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ORTHOGONAL SERIES METHODS FOR BOTH QUALITATIVE
AND QUANTITATIVE DATA

By PETER HALL

Australian National University

We introduce and describe orthogonal series methods for estimating the
density of qualitative, quantitative or mixed data. The techniques are com-
pletely nonparametric in character, and so may be used in situations where
parametric models are difficult to construct. Just this situation arises in the
context of mixed—both qualitative and quantitative—data, where there are
few parametric models.

1. Introduction. An advantage of orthogonal series methods of density estimation is
that they are readily extended from the univariate case to multivariate distributions,
provided the dimension is not too high. Our main aim in the present paper is to show that
this advantage extends from the purely continuous case, where it is by now well known, to
the case of mixed multivariate data, in which the components have both discrete and
continuous distributions. We also demonstrate that orthogonal series methods may be
used to smooth unbounded, discrete data. This requires us to construct a complete
sequence of orthonormal functions on an ordered, countably infinite set, and is undertaken
in Section 2. We handle the case of mixed data in Section 3.

Orthogonal series methods for the estimation of a continuous density were introduced
by Whittle (1958), Cencov (1962), Schwartz (1967) and Kronmal and Tarter (1968). Ott
and Kronmal (1976) suggested using Walsh series to estimate the density of a multivariate
binary distribution. We tackle the problem differently from Ott and Kronmal, in that we
consider general orthogonal sequences which are constructed by taking the product of
sequences for univariate data. This yields the example of Walsh functions on a binary set
as a special case. Our technique is completely nonparametric in character, and so may be
used in circumstances where parametric models are difficult to construct. Just this situation
arises in the context of mixed data.

2. Unbounded, discrete data. We shall assume that the range of the data is the set
{0, 1, 2, ---}, and base our orthogonal functions on the Poisson distribution. Expand the
function G(x, t) = (1 + £)*e** as a power series in £, G (x, t) = ¥ %=o i(x)¢'/i! The following
properties of the polynomials ¥; may be derived:

Yi(x) = Yiso (;) (A 7xx—1) --- (x—j+1), i=0;

Yir1(x) = xdi(x — 1) — Ai(x), i = O (this formula is easily used to generate the functions
Y; numerically); and lf the variable Z has the Poisson distribution with parameter A,
E{yi(Z);(Z)} = 6;i' N, where §;; is the Kronecker delta. Therefore if we define

(%) = Yi(x) @A) 2 ANe T (x + 1)}% i=0 and x=0,

then Y 7- ¢:(n)¢;(n) = 8;, so that the functions ¢; are orthonormal. The functions y; are
the Charlier polynomials (see Abramowitz and Stegun, 1965, page 788), and the first six
are listed in Table 1.
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. TABLE 1
Polynomials orthogonal in Poisson (\) distribution

Yolx) =1 i@ =x—% yalx)=2— (1+20)x + A%
Ys(x) = 2% =3(1 + A)x? + (2 + 3\ + 3\ FH)x — A3}
Ya(x) = x* =23 + 20)x® + (11 + 12\ + 6AH)x2 —2(3 + 4\ + A2 + 2A%)x + A%
Ys(x) = x°—5(2+ A)x* + 5(7 + 6\ + 2A%)x?
—5(10 + 11A + 6A% + 2A%)x% + (24 + 30\ + 20A2 + 10A% + 50 %)x — A°.

Let p be a density on {0, 1, 2, ...}. The generalized Fourier series for p is p(x) =
¥ 7=0 ¢r¢r(x), where ¢, = ¥ %-0 p(x)¢,(x), and an unbiased estimator of ¢, based on the
random sample Xi, -, X,, is given by é. = n7! Y%, ¢-(X;). A “smoothed” estimator of
P can be constructed by weighting the estimated Fourier coefficients: p(x) = ¥ 5o w, ¢, ¢r(x)
for weights w,. The problem of selecting the weights is examined in a very general context
in the next section.

The parameter A plays a similar role to the kernel type in classical nonparametric
density estimation. Note that A is not a smoothing parameter, and that changing the value
of A has very little effect on the results. For example, Y7o var{¢,(X:)} does not depend
onA.

3. General orthogonal series estimators. We shall show how to construct orthog-
onal series estimators of mixed multivariate densities, based on univariate components.
The univariate, continuous case is well known; see Kronmal and Tarter (1968). We have
just examined the case of a univariate density on an unbounded discrete set. If the set is
univariate and bounded, the orthogonal functions may be taken proportional to orthogonal
contrasts. For example, vectors (¢;(0), --- , ¢:(4)) defining functions orthogonal on (0, 1,
.+, 4), may be taken equal to 5731, 1, 1, 1, 1), 27'(1, 1, 0, —1, —1), 27'(1, -1, 0, 1, —1),
2711, -1, 0, —1, 1) and (20)"3(1, 1, —4, 1, 1).

More generally, suppose data take values on the d-variate sample space S=S; X ---
X Sg. If {¢{”, i = 0} is an orthonormal basis for the space of functions on S;, and if we
define

&r(x) = [[§-1 67(x;) for each x = (x;) € S and vector r = (r;),

then {¢,} is an orthonormal basis for the space of functions on S. It is a little cumbersome
to write down the orthogonality relations in complete generality. For example, if S =
{0,1,---,m} x{0,1,2, --.} X (a, b), the relations take the form

b
22=0 2:’2-0 J’ dx3¢r(x1, X2, xa)(l)s(xl, X2, X3) = &ys.

