fx){f (%) — f'(x)} dx.
Write I,:(h) = I,o(h) + I,3(h), where

In2(h) = f{Fn(x) = F(x)}{f'n(x) — n(x, h)} dx,

Is(h) = fiFn(x) — F(x)}{u(x, h) — f'(x)} dx
and
ulx, h) = ff’(x — h2)K(2) d=.
By Theorem 3 of Komlos, Major and Tusnady (1975), there exists a sequence of Brownian
bridges W2, n = 2, such that the variables
Z, = n(log n)'SUP-w<s<w| Fn(x) — F(x) — n72WUF (x)}], n=2,

from a tight sequence. (Henceforth we shall drop the subscript, n, on W9.) Therefore
Ls(h) = n7'2 fW°!F(x)}Eu(x, h) = f'(x)} dx
+ O0,(n""log n) ftlu(x, R + | f ()]} dx.

It follows from (2.4) that [{| u(x, h)| + |f’(x)|} dx is bounded uniformly in h, and so
(33) Supm-l/sshs)\n—l/s] Ina(h” = op(n“/5),

provided we can prove that with

§h) = IW"{F(x)}!n(x, h) = f"(x)} dx,

we have

Sup,,-v5<p<rn-16 l f(h) l = Op( n_a/l())'

The Gaussian process {(h) is continuous on I, = [en~'/5, An"'/*], and may be shown to
have variance E{{?(h)} < C,h* and quadratic variation E{{(h,) — {(h2)}? — Coh3(hy — hy)
for 0 < h, < h,. Therefore by Fernique’s inequality (see the Corollary, page 307 of Marcus,
1970), there exist constants C; and C, depending only on C, and C; such that

P{suphey, | £(h)| > n™25Cyt} < Ciexp(—t?/2)
for all ¢t = 1. This completes the proof of (3.3).
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Observe that
fr(x) — u(x, B) = h2 f K'{(x — y)/hid{F.(y) — F(y)}
= —h? f {F.(x — zh) — F(x — zh)} dK'(2)
= —p-12p-2 f W F(x — zh)} dK'(2) + ra(x),

where
SUP— << | T'n(x)| = Con™*(log n)h™%Z,

and C, = [ | dK’(2)|. Therefore we may write I,2(h) = I.4«(h) + I,5(h), where

Li(h) = —n2h2 f {Fa(x) — F(x)} dx f WPF (x — zh)} dK’(2)

and
| Is(h)| = Con~'(log n)h™2Z, f | Fo(x) — F(x)] dx.

The argument leading to (3.3) now produces the estimate
(3.4) sup,,-1<p<an-s| Ins(h) | = 0p(n™*°).

Applying the Komlds, Major and Tusnady expansion directly to the term F,(x) — F(x)
in the expression for I,,(h), we find that

Ia(h) = —n7'h™? f WO{F (x)} dx f WOUF (x — zh)} dK'(2) + Ls(h),
where
| Ie(R)| < n™*(log n)h™*Z,, f | dK'(2)| f | WO{F (x — zh)}| dx
= Con~*?(log n)h~’Z, f | WF (x)}| dx.
But
fEI WOF (2)}| dx < f [E| WOLF (x)}|7)'/2 dx = f [F(x){1 = F(x)}]* dx,

and so
(3.5) SUP, - s<pern-s| Tne(R)| = 0,(n™*%).

Define

Yi(h) = % f dK’(2) f WOF (x)} WO F (x — zh)} dx

= % f dK'(2) f W"{F(x + % zh)} W°{F(x - % zh)} dx

=f dK’(z)fW°{F(x)}W"{F(x+zh)} dx,
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using the symmetry of K. From the estimates (3.3), (3.4) and (3.5) we may deduce that

(3.6) Lu(h) = =2n7'h2Yy(h) + La(h),
where
(.7 SUP -wo<hzrns| Lr(h) | = 0,(n™*7).

Thus, the properties of I,;(h) are determined in a large part by those of the stochastic
process Y;(h), which may be shown to equal the limit of quadratic forms in zero-mean
normal random variables. Shortly we shall prove the following lemmas.

