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OPTIMAL RATES OF CONVERGENCE TO BAYES RISK IN
NONPARAMETRIC DISCRIMINATION

BY JAMES STEPHEN MARRON
University of North Carolina

Consider the multiclassification (discrimination) problem with known
prior probabilities and a multi-dimensional vector of observations. Assume
the underlying densities corresponding to the various classes are unknown
but a training sample of size N is available from each class. Rates of
convergence to Bayes risk are investigated under smoothness conditions on
the underlying densities of the type often seen in nonparametric density
estimation. These rates can be drastically affected by a small change in the
prior probabilities, so the error criterion used here is Bayes risk averaged
(uniformly) over all prior probabilities. Then it is shown that a certain rate,
N, is optimal in the sense that no rule can do better (uniformly over the
class of smooth densities) and a rule is exhibited which does that well. The
optimal value of r depends on the smoothness of the distributions and the
dimensionality of the observations in the same way as for nonparametric
density estimation with integrated square error loss.

1. Introduction. The classification or discrimination problem arises whenever one
wants to assign an object to one of a finite number of classes based on a vector of d
measurements. More precisely, let f;, ---, fx be probability densities (with respect to
Lebesgue measure) on R*. Select one of these at random, where prior probability . is put
on fy, k=1, - .-, K. Define the random variable 6 to be the index of the chosen density.
The classification (or disecrimination) problem is to guess the value of 6, using an
observation X from f,.

For notational convenience, let f = (f1, - - -, fx) and let * = (w1, - - -, wk). The entries
of = are nonnegative and sum to 1, so  is an element of %%, the unit simplex in R¥.

If both = and f are known, then it is simple to compute the best, or in other words,
Bayes classification rule (see (1.5)). In this paper it is assumed that = is known and f is
unknown. This assumption is not at all restrictive, because in the case of unknown =, the
usual estimates of = converge much faster than estimates of f. The reason for this
assumption is technical convenience in formulating the theorems.

It is assumed that for each N € Z*, there is a “training-sample,” Z¥, which consists of
a sample of size N from each of fi, -- -, fx. For k=1, ..., K, let X*, ..., X* denote the
sample from f,. Further assume that these K samples are independent of each other, and
that Z¥ is independent of X and 6.

In this setting, any classification rule may depend on the observed value of X, on the
prior probability vector «, and on Z¥. Hence it may be thought of as a measurable function

ORI X S X (RY)VE > {1, -, K}.

It is useful to consider the problem from a decision theoretic viewpoint. Both the action
space and the parameter space are the set {1, - .-, K}. An arbitrary loss function L is a
real valued function on {1, - - ., K} X {1, - - -, K}; L(i, j) is the loss when one guesses i, but
6 = j. The L(i, j) are allowed to be different to quantify any feelings the experimenter
may have about one type of mistake being worse than another. For example, in the
diagnosis of disease, it can be worse to classify a sick person as healthy, than to make the
other error.
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The only assumption needed about L is
max;L(i, i) < min;.;L(i, j).

It will be convenient to define

(1.1) L = min;.;L(i, j) — max;L(i, i) >0
and
(1.2) L = max;;| L(i, j) |

The loss function appearing most often in the literature is 0-1 loss, where for i
1,---,K, L@ 1) =0,and for i # j, L(i, j) = 1.

Nezxt, for x € R® and * € %%, note that the posterior probability of the class i, i =
1, ---, K, is given by

1l’ifi(x) .
Y mfi(x)’
Fork=1, ..., K, the expected value of L(k, 6) with respect to this posterior distribution
is given by
(1.4) Re(k, x, m) = Y L(k, i)P¢[0 = i| X = x].

Throughout this paper Re(6n(x, 7, ZV), X, ) will be denoted R:(6, x, 7). The risk function,
Ry, can now be interpreted as: expected loss where expectation is taken conditioned on Z¥
and on the event X = x. Thus Rf((fN, X, 7) is a random variable which gets its randomness
from the dependence of fy on Z™.

The form of the rules which are Bayes with respect to R will now be given. For each
x € R? and each = € %, pick 05 € {1, - - -, K} so that:

(1.3) P8 =i|X=x]=

(1.5) Ri(fp, X, ®) = Minyey,... xRe(k, X, 7).

