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INFERENCE ON MEANS USING THE BOOTSTRAP

By G. JoceEsH BaBu! AND KESAR SINGH>

Rutgers University

We study the asymptotic accuracy of the bootstrap approximation to the
distribution of a k-sample studentized mean.

1. Introduction and main results. Let Fi, F., ..., F; be the distributions of %
populations with means w1, piz, -« - , ux. Let 8 = Y Lu; where 1, Iy, - -+, I, are non-zero
constants. Let {X1, Xp, - -+, Xin.},i=1,2, - - - , k, be independent random samples of sizes
ni, ng, »++, ng from Fy, Fy, ..., F;. Let n denote the vector (n, ng, ---, nz) and N =
3% n;. A natural estimator for 6 is b, = ¥ 1,X; and a consistent estimator for its variance
is v2 = Y 1257 /n; where X; = ni' Y, Xij and s? = (1/n;) ¥ (X;; — Xi) 2. Here we study
the accuracy of the bootstrap approximation to the distribution of the studentized random
variable ¢, = (6, — 6)/v~. This approximation is discussed in the next paragraph. Although
one could base an inference about # on the difference 6, — 6 itself, it turns out that the
bootstrap approximation is asymptotically more accurate for ¢, than for (6, — 6).

Let G: denote the empirical distribution function based on {Xi1, Xi, -+ Xin },1=1, 2,
.+« , k. The dependence of G/s on the sample sizes is suppressed in the notation. Now let
(Yia, Yoo, «++, Yin), i = 1, 2, -«., k, denote independent random samples from the
populations Gi, Gz, -+, G; Yi=ni' Y% Yy and y? = ni' Y%, (Yi; — ¥i)2 Then, by
definition, the distribution of ¢} = Y% I;(¥; — X:)/3% I?y? under G4, Gz, -+, Gy is the
bootstrap distribution of ¢¥. Under the conditions given below, the bootstrap distribution
of t* is shown to be asymptotically close to the actual distribution of £, up to o (N /%), In
applications the bootstrap distribution is approximated by drawing samples of sizes n;, n.,
«eo, ng from Gy, Gz, .-+, G a large number of times, say M times, calculating ¢ each
time and finally forming an empirical histogram. It is shown here that this second stage
approximation is good up to o (N~'/?) provided M/(N log N) — .

We now state the main results proved in this note. Throughout, we make the following
assumptions, to be referred to as A in the sequel.

A. F; has finite 6th moment for all 1 = i < k. For at least one i, F; is continuous.
Without loss of generality we shall assume that F; is continuous. The n/s tend to infinity
at the same rate. In other words, the N/n; <A < wforalli=1,2 ..., k. In practice this
last condition means that the n/’s are of comparable size.

In what follows, for any distribution F, let F~'(¢) = inf{x:F(x): = ¢}, where 0 < ¢t < 1.

THEOREM. If H, denotes the d.f. of t, and H,! denotes the d.f. of t; then, under A, as

N—> o

(1) - NY’supeer|Hn(x) ~ H¥ (x)| = 0
and
@) N2 H'(¢) — Hy' ()| —> 0

a.s. for all t € (0, 1). Further let H, 1 denote the approximation to H} described in the
second paragraph above with M samples from Gis. If M/(N log N) — « as N — o, then
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for almost all sample sequences {X;;}

(3) Nl/zsupxeRl Hn,M(x) - HIT (x)l -0
and
@ N2 Hzu(t) — Hy7 ' (8)| — 0

as. for all t € (0, 1) as N — . The a.s. here refers to the random mechanism generating
the samples from G/’s. (We assume that all the second stage sample sequences are defined
on the same space.)

It may be mentioned here that (1) in the above theorem is an extension of (1.5) in [8]
which is a result involving (X — u)/a. For constructing a confidence interval for 6, one may
replace an actual quantile H,'(a) of ¢, by its bootstrap approximation H, (@), This
approximation in the one sample case has been investigated by Efron [6] on simulated
data from an asymmetric population. The procedure perfarmed quite well (see Table 5

of [6]).