LEMMA 1. Under the conditions of Theorem 1,
asn — o,

LEMMA 2. Let Y(t) = Yi(thy) for e < t < \, where ho = n™*, and define Z(t) = Y(t)
— E{Y(¢t)}. Suppose 0 = A =< 1/100. Then under the conditions of Theorem 1,

(3.8) E{Y(t)) = - % hotK(0) + % (hot)? f f2(x) dx + O(h}),
3.9) var{Y(t)} = O(h3)

and

(8.10) E{Z(t + n5%) — Z(t)})* = O(hd)

uniformlyine <t <N\, as n — o,

We utilise Lemmas 1 and 2 in the following way. Let 0 < A < 1/100, and divide the
interval [¢, \] into N or N + 1 intervals (¢, t;), each of length n™/°=2, where ¢ = t, < t
< ... <th)\<tN+1.Then

sup.<i<x| Z(t) | < supj=ol Z(¢;)| + SUP.sexxexosern-ve-s]| Z(s) — Z(2)|
= supj=o| Z(t;)| + 0,(n""%),
using Lemma 2. Now,
supjzol Z(t)) 1> < | Z(0)|* + Xjm| Z(ty) — Z*(t;-0) |,
and so
Efsupj=o | Z(t;) |} = [E{Z*(t)} + Tj=1 {E| Z(t) — Z(4-1) I’E | 2(4) + Z(t4-0) |1
=< Ci{hd + (N + 1)(h$hd) /22 < Con™V/4*a2,
Therefore
Sup.<:=<x| Z(t)| = 0,(n7'%),
and so by (3.6) and (3.7),
La(h) = —2n7'h2E{ Yi(h)} + L.s(h)
where

Sup,,-cpean-s| Ina(R) | = 0p(n™*%).
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We may now deduce from (3.1), (3.2) and (3.8) that

n7t Yy fu(Xi) = ffn(x)f(x) dx — f{Fn(x) = F(x)}f’(x) dx + 0,(n™?)
uniformly in en™"® < h < An~'%, Theorem 1 follows easily from this expansion and result
(1.3). ‘

The remainder of the proof consists of deriving Lemmas 1 and 2. Let us temporarily
assume Lemma 2. To prove Lemma 1, observe that

| Yi(sho) — Yi(tho)|
=< f | dK'(2)] f | WO F(x)}| w°(]| F(x — zsho) — F(x — zthe)|) dx,
0
where w°(1) = SUPo<s,i<1;js—t1<u| Wo(s) — WO(t) | denotes.the modulus of continuity of W°.

Since w%u) < Z°%u(1 — log u)}'/? for an almost surely finite variable Z° (see for example
Proposition 3 of Silverman, 1978), and since

fu(l — log u)}* < Csn™/~*/*(log n)"*(1 + | z| log|z ||}
when u = | F(x — zshy) — F(x — zthy)| and |s — t| < n™/5%, then
| Yi(sho) — Yi(tho)| = Csn~'5*2(log n)*Z°

X U; {1+ |zl log |21} | dK'(z)I] [IIW"{F(x)}I dx]-

Therefore
Supgsts)\,tSsan"/s'AI YI(ShO) - Yl(tho)l = Op{n_1/5_A/2(log n)l/z}-

Lemma 1 follows on combining this estimate with (3.8).

PROOF OF LEMMA 2. To prove (3.8), note that

E{Yi(h)}
= J‘“‘ dK’(2) fF(x){l — F(x + zh)} dx
0
=-h f F(x)[f(x)K(O) + -21- hf'(x) + h J(: {f'(x + zh) — f (x)} K(2) dz] dx.
Now,

f F(x) dx j(; {f '(x + 2h) — f'(x)}K(2) dz

= - J; K(z) dz f f(){f (x + 2h) — f(x)} dx,
which in absolute value is dominated by

{sup_m<,<m|f’(x)|}h£ 2K (2) dsz(x) dx.

Therefore (3.8) holds.
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In the remainder of the proof we write h for ho. The next step is to calculate

(3.11) E{Y:\(hs)Y:(ht)} = ff dx dy J:o J:o G, dK’(u) dK’(v),

where G, = E[WF (x)} W F (y)|W°(F (x + uhs)}W°{F (x + vht)}]. If Ni, N5, N3 and N,

denote normal random variables with zero means and covariance matrix (o;;), then
E(N1N2N3N,y) = 612034 + 013024 + 014023.