When the minimum is not unique, the manner in which ties are broken is irrelevant, but
for definiteness take 05 as small as possible. This defines a classification rule, Os(x, )
which is independent of Z¥, but unfortunately depends on the unknown f.

In the particular case of 0-1 loss, it is easy to compute a Bayes rule, since Re(k, X, 7) is
a linear combination of the posterior probabilities, where the kth coefficient is 0 and all
the rest are 1. Thus the Bayes rule is to choose that £ which maximizes the posterior
probability. Note that this is the “intuitive solution” to the classification problem.

The first thing one might hope to find in this setting, is a fy that behaves, at least
asymptotically as N — o, like f5. In the literature, there are several papers which propose
classification rules, éN, which are “Bayes Risk Consistent,” in the sense that, under mild
conditions on f, in some mode of convergence,

limN_me(én, X, 1r) = Rf(ég, X, 1r).

Among these are: Fix and Hodges (1951), Das Gupta (1964), Quesenberry and Loftsgaarden
(1965), Van Ryzin (1966), Glick (1972), Devroye and Wagner (1977), and Greblicki (1978).
For results with essentially no assumptions on the underlying distributions (including the
existence of densities), see Stone (1977), Devroye and Wagner (1980), and Gordon and
Olshen (1978). .

Now with several such rules, the next thing to look for is some means of comparing
them. This paper takes a step in this direction by considering rates of convergence in a
manner similar to that found in nonparametric density estimation. In that field one can
find two types of convergence rate results.

The first is the “achievability” type of result, in which an estimate is proposed,
and it is shown that in some norm, the error goes to 0 at the rate N~ (or sometimes
(N~ log N)"), for some r > 0, which depends on the “smoothness” of the true density and
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the dimension of the sample space. Results of this type are too numerous to list here, but
surveys can be found in Wegman (1972a, b), Tartar and Kronmal (1976), and Wertz
(1978). An elegant result, wherein achievability is shown for many “different” density
estimators in a single theorem, is in Walter and Blum (1979).

The second is the “bound” type of result, which shows that, uniformly over the class
of “smooth” densities, the norm of the error can go down no faster than N~ (or
(N7 log N)7), regardless of the estimator. This type of result can be found in: Farrell
(1972), Wahba (1975), Khasminskii (1978), Bretagnolle and Huber (1979), Miiller and
Gasser (1979), and Stone (1980).

When the achievable rate is the same as the bound rate, then that rate is called
“optimal,” and any estimator that achieves it is, in this sense, optimal.

This paper presents both achievability (see Theorem 1) and bound (see Theorem 2)
results for convergence to Bayes risk in the classification problem. The optimal rate turns
out to be the same as that for density estimation with mean square error. The optimal
classification rule is that which has been studied, in different forms, by many previous
authors. The basic idea is to use a good density estimator to estimate the posterior
probabilities, and then form an “estimated Bayes rule” based on these.

To implement this, one needs a density estimate which achieves the optimal rate for
density estimators. Unfortunately the literature does not contain a result of quite the
generality required here. Hence, the needed result is included in this paper (see Theorem
3).

To define the mode of convergence used in this paper, first fix a compact set £ C R¢,
which has nonempty interior. Then the mode is convegence in probability of

f f [Rf(éNy X, 7I') - Rf(éB’ X, 1l')] dx d‘ll'.
i Iz

Absolute values are not required because, for k =1, - - -, K, and for each x € R? and each
T € S,

Ry(k, X, 7) = Re(0s, X, 7).

The reason for integrating, with respect to x, only over the compact set % instead of over
all of R, will be given in Section 2. The reason for the integration with respect to = will
be discussed in detail in Section 3. Basically, it is that the rate of convergence of the
integrand can be much slower than the “natural rate” for a very small set of =, so this

effect is “averaged out” by integration.
In order to define what is meant by “smoothness,” more notation is needed. Let a =

(ay, - - -, ag) where each «; is a nonnegative integer. Also, let | a | = Y&, «;, and define the
partial derivative operator:

. D alal
.6 g =
(1.6) oxt ... Ox

Given x = (x,, - - -, x4) define the usual Euclidean norm,
Ixll =@+ .- + 2D
Next fix a constant M > 1, a nonnegative integer m and a constant 8 € (0, 1]; also set

p=m+ 8. For p  Z, m is the greatest integer in p and @ is the fractional part.
Now let # denote the class of probability densities, f, on R¢, such that:

i) f<MonR%
ii) f=1/Mon %;
iii) forallx,y € R% and all |a| =m

ID.f(x) - D.f(y)| = Ml x -y
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Condition iii) is the “smoothness” condition. In the case p = 2, this condition is slightly
more general than the bounded second derivative used by Rosenblatt (1956) and many
others.