Let us agree to write this as
(3'1) J' ¢r(x)¢s(x) dx = §,s.
s

A density p on S admits the expansion p(x) = Y, ¢,¢-(x), where in the notation suggested
by (3.1), ¢ = [ ¢-(x)p(x) dx. A “smoothed” orthogonal series estimator of p based on a
random sample X;, - - - , X,,, is given by p(x) = ¥, w,é,¢,(x), where é. = n~' ¥%_; ¢,(X;) and
the w, are weights. Generalized weighted mean “integrated” square error (MISE), with
integration in the sense of (3.1), may be defined by

(3.2) f E{p(x) — p(x)}? dx = n"'Z,wivar{¢.(X1)} + = (w, — 1)%c2.

For most choices of orthonormal sequences, the function ¢, will be a constant, and then
the condition Y . p(x) = 1 may be imposed by simply insisting that w, = 1.
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If each subspace S; is discrete, then the estimator defined by taking w, = 1 for each ris
well defined, and equals the cell proportion estimator po(x). However, if one or more of the
subspaces is continuous, and each w;, = 1, then the variance component of MISE diverges.
Even in the purely discrete case, we could choose the weights so as to minimise MISE.
The solution to this problem is given by

w, = C?/[C% + n_lvar{qbr(Xl)}],

for each r. (Compare Watson and Leadbetter, 1963.) Unbiased estimators of the numer-
ator and denominator are given by (né% — b2)/(n — 1) and é2, respectively, where b2 =

-1 n

n "_1 $2(X;). Therefore we might consider the estimator
3.3) P1(x) = Yreq: (082 — 6){(n — )&} - (x),

where @; denotes the set of indices r with né? = 2. We shall prove in Appendix I that if
each S; is bounded and discrete, and each c, is nonzero, then n'/?{pi(x) — po(x)} — 0 in
probability as n — . Therefore p; satisfies the same central limit theorem as p,. This
result is an analogue of part (b) of the Theorem of Wang and van Ryzin (1981). The case
where ¢, = 0 for some r is discussed in Appendix L

An alternative way of selecting the weights is to take each w, equal to 0 or 1. Arguing
as in Section 4.1 of Ott and Kronmal (1976), we are led to the estimator Dalx) =
¥ req, érdr(x), where @. equals the set of indices r with (n + 1)é2 = 2b2. Again, if each S; is
bounded and discrete, and each ¢, is nonzero, n'?{ps(x) — po(x)} — 0 in probability.
Interestingly, this estimator is almost identical to that constructed by least-squares cross-
validation, which is defined by ps(x) = Y,eq, é;¢-(x), where @; equals the set of indices r
with né? = 2(1 — 1/2n)b2 See Appendix II.

Suppose the sample space can be written as § = S x S?, where S® is purely
continuous and S® purely discrete. Let r = (», r®) denote the analogous decomposition
of r. An estimator of the marginal density on S® would usually be constructed using
weights u,» which equal 1 if 'Y < m (for some vector m), 0 otherwise. The marginal
density on S® can be constructed separately with a very different weighting scheme v,
such as that given in (3.3), and the two combined into a product series estimator,

134 (x) = Er=(r“’,r"')ur“’ur"’ér¢r (x).

Alternatively, for x = (x®, x®?) € S® x 8@ we could define

1)

Ds(x) = Y.oeso 0(x®, 2)po(xY, 2),

where p, is an unsmoothed estimator and i(-,-) is a system of weights designed for
smoothing the cell proportion estimator on S, There are many possible choices for .
For example, if S® = {0, 1}*, one could use weights associated with a kernel estimator, as
in Aitchison and Aitken (1976). An alternative would be to construct the weights for a near
neighbour estimator of order ¢ for any /in the range 0 < ¢#=< k, using methods of Hills
(1967) or Hall (1981). In this regard, Dr. H. J. Trampisch has kindly pointed out that the
equations for woe and Wy at the top of page 574 of Hall (1981), which represent an
alternative method of computing the vector wqo at the foot of page 573, hold only in the
case /= k, since that condition is required for 2~ = P1,,. In the case /< k, wy can be
estimated using the maximum likelihood estimate of P.

APPENDICES

(I) Limiting distributions of p1, p.. If ¢, # 0 then (né:f - {n-183" =6+
O,(n™") and P(r € @,) — 1, while if ¢, = 0, n'*(né? — b%){(n — lA)c",}_II(r € Q) —
b(Z — Z™H)I(| Z| > 1) in distribution, where Z is N(0, 1) and b2 = EbZ This results in a
normal N {0, p(r) — p2(r)} limit for n'/2{p,(r) — p(r)} if each ¢, is nonzero, and a nonnormal
limit if some ¢, vanishes and the corresponding b, is nonzero. In the same way, p. can have
a nonnormal limit if some ¢, vanishes, and similar results may be proved for Ott and
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Kronmal’s estimators, However, these results are of a pathological nature, since insisting
that ¢, = 0 for some r places a linear constraint on the class of probability densities, and so
is unlikely from a Bayesian viewpoint.

(IT) Cross-validation. Let p(x) = =, w,é,¢-(x) be an estimator in which each w, = 0 or
1, let p,; denote the version of p calculated for the (n — 1)-sample with X; deleted, and let
8; be the density concentrated at X;. Following Bowman (1982) we choose the weights to
minimise nt Y [ {Pni(x) — 8:i(x)}® dx, which results in the rule: set w, = 1 iff n?é2 =
(2n —1)b2
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