Thereforeif 0 =sa<b=c=<d=1,

(3.12) E{W(a)Wob)W°(c)W°(d)} = a(l — d)(2b + ¢ — 3 be).

Let a, = F(x), b, = F(y), a; = F(x + uhs) and b, = F(y + vht), and assume for the time
being that x <y, u > 0 and v > 0. Then a, < a,, b; < b, and a, < b;. The relationships
among the a’s and b/s take three possible forms: a; < a; < b; < by, 0, < by < a, < b, or o
< b, < by < a,. These inequalities determine the regions 0 < us < (y — x)/h, (y — x)/h <
us'< vt + (y — x)/h and us > vt + (y — x)/h, respectively. Using the formula (3.12) to
evaluate G, in these regions, we may deduce that

J; J; G, dK'(u) dK’(v) = F(x) J(: G, dK'(v),

where
(y—x)/hs
G, = f {1 — F(y + vht))
2F (x + uhs) + F(y) — 3F(x + uhs)F(y)} dK'(u)
vt/s+(y—x)/hs
+f {1 — F(y + vht)}
(y—x)/hs
{2F(y) + F(x + uhs) — 3F (y)F(x + uhs)} dK'(u)
+ f {1 — F(x + uhs)}
vt/s+(y—x)/hs
(3.13) {2F(y) + F(y + vht) — 3F(y)F (y + vht)} dK'(u)
= {1 — F(y + vht)}

vt/s+(y—x)/hs
. [f {F(x + uhs) + F(y) — 3F(x + uhs)F (y)} dK’(u)
0

(y—x)/hs vt/s+(y—x)/hs
+ f F(x + uhs) dK'(u) + f F(y) dK'(u)]
0

(y—x)/hs

+ {2F (y) + F(y + vht) — 3F (y)F (y + vht)}

f {1 - F(x + uhs)} dK’(u).

t/s+(y—x)/hs
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It may be proved after some algebra that

vt/s+(y—x)/hs
J(: {F(x + uhs) + F(y) — 3F (x + uhs)F (y)} dK'(w)

= {F(y + vht) + F(y) — 3F(y + vht)F(y)}K’ (v;t . yh—sx)
+ hsfl — 3F (y)}

-{f(x)K(O) —f(y + vht)K (”—t + y'—")
s hs
vt /s+(y—x)/hs
+ hs J; £(x + uhs)K(W) du},

(y—x)/hs vt/s+(y—x)/hs
f F(x + uhs) dK'(u) + f " F(y) dK'(u)
0

(y—x)/
— ’ BE y—x
=F(y)K (s +~—-——hs )

X

_ . —x)/hs
+ hs {f(x)K(O) -f(yK (y—i;s—> + hs J(: [’ (x + uhs)K(u) du}

and

f {1 - F(x + uhs)} dK’(w)

t/s+(y—x)/hs

= {1 — Syt y—x
= —{1 — F(y + vht)}K <s+ hs)

— hs {f(y + uht)K(ﬂs€ + y——,;—x-) + hs f f(x + uhs)K(u) du}.

t/s+(y—x)/hs

Substituting these results into (3.13) and simplifying, we obtain

Gy = hs{l —3F(y)}{1 — F(y + vht)}{f(x)K(O) + hs Jo. f'(x + uhs)K(u) du}

+ hs{l — F(y + vht)}

_ (—2)/hs
(3.14) . {f(x)K(O) - f(y)K(yhs x) + hsJ; f’(x + uhs)K(u) du}
— hs{l — F(y)}
.{f(y + vht)K(E + 1= x) + hs f £/ (x + uhs)K(w) du}.
S hS vt/s+(y—s)/hs