Note, that, for condition ii) to be satisfied by any probability density, it must be
assumed that M is larger than the d-dimensional volume of % From here on assume M is
large enough so that #; contains infinitely many members.

While the same M is used in 1), ii), and iii) here, this is not needed for the results in
this paper, but is only done for simplicity. With this in mind, condition i) is redundant,
since the boundedness of f is a consequence of condition iii). Condition i) is included
because the boundedness of f is required at many points in the proofs that follow.

Next recall the notation f = (fy, - - -, fx). It will be convenient to let # denote the K-
fold Cartesian product of .

2. Main theorems. The main result of this paper is that the optimal rate of Bayes
risk convergence is N, where r = 2p/(2p + d). This is shown by the following theorems:

THEOREM 1. There is a constant ¢; > 0 and a classification rule éN(x, x, ZVN), so that,
limN_,msupfengI: L L [Re(n, x, ) — Re(fs, %, 7)] dx dr > clN"] =
K
THEOREM 2. There is a constant ¢, > 0, so that, for any classification rule éN,
limN_msupfegrPf[ L L [Re(fn, X, ) — Re(f3, x, x)] dx dx > czN"] =1
Yk

The proof of Theorem 1 is given in Section 4. To save space, the proof of the main
lemma is given only in the special case K = 2 with 0-1 loss. This case contains the main
ideas of the proof of the general case, which may be found in Section 6 of Marron (1982).

The proof of Theorem 2 is given in Section 5. In that section, the proof of Lemmas 5.1
and 5.3 are omitted. The proof of Lemma 5.1 is straightforward and can be found in
Section 7.1 of Marron (1982). The proof of Lemma 5.3 is quite long and is omitted because
similar techniques have been employed in Stone (1982), but it can also be found in Marron
(1982). As above, the main ideas of the proof of Lemma 5.2 can most easily be seen in the
case K = 2, so only that case is treated here.

REMARK 2.1. A careful inspection of the proof of Theorem 1 shows that the error
criterion is bounded by a sum of quantities of the form

f (f(x) - HE3)
f(x) ’

where f(x) is an estimate of f(x). The f(x) in the denominator is not apparent at the end
of the proof because it was replaced by 1/M, which can only be done for x € % So if &
is replaced by R¢, then a density estimation convergence result for this error criterion is
required. It is conjectured that the rate may be different from what is needed here. Of
course, the compactness of % is not necessary for the bound part (Theorem 2).

REMARK 2.2. It follows from the proof of Theorem 2 that in the statement of the
theorem, the supremum need not be taken over the entire class % As with bound results
in density estimation, we need only pick one element f € % and then, for each N € Z*,
consider only a finite number of small perturbations. Here it turns out, only f, needs to
be perturbed and the rest of f = (fi, - - -, fx) may be left fixed.
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REMARK 2.3. The error criterion can easily be changed by inserting a weight function
into the integrand. A natural choice of weight function is the marginal density of X. Since
f € % this marginal density is bounded above and below on %, so both rate of convergence
results would remain the same. In the commonly considered case of f supported on %,
the integral with respect to x gives expected value.

REMARK 2.4. Of course the usual warnings regarding asymptotic results apply here.
In particular, in the case of p and d even moderately large, the sample size N will have to
be very large for the asymptotics to “take effect.” However, the main point of the theorems
of this paper is a strong indication the classification rules based on density estimators
perform at least as well as any other possible procedure. This seems to provide a convincing
answer to the question: “Why study density estimation?”

As remarked in Section 1, for Theorem 1, the achievability result, a density estimation
result is required. To simplify the notation, given f € £, suppose that for each N € Z*,
there is a sample X?, ..., X" from f. Then an estimate of f(x) will be denoted by a
measurable function fN(x, x!, ... xV). The result is

THEOREM 3. There is a constant ¢; > 0 and a density estimator fx(x, X%, - -+, X¥) so
that, whenr = 2p/(2p + d),

limN_msup,ey,P,[ L [fv(x) = fX)P dx > ;N "] =0.