2. Proof of the theorem. We first develop some notation. Let ¢z, ®s denote the

density and the d.f. of a normal variable with mean zero and dispersion matrix 3; let ¢, @
denote the density and the d.f. of a standard normal variable in R; let ¢ denote a constant,
the later may denote different constants at different places. For non-negative integral
vectors 8= (B1, -+, B;) and x € R"let x# = [[j_1af, Bl =Bu! Ba! - -+ B, |B] =B + -
+ B-and D? = D{: ... D, where D? denotes the B;th order derivative with respect to the
ith variable. Finally let ||x||> = xf + ... x? and x -+ y = 2,51 + --- %,y where x =
(X1, **+, Xr) andy: (yl, e yr)_

We shall show that

(5) Pt =<x)=®(x) + N‘”“’f d(y)(y)dy + o(N"V?) a.s.

where d is a polynomial whose coefficients depend upon F;s. The same steps will also
yield

(6) Pt,=x)=®(x) + N‘l/“’f d(y)o (y) dy + o(N"2),

Clearly (5) and (6) imply (1). Before proving (5) we shall deduce (2), (3) and (4) from (5)
and (6).

To prove (3), first note that in distribution (given the original sample) H,, y is the same
as the empirical d.f. of H;"(U;) where Uy, Uz, - - Uy are iid. U[O, 1] random variables.
If Ey denotes the empirical d.f. of Uy, ... Uy then #(H; (U;) < x) = MEy(H,(x)).
Hence, using a well known bound on E,., we have

P (supscr| Hou(x) — Hy(x) | = 4M~*(log M)'?)
= P(supsepo,| Em(t) — t| = 4M~"*(log M)"?) = O(M™?).
Consequently, in view of Borel-Cantelli lemma,
lim supas,.M"*(log M) ~"*supscr| Hom(x) — Ho(x) | < 4 a.s.

Here dependence of M on N is suppressed. The claim (3) in the theorem follows from this,

since M/(N log N) — o,
The claims (2) and (4) on quantiles follow using Lemma 1 given below which is an easy

consequence of Taylor’s expansion.

LeMMA 1. Let Ly be a sequence of d.f’s on the real line such that, for a polynomial
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ay with its coefficients bounded in N,

Ly(x) = J [1+ N""2an(y)1¢(y) dy + o(N"'?)

uniformly in x. Then for each a € (0, 1),

L) =z — (¢(2)VN) ™ f an(y)¢(y) dy + o(N~V?)

where z = ¢ (a).

The proof of (5) is based on Lemmas 2-5 that follow. In the proofs below we assume
wlg thatli=bL=.-- =1

All proofs are given for a single sequence of realizations of {X;;} for which G; converges
weakly to Fjand [ x° dG;— [ x® dFjforj=1,2, --- k. Thus in view of A the results hold

a.s.

LEMMA 2. Let Y be a random vector in R* with mean zero and dispersion matrix
V = ((v;;)). Suppose for some b > 1, max(| vu1|, | viz|, | va2|, E|| Y||?) < b. Let a > 2 be such
that Ala) < 1/10, where A(a) = (1/a) + E(| Y|IPI(| Y| > a)). Then for all || t]| = a %N
and all non-negative integral vectors a, with |a| < 3,

| D*(g™(t/VN) — (1-(i/6N)E(t - Y)?) exp(—t'Vt/2))|
= cb®(A(a) + N"AN2(| ¢|° + 1) exp(—t' Vt/2 + ca 6| £|[?)
where for t € R? g(t) = E(exp(it - Y)).

The proof is similar to the proof of Theorem 9.9 of [3].
LEMMA 3. Suppose A holds. Let \; = (N/n;) ', Z; = [\i(Yi — X)), A} (Y — X))? —

s?)], gj denote the characteristic function of Zj/«/rTf , B; denote the dispersion matrix of Z;
and B = Y*_, B;. Then for any n > 0,

max|p|=3 f
lel=a v

=o(N"'2).