Next observe that

Jo‘ {1 — F(y + vht)} dK'(v) = —{htf(y)K(O) + (ht)? J; f'(y + vht)K(v) dv}
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and

fo {f(y + vht)K(ﬂs€ + 31— ") + hs f(x + uhs)K(w) du} dK’ (v)

hs vt /s+(y—x)/hs

= —(t)s) f fly + uht)K'(ﬂ§ + l:—’f) dK(v).
o s hs

Therefore by (3.14),

J(: G.dK’(v) = —(hs)(ht){f(y)K(O) + ht J(: f'(y + vht) K(v) dv}

X [{1 - 3F(y)}{f(x)K(0) + hs J(: f'(x + uhs)K(u) du}

(3.15) + f(x)K(0) — f(y)K<y ~ ")

(y—x)/hs
+ hsf f’'(x + uhs)K(u) du]

+ ht{l — F(y)} fo fly + uht)K'(ﬂsE + y-}:—;—’—‘) dK(v).

Now,

J; Fif’ (x + uhs)— f'(x)} dx = F(){f(y + uhs)— f(y)}

- J_; f){f(x + uhs)— f(x)} dx

= hurl,

DO |

J: F(x)K(%) dx

hsF(y) + hs J; {F(y — zhs) — F(9)1K(2) dz

hsF(y) + h%r,

DO | =

and

'y (y—x)/hs
f F(x) dx f f'(x + uhs)K(u) du
'—00 o

= f K<u>{F<y — o)t = | 17t = uho dx} du

10Pe) -1 [ 1) ax +

DO | =

where r; stands for a function which is uniformly bounded as h — 0. Combining these
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estimates with (3.15) and simplifying we may deduce that

J: F(x) dxj(: G, dK'(v)

(hs)(ht){f(y)K(O) + htJ(: f'(y + vht)K(v) dv}

1

2
X [{1 - 3F(y)} {F"’(y)K(O) + hs J:m f ' (x)F (x) dx]r

(3.16)

+ F2(y)K(0) — hsf(y)F(y) + hs J: f'(x)F(x) dx + h2r4]

+ ht{l — F(y)} f_,. F(x) dx

00 , g.t.' y_x
. J; f(y + vht)K (s + e )dK(v),

Next observe that
J: F(x) dx J; fly + vht)K'(v:t + y—;—s—ﬁ) dK(v)
= hs L f(x) dx J; fly + vht)K(v;t + %) dK(v)
— hsF(y) J; f(y + vht)K(vt/s) dK(v),
L f(x) dx I fly + uht)K<98E + Z—;s—x) dK ()
= hs f f(y — zhs) dz f f(y + vht)K(vt/s + z) dK(v)
= hs f(y) f f(y + vht) dK(v) f K(vt/s + 2) dz

"+ hPrs f f(y + vht)|dK(v)| f zK(vt/s + z) dz
0 0
and

J(: f(y + vht)K(vt/s) dK(v) = f(y) J; K(vt/s) dK(v)

+ ht f'(y) J(: vK(vt/s) dK(v) + hPre.
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Using these estimates to simplify the last term in (3.16), we may deduce that

J: F(x) dx J; G, dK’(v)

(hS)(ht)[f(y)Fz(y){Z - 3F(y)}K*(0)

[ SRR

+ hs f(y)K(O)({Z - 3F(y)} J; f'(x) F(x) dx — f(y)F(y))
+ ht F2%(y){2 — 3F (y)}K(0) J(: f'(y + vht)K(v) dv]
— (hs)(ht){1 — F(y)}

-[f(y)F(y) J; K(vt/s) dK(v) + ht f'(y)F(y)l[O‘ vK(vt/s)dK(v)
- hs f(y) J; f(y + vht) dK(v) f K(vt/s + 2) dz]
+ h'rif (y) + h'rs Jo\ f'(y + vht)K(v) dv + h*reF (y){1 — F ()}

+ h'rio J; f(y + vht)| dK(v)| J; zK(vt/s + 2) dz.