To save space, the proof of Theorem 3 is omitted here. It is essentially a generalization
of a result of Epanechnikov (1969), using some techniques that can be found in Stone
(1982). Details are in Section 8 of Marron (1982).

3. Motivation for averaging over . In this section, to show the need for aver-
aging R (6, X, x) — Re(f5s, X, x) over x € %%, a simple example is heuristically considered.
Specifically, assume d =1, K = 2, p = 2, and L is 0-1 loss.

So now there are just two densities, f; and f;, on the real line, which are smooth in the
sense of (nearly) having bounded second derivatives. It follows from (1.3) and (1.4) that,
forxeR, x € %,

7l'2f2(x)

Bl x,m) = Pl0 =2|X = 2] = =050 s

and

1 fi(x)
m1f1(x) + mafolx)
By conditions i) and ii) in the definition of &, the denominators of the above fractions
are bounded above and below, so they will not affect convergence rates. Hence, for
xE S,

R(2,x,m)=Pl0=1|X=1]=

(3.1) L [Re(Bx, x, 1) — Re(fs, x, 1] dx ~ L [mi,fiy(x) — Wiy fin(x)] dx.

Note that the integrand is 0 when fy = 05, and otherwise it is | 71f1(x) — m2/2(x) |, the
“weighted difference” of the densities.
Now for x € %, # € %, by the achievability results from density estimation, there are
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estimates of 7, f1(x) and 7 f2(x) which have error of the order (as N — ©)N~%%, The bound
results from density estimation imply that no estimator can do better. Hence, heuristically
speaking, the “information” available about , f(x) and 7. f2(x) is “accurate to the order
N—Z/a.”

So, for large N, and for those x € ¥, which satisfy

(3.2) | w1 fi(x) — mafolx) | > N5,

there is enough information available so that (fN(x, «) is (usually) the same as §B(x, x),
hence the contribution to the integrand in (3.1) is 0. For the rest of the x € & it is
expected that sometimes 0y = 05 and sometimes Oy # éB, however the probability of some
contribution is bounded above 0. From (3.2), the x € ¥ which may contribute to the
integrand of (3.1) are in neighborhoods of the zeroes of m; fi(x) — w2 fo(x).

Now suppose f1, f2, and = are such that =, f,(x) — m2f2(x) has a zero of the first order
(i.e.: nonzero first derivative) at x = 0. Then the x near 0, which may contribute to the
integrand of (3.1), constitute a neighborhood whose diameter is of the order n~%5. Thus,
since each x contributes with positive probability, the integral in (3.1) is expected to be of
the order N5,

Unfortunately, the above analysis depends heavily on the fact that the zero of , f,(x)
— w2 f2(x) is of the first order. Suppose, instead, that for some j € Z™, on some neighborhood
of 0, m f1(x) = mofo(x) = x’. Then an argument similar to the above shows that the integral
of (3.1) is expected to be of the order N-%5-2/% Thus the rate of convergence depends not
only on the smoothness and the dimension, but also on the order of the zeroes of m; fi(x)
— wafa(x).

To verify these heuristics, one might be tempted to formulate a theorem that takes the
order of the zeroes of m fi(x) — waf2(x) into account. But note that even in the present
simple case, the formulation is very awkward, and for d > 1, K > 2, the difficulties become
prohibitive.

A way around these difficulties is to take the conservative approach of considering only
the worst possible case (i.e.: j arbitrarily large). This viewpoint may be used to understand
the rates obtained in the achievability results of van Ryzin (1966), Gyorfi (1978), Gyorfi
(1981), Greblicki (1981) and Greblicki and Pawlak (1982). Some care is required in
interpreting the rates obtained in the last two of these papers, because the authors combine
dimensionality and smoothness in such a way that the results appear to be independent
of the dimensionality. Although their smoothness conditions are not precisely comparable
with those of this paper, the closest connection seems to be that the quantity p in the
present paper corresponds to m - p in Greblicki (1981) and to r - d in Greblicki and Pawlak
(1982).

To see why the conservative rates obtained by the above authors are not representative
of the situation, return to the above example. Note that, for any j, if = is changed by a
small amount, then the zero of  f1(x) — w2f2(x) is of the first order, and the rate again
becomes N~*®, Thus it is apparent that the pathologies of higher order zeroes occur only
on a set of = which have Lebesgue measure 0. Hence the rate N~*/® seems natural “almost
everywhere with respect to «.”

With this in mind, a reasonable approach is that taken by Van Houwelingen (1980). In
that paper it is assumed that the underlying densities f are known and that « is unknown
(the reverse is assumed here). By the above considerations, and the fact that estimates
of x are multinomial in character, it is not surprising that Van Houwelingen reports that
an integral similar to (3.1) converges at the rate N~! for almost all » and is bounded by
N2 for all «.

This approach is not taken in the present paper because, while achievability results
(such as Theorem 1) provide a good indication of what is happening, bound type results
(such as Theorem 2) are very difficult to formulate. Instead the pathological set of x is



1148 JAMES STEPHEN MARRON
nullified by averaging, or more precisely,

f f Re(by, X, ®) — Re(fs, X, v) dx dx
o Jz

is used as the error criterion. It should be noted that the choice of Lebesgue measure tor
averaging over % is not vital to the results of this paper. An inspection of the proofs
shows that any measure which is mutually absolutely continuous with respect to Lebesgue
measure and has bounded Radon-Nikodym derivative will suffice.

4. Proof of Theorem 1. In the course of this proof, it will be convenient to introduce
a number of positive constants. These will be denoted by B;, where i € Z*. In each case,
these are independent of f, x, w, N, and Z", however they may depend on any or all of d,
K,L, % m, B, and p.

It will also be conveneint to define,

(4.1) = L L[Rf(ézv, X, ) — Rf(éB’ X, 7)] dx d=.

Now given f = (fi, ---, fx), recall, for k = 1, ..., K, that Z~ contains a sample
X", ..., X* from f,. Use it to construct a density estimate fu(x, X*', - - ., X*¥) with the
same convergence property as that in Theorem 3. Then let £ = (f,, -, fx).

Next let fy(x, 7, Z¥) be the “estimated Bayes rule” given by: for x € R? and = € %,
take 6y in {1, - - -, K} so that

(4.2) Ri(fn, X, 7) = ming,,... xRi(k, X, x).
Now using (1.3) and (1.4), note that

Rf(éN, X, 7) — Rf(éB, X, 7) = 2r (L(On, k) — L(0s, k))mefe(x)
2 mifi(x)

But from (ii) in the definition of the class FH,forxe ¥
2mfi(x) = ¥ m(1/M) = 1/M.

Thus, since the integrand is nonnegative, Fubini’s theorem applied to (4.1) gives

(4.3) =M L L Zx (L@n, k) — L5, k))mifi(x) dr dx.

Next, for each x € % a bound will be obtained for the inside integral. For i, j =
1, -- -, K, define the set
UG, j) = {x € S| =i, 65 = j}.
Then

(4.4) L Sk (L(On, k) = L(fs, k) mife dr = T L . 2k (LG, k) = L(j, k))msfe dr.

At this point the proof involves a lot of technical details which are not particularly
enlightening. Hence this part of the proof is summarized in the following lemma. The
ideas behind the lemma are most easily seen in the case K = 2, with 0-1 loss. So, the proof
will be given here only in that case. The complete proof may be found in Marron (1982)
as the proof of Lemma 6.1.
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LEMMA 4.1. There is a constant B,, so that for X € %, andi,j=1, ---, K,

Tk (LG, k) — L(j, ) mfu(x) dr < By T (fulx) = fu(x))%

UG.j)

To prove Lemma 4.1, first suppose L is 0-1 loss and K = 2. Since x may be considered
fixed here, f.(x) and f.(x) will be abbreviated to f and f,. Without loss of generality, let
i=1landj=2.

Now, since K = 2, * = (m;, m2) is determind by m,, so U(1, 2) may be considered to be
a subset of the unit interval. Since L is 0-1 loss,

1 - m)f, _ mfi
7l'1f1 + (1 - 7l'1)f2’ Rf(z’ % W) B 7l'1f1 + (1 - 7|'1)f2'

Hence, by (1.5), 5B(x x) = 2 for m, € (0, fz/(fl + fg)) and 9B(x ) =1 for =, €
(fof/(fr + fz), 1). To simplify the notation, let a = f/(fi + f2) and b = fo/(f, + f»). By (4.2),
note that 0N(x w) = 2 for m;, € (0, a), and 0N(x, w) = 1 for m; € (a, 1). Thus, U(1, 2) is
contained in the (possibly empty) interval [a, b]. So, in the case a > b, U(1, 2) is empty
and the proof of Lemma 4.1 is complete.