Consequently

I dyI F(x) dxj(: G.dK’(v)

= - % (hs)(ht){(=1/12)K?*(0) + cihs + czht} — (hs)(ht)
. {(1/6) J; K(vt/s) dK(v) + cahtJ; vK(vt/s) dK(v)

+ c4hs J; dK(v) f K(vt/s + 2) dz} + O(hY)
0

uniformly in ¢ < s, t < \, where ¢; stands for a constant depending only on f and K. Since
|K(vt/s +2) — K(v+2)| <|v|1—1/s|{sup:| K’'(x)|} uniformly in 2, then

f dyI F(x) de; G, dK' (v)

(3.17) _ (1/24)h23t{K2(0) —4 J; K(vt/s) dK(v)}

+ csh®st + cgh’st? + O(h*)

uniformlyine<t<MAand|s—t| < h.
The expression in (3.17) denotes the quadruple integral of (3.11) in the special case
where (x, y) is constrained by x < y. To treat the case y < x it is necessary only to
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interchange the roles of s and t. Thus,
E{Yi(hs)Yi(ht)} = (1/12)h2st[K2(0) -2 J: {K(vt/s) + K(vs/t)} dK(v)]
+ (s + co)h’st(s + t) + O(h?)
uniformly in e <t < X and |s — t| < h. From this formula and (3.8) it follows that
cov{Yi(hs), Yi(ht)}= —(1/6)hzst[K2(0) + J: {K(vt/s) + K(vs/t)} dK(v)]

+ ¢ h3st(s + t) + O(h*).
The result (3.9) follows immediately. Furthermore,

E{Z(s) — Z(t)}* = —(1/8)h*(s — t)’K*(0)
- (1/3)n? J; [(s* + t)K(v) — st{K(vt/s) + K(vs/t)}] dK(v)

+ crh3(s + t)(s — t)% + O(h*).
Writing 6 = (s — t)/t, and expanding
K(vt/s) + K(vs/t) = K{v/(1 + 6)} + K{v(1 + §)}
as a Taylor series in §, we may deduce that
E{Z(s) - Z(t)}> = O(h*)
uniformly in e < t < A and |s — t| < h. This proves (3.10).
PrOOF OF THEOREM 2. Let v(x, h) = [f(x — h2)K(2) dz, and observe that

[v(x, h) = f(x) — h*kf"(x)|

= l J 6= e = 160 4 ata) = L v ao

= h? f | f"(x — 6hz) — f"(x)| 2°K(2) dz = o(h?)

uniformly in x, using condition (2.3), where 8 = 6(x, z, h) € [0, 1]. By Theorem 3 of
Komlos, Major and Tusnady (1975), ‘

fa(x) = v(x, h) = n"V?h" fW"{F(x — zh)} dK(2) + r.(x, h),

where

SUDP _ oy ceo SUP o< pcrn-8 | (X, B)| = Op(n~**log n).
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Combining these estimates we may deduce that

d d 2
J:d {fa(x) — f(x)}? dx = n7*h™2 J: [f WOF (x — zh)} dK(z)] dx

d

d
+ hR? ()2 d
(3.18) L e

d
+ 2n7Y2p? »[.z {v(x, h) — f(x)} dx

f WOF (x — zh)} dK(z) + o0p,(n™*/%)

uniformly in en™* = h = An~5,
Our next task is to prove that the Gaussian process

d
{(h) = J:d {v(x, h) — f(x) — h%kf"(x)} dx fW"{F(x — zh)} dK(2)

satisfies

(3.19) . SUDngper,o| $()] = 0p(n71).

However, this is readily accomplished using Femique’s inequality, since E{{?(h)} = C,h®
and E{{(h,) — {(h2)}? < C:hi(hy — hy) for 0 < hy < h,. Similarly it may be proved that

(3.20)  sup,,-vs<p<rn-is = 0,(n"119),

d
j:d f7(x) dx fW°{F(x — zh)} dK(2)

Combining (3.18) — (3.20) we see that

d d 2
f {fa(x) = f(x)}> dx = n~'h~2 f [fW"{F(x — zh)} dK(z)] dx
(3.21) - —d

d
+ htk? J: @) dx + 0, (n7)

uniformly in en™® < h < An~'5,
We shall prove next that

d 2
J:d [ f WOYUF (x — zh)} dK(z)] dx
. d oc
(3.22) =h { J:d f(x) dxHI K*(z) dz} + 0,(n71%)

uniformly in en < h < An"'/®, Theorem 2 follows from (3.21) and (3.22). Now,

d 2
J:d [ fW°{F(x — 2h)} dK(z)] dz
d 2 d 2
= Id [ f W{F(x — zh)} dK(z)] dx + W*(1) J:d [ f F(x — zh) dK(z)] dx
d
-2W(Q1) J:d [ f WIF (x — zh)) dK(z)] { f F(x — zh) dK(z)} dx.