Rf(]»’ X, 1r) =

Suppose now that a < b. Note that

b hfe=hf _ _(h=ff+ il = f)
(h+ ) fi+h) (h+ A+ E)

By property ii) of the class %, it may be assumed that f;, f> = 1/2M. Hence by properties
1) and ii) in the definition of %, there is a constant, B,, so that

(4.5) b—as<Bu(lh—hl+ |f—f)
Next note that

(4.6) J;(l ” Yk (LQ1, k) — L(2, R))wife dm = f 1= m)fe — mfi dm.

But (1 — m)f; — = f, is a linear function which has bounded slope—by i) from the
definition of ¥ —and has its 0 at b. Thus, there is a constant, B;, so that

b
(4.7 f (1 — m)f — mfi dm < Bs(a — b)~

But now, by (4.5), (4.6), and (4.7), the proof of Lemma 4.1 is complete.
To finish the proof of Theorem 1, note that by Lemma 4.1, (4.3), and (4.4), there is a
constant B,, so that,

(4.8) %N < By Yk L (fo(x) = fu(x))? dx.

Next, for k=1, .-, K and for ¢ € R, let A, denote the event that

L<ﬂ(x) - LX) dx = - N7

Recall from the structure of Z¥ and from the definition of the f,, that the A, are
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independent. Thus, from (4.8)
Pe[ £y < cN7'] < Pe[Ny Ax] = 1k PelAs]-
But now, from Theorem 3, forc = ¢3Bs, k=1, ---, K,
limno,wsupyf,e 7 Py [Ak] = 1.
From which it follows that,
limpy_,o8upee #Pf[ N > cN] = 0.

This completes the proof of Theorem 1.

5. Proof of Theorem 2. Suppose a classification rule, dy(x, =, ZV), is given. For
each N, it is desired to show that 6y behaves poorly for some choice of the underlying
densities.

To do this, let f be any fixed element of % which is in the interior of # in the sense
that f; satisfies the bounds in the definition of %; with M replaced by a constant M’ <
M. Then, for each N, a finite family of perturbations of f; will be constructed, and it will
be shown 6y behaves poorly for at least one of these. The perturbations will be small in
the sense that they will converge uniformly to f; (as N — o).

Since the compact set % has nonempty interior, assume, without loss of generality,
that & is the unit in R?.

Given a > 0, which will be specified later, it will be convenient to define N = [N<]¢,
where [ ] denotes greatest integer.

In the following, for each N € Z*, a number of quantities will be defined which will
also be indexed by [ = 1, --., N. For notational convenience, these quantities will be
subscripted only by /, with the dependence on N understood.

Given N € Z*, let %, ---, %y denote a partitioning of £ into subcubes, each having
sidelength 1/[N*]. Forl=1, ---, N,

vol{( %) = 1/N,

where vol, denotes the usual d-dimensional Euclidean volume.

Forl=1, ---, N, let x' be the centerpoint of the cube %, and let y' be the vertex
closest to the origin in R?.

Let ¢:R? — [0, ) be a function with the following properties:

i) ¥ is m times continuously differentiable.
ii) for |a| = m, |Dy(x)| =1 on %
iii) for |a| = m, D(x) is supported inside &
iv) there is a constant, ¢ > 0, and a set, U C R¢, so that ¥(x) = ¢ on U and vols(U) =
(12)°.
Such a ¥ may be constructed, for example, as a piecewise polynomial. Note that, by ii)
and iii) with « = 0, ¢ is supported on £ and 0 <y < 1.
Forl=1,---, N, given a;, a/ > 0, which will be specified later, define

$1(x) = aNPY(2[N*](x — X)) — a/N"Y(2[N*](x — ¥')).

Note that ¢, vanishes everywhere, except on the part of % nearest the origin in R?, where
it may be negative, and on the part of % farthest from the origin, where it may be positive.
To choose the a; and a/, first make them satisfy, for/=1, ..., N.

(5.1) J; , du(x)f1(x) dx = 0.

This relationship is linear in @, and a/, so there is still “one degree of freedom” left. Let
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d > 0 be a number which will be specified later, but which satisfies
0<d<l1.
Forl=1, ..., N, choose a; and a/ so that
d = max{a, a/ }.
By (5.1) and the fact that f; € &, note that
min{a;, a/} = 8/M>.

By property iv) of the function ¢, for /=1, - - -, N, find a set U, C %, so that

(5.2) ¢i(x) = deNP*/M? on U,
and
(5.3) volg(Uy) = (U[N“])® = u°N.

Before defining the perturbations of f;, a method of indexing is required. So, let
Py =10, ¥ = {(by, ---, by): each b, = 0 or 1},
Note that the cardinality of the set 7y is

#H Ty = 2N,
Now the family of perturbations will be defined. For b € _7y, define the function
(5.4) &(x) = f1(x) + T bigu(x)f2(x).
Also let £f° = (g, f2, - - -, f&). In the following it will be convenient to let
(5.5) Ry, Py, Ey, denote R, Pp, E; when f=f®,

As in Section 4, a number of constants, denoted by B;, for i € Z™*, will be introduced.
These will be independent of f, x, =, N, Z%, fx, I, b and any quantities defined in terms
of them. However, the B; may depend on any, or all, of d, K, L, &, m,8,p, M, M’, o, {, ¢,
U, and 4.

Next, for N sufficiently large, it is seen that f® € %

LEMMA 5.1. There is a constant, Bs, so that, if N > Bs and b € _Zy, then g, € 7.

The proof of this lemma is straightforward but tedious and hence is omitted. The
details may be found in Section 7.1 of Marron (1982).

Now for any particular value of [ = 1, ---, N and any particular realization of Z%, it
will be useful to compare the function Rb(éN, X, ™) — Rb(GAB, x, ) when b, = 0 with the
function when b, = 1. Given b € #Zyand ! =1, ---, N it will be convenient (similar to
(5.5)) to let

(5.6) R, and g; denote R, and g, when b =i for i=0,]1.
Recall the definition of U, from (5.2).

LEMMA 5.2. ~There is a constant Bg so that for N > Bs, for each realization of Z", for
eachl=1, ..., N, and for each b € Py, there is a set U/ C U, for which:

a) voly(U/) = (%2)voly(U)), and
b) one of the following hold:

i) volgi{r € %%:Ro(fn, X, ®) — Ro(fp, X, ¥) > BsN7} > BeN 7,
forall x € Ui,
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or
ii) volg_fr € S%:Ri(fy, X, ) — Ri(fs, X, 7) > BeNP*} > BeN*e,
foral x € Uj.

The proof of this lemma for general K may be found in Marron (1982), Section 7.5. It
involves reducing the problem to a case that is only somewhat more complicated than the
case K = 2. Hence, the lemma will be proven here only in the case K = 2.

To verify Lemma 5.2, note that it is enough to show that there is a constant B, so that

for each x € U,, either

volg_i{wr € %%:Ro(f, X, ) — Ro(fs, X, ®) > B;N?*} > B,N—P=
or

volg_i {r € S%:Ri(fn, X, ) — Ry(fs, X, ¥) > B;N"*} > B,N,

But since K = 2, % is just the line segment in 122 with endpoints (0, 1) and (1, 0). Also
me = 1 — ;. Thus, it is enough to show that there is a constant Bs, so that for each x €
U, either

(5.7) vol, {r, € (0, 1):Ro(f, X, ) — Ro(fs, X, ) > BgNP*} > BN,
or )
vol, {r, € (0, 1):R:(fn, X, ) — Ri(fs, X, ) > BsNP*} > BN,

Now x may be considered fixed, so dependence on it will be suppressed, hence f(x)
will be denoted f, and so on. From properties i) and ii) in the definition of the class %,
fork=1, ..., K, recall

(5.8) 1/M=<f.,<M.
Also, since x € U, C %, from (5.4) and (5.6),
&=/f, &=H1+d),

of

and

(5.9) 1/M=<f(1+¢) =M,
and by (5.2), there is a constant By, so that

(5.10) fi¢y > ByN 7P,

From (1.3) and (1.4) note that for k=1, 2,

_ mLk, 1)fi + (1 = m)L(k, 2)f,
N mh+ (1 — m)fe ’

Ro(k, x, )

mi Lk, VA1 + ¢) + (1 — m)L(k, 2)fe
7l'1f1(1 + ¢l) +(1- 7"1)f2 ’

It will be convenient to define, for k=1, 2,
(5.11) Ao(k, m1) = (L(k, 1)f, — L(k, 2)f2)71 + L(k, 2)fs,
(5.12) Ay (R, 1) = Ao(k, m1) + L(k, 1)fiu.