The second term on the right hand side is easily seen to be of order n~%*° in probability,
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uniformly in en™® < h < An"*%, while the third term equals

d
- 2hW(1) J:d [ f WI{F (x — zh)} dK(z)] { ff(x — zh)K(2) dz} dx.

Fernique’s inequality may be used to show that this quantity equals o,(n~"/°) uniformly in
en~°< h < An~'%, Therefore (3.22) will follow if we prove that

d 2
Ya(h) = I d[ f WIF (x — zh)} dK(z)] dx

=h { Id f(x) dx} { J: K*(2) dz} + 0,(n"1)

uniformly in en™*°< h < An~'5, .
Observe that [ W{F (x — zh)} dK(z) = [ [W{F(x — zh)} — W{F (x)}] dK(2),
and so

(3.23)

| Ya(hos)— Ys(hot)|
d
= L {f w(| Fx ~ zhos)= F(x = zhet)|) | dK(2) |} dx

(3.24) X [f {w(| F(x = zhos) — F(x)|) + w(| F(x — zhot) —F(x)l)}ldK(z)I}

= 0,(n~53/2 log n)

uniformly ine < t < XA and | s — t| < n™*. Furthermore,

d
E{Ys(h)} =h Id dx f f(x — uh)K?(u) du

d
=h ‘{ j:d f(x) dxH f K*(u) du}> + O(h?).
i(h) = J:d J:d < f [W{F (x — zh)} — W{F (x)}] dK(z))

X ( [W{F(y — zh)} — W{F(y)}] dK(Z)) dx dy,

(3.25)

Writing

and breaking each of the squared integrals into two parts, one over |zh | < |x — y|/2 and
the other over | zh | > | x — y| /2, we see that

d d 2
= [ ( [ G- - wipen dK(z))
~d &-d |zh|<|x=y|/2

X ( Lqu-yu/z[W{F(y — zh)} — W{F(y)}] dK(z)) dx dy + R,,

where | R, | satisfies an inequality similar to that given for | R,3| on page 17 of Hall
(1982b). (In that inequality, a X sign is misprinted as a + sign.) Arguing as in Hall (1982b)
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we may deduce that E(| R,|) = O(h*?™") for any # > 0, and thence that

E{Yi(h)} = J:d L E( J|;;.|<|,_y|/2[W{F(x - zh)} = W{F(x)}] dK(z))

X ( J;hqu_ l/2[Wl1"(y = zh)} = W{F(»)] dK(Z)) dx dy + O(h¥*™)

= {EY3(h)}* + O(h**™).

(The referee has suggested ‘an even simpler proof, based on formula (2.2), page 427 of
Doob, 1953.) Therefore

(3.26) var{Ys(hot)} = O(n~2+/5)

uniformly ine <t < A,
Let Z(t) = Ys(hot) — E{Ys(hot)}, and divide the interval [e, A] up into N or N + 1
subintervals (1, t;) of length n™, where 0 < A < 1/10. Then

suP.<c<a | Z(t)| < supjzo | Z(t;)| + SuP.sesn,esosern—al Z(s) — Z(2)|
= supj=o| Z(t;)| + Op{n~"*"*log n},
using (3.24) and (3.25). Furthermore,
Efsupjzol Z(t)) |} < Ci{(N + 1)n-V2+/s1/2 < Cyp-t/ara/zeano,
using (3.26), and so
Supe<i=x | Z(t)| = 0p(n717).

The result (3.23) follows from this estimate and (3.25).

Acknowledgment. The motivation behind this research was supplied by correspond-
ence with Dr. A. W. Bowman and conversations with Professor D. M. Titterington. The
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Note added in proof. A treatment of the multivariate case by the author will appear
in Proceedings of the Sixth International Symposium on Multivariate Analysis, Pittsburgh,
25-29 July 1983.
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