Now from (5.7), by (5.8) and (5.9), the proof of Lemma 5.2 will be complete when it is
shown that there is a constant, By, so that either:

(5.13) vol, {r;, € (0, l)ZAo(éN, m) — Ao(éB, m1) > BioN7P} > B;oN™

Rl(k7 X, 1|') =
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or,
(5.14) vol, {m; € (0, 1): A1y, m) — Ai(fs, m1) > BioN} > BjoN <.
From (1.5), (56.11), and (5.12), for i = 0, 1, when b, = i,
A1, m) < A(2, =) implies 65 =1, and
A(1, m) > A(2, m;) implies 85 = 2.

Thus, by (1.1), (5.10), and (5.12), there is a constant By;, so that an interval (a, b) can be
found such that

b>a+ B;;N7,
and such that, for =, € (a, b),
(5.15) b,=0 implies =1, and b =1 implies 65 = 2.

But, by (1.1), (5.11), and (5.12), for i = 0, 1, Ag(1, m) — Ao(2, m,) is a linear function of
w1, whose slope is bounded away from 0. Hence, by (5.15), either (5.13) or (5.14) holds.

This completes the proof of Lemma 5.2 in the case K = 2.

Next, a method is needed to simultaneously take into account what is happening on
%, -+, %n. To do this, it is convenient to make a slight addition to the probability
structure. Let 8 be an _Zy-valued random variable which takes on each of the 2V values
with equal probability. Then suppose the distribution of Z" is determined by f*.

Next, consider the classification problem of guessing the value of 8, using the observed
value of ZM. Let 8 = (8., ---, Bx) denote a classification rule, or more precisely, a
measurable function from (R*)*N to _Zy.

LEMMA 5.3. For o = 1/(2p + d) and 3 sufficiently small, there is a constant B, > 0, so
that
limpy_.»SUppe ﬂNPh[#(l:ﬁAl # b) > B12N] =1
A similar result has been proved in Stone (1982), hence the proof is omitted. The

details may be found in Marron (1982). :
Now, for N > Bs, define a classifier, 8, by, for [ =1, ... N, letting

;=1 when i) in Lemma 5.2 holds, and
B =0 otherwise.

Note that, for N > B, and for I =1, - - -, N, in the event {,= 0}, ; # £ implies i) holds.
Similarly, by Lemma 5.2, in the event {8, = 1}, B; # B:implies ii) holds. Hence, for each b
S ]N, B[ #* b[ implies

volg-i {7 € S%: Ry (b, x, ) — Rb(éBy X, ) > BeNP*} > BsN 7, for every x € Uj,
which in turn implies
f Ry(0n, X, ) — Ry(05, X, ) dm > BIN"%* for x € UJ.
Sk
Therefore, by (5.3) and a) in Lemma 5.2, there is a constant B3, so that B # b, implies

A A _Zpa
f f Rh(GN, X, 1I') - Rh(ag, X, ‘l’) dr dx > M.
U Yo N

Next, for N > Bs, and for any b € _7y, on the event [#(l:,é, # b)) > BN}, (using
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Fubini’s theorem since the integrand is nonnegative), note that

f f Rb(é}v, X, T) — Rb(éB, X, 7) dX drm
o Jo

= Yidis, J; L Rb(ézv, X, 7) — Rb(éB, X, ) dw dXx > BBy N7%,
] K

Thus, by Lemma 5.3, for « = 1/(2p + d),

1imesup.,e,NP.,[ f L [Ru(ly, X, ) — Ru(fs, X, 7)] dx dx > B1:By; N-zpa] =1
“k

So, let @ = 1/(2p + d) and the proof of the Theorem 2 is complete.
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