D"[m:l gpi) — e ™ (1 -

Proor. Define
f(t) = (1 — (i/6Vn)E(t - Z)*) exp(~t B;t/2).
First note that
(7) max s<s| D(e"*%/%(1 — (i/6VN) Y2 NE( - Z)®) — T1=1 £(8))]
= O (| ¢]°***Y + 1)exp(—t'Bt/2),
and for any non-empty subset o/ of {1, 2, --- , &},
maxsi<s| D* [[jes & (t) | = max p=sE || Ljes ni 2 T, Zill*!

=1+ k* maxi<unj 2E|| X1, Zi|)* = O(1),

@®)

where Z;; are independent copies of Z;. The last inequality above follows from the proof of
Lemma 14.7 of [3] as sup E|| Z||* < b < » from some b > 0. Also for 1 <j < k

) max <3| D* [[i< fi(¢)| = O((1 + [|¢]|**) exp(—¢'Bt/2)).
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By (8), (9) and Lemma 2, we have for any a > 2, || <3 and || ¢|| = A e VN,
| D ([T g7 (&) = [T=1 ) |
(10) = Y51 | DA((ITi<ifi(®) T1imi 7 ()7 () — £i(8))) |
= O(N"(r(a) + N"V*)(1 + | ¢]|°***) exp(—t'Bi1£/2 + ca™*|| %)),

where r(a) = 1/a + sup;E (| Z|’I (|| Z|| > a)). It now follows from (7) and (10) that, for a
| 8] = 3, the integral in Lemma 3 over || ¢| <A 'a >VN is O(r(@)N~*%) + O(N 7).

Since F, is continuous, the dispersion matrix of X = (X11, (X1 — p1)?) is positive definite
and the cf. & of X satisfies the condition | 2 (¢) | < 1 for all £ # 0. As a result of this and the

fact that weak convergence implies convergence of c.f’s. uniformly over compact sets, it
follows that

sup{|g @) |; It € AN "a2VN, n/N]} =6 <1
for all large N. Also,
inf{(¢’B:t)/||t||% t # 0} = >0
for all large N under A. Finally for any | 8| =3
| DA(gt1(¢)) | <= nPE || Zini 2| | g1 () |7 < ¢ N? | ga () |77

Thus for | 8| < 3, the intergral in the lemma over A '@ %/N =< ||¢|| =7vN is O(N ™). The
claim now follows by letting @ — . '

Next, an inversion theorem is obtained by combining a modification of Lemma 5 in [9]
with Lemma 11.6 of [3]. The proof is deleted.

LEMMA 4. Let P be a probability on R* and @ denote a measure with density
[1 + N7?p(y)1é=(y) where p(y) is a polynomial and 2 is a positive definite matrix of
order k X k. Let the coefficients of p(¥), Amax and Amln be bounded by M > 0 where Amax
and Amin denote the maximum and minimum eigen values of 3. Then for any ¢ > 0

|H®—@®5d@mmmﬂf | DA(B(t) — Q)| dt

Iel=ce VN
+ c(M)[®@=((3C)" ™) + O(N)].

Here P and @ stand for cf’s of P and @;(3C)* N is the ¢e/NN neighborhood of the
boundary of C.

Finally Lemma 5 justifies converting a multivariate one-term Edgeworth expansion into
an univariate one. This result is a modification of Lemma 2.1 of [2]. A proof for the present
version is contained in [1].

LEMMA 5. Lett= (t, ts, +++, t;) be a vector, L = {L;;} be a r X r matrix and q be a
polynomial in r variables. Let M = max{| vy |, | us|, | t:|, | Li|, | ¢, |}, where V = ((vy)) is
a positive definite matrix ((u;)) = V™! and c, are the coefficients of q. Let | t.| >ty > 0.
Then there exists a polynomial p in one variable, whose coefficients are continuous
functions of t;, L, vy, u; and ¢, such that

j . (1 + N™2q(2))pv(2) dz =J (1+ N7p(y)é(y) dy + o(N~?)
(z:t- 24+ NV%'Lz<uvt'Vt} —

where the o(-) term depends on M and t, only.

We now briefly sketch the proof of (5) using the lemmas. Define, §; = n; 'Yz, (Y —
X;)? — s? and s? = ¥'¥ s}/n;. From Lemmas 3 and 4 it follows that for a measurable C and
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>0,
P{VN Y} (Y, - X)), N*2 Y% (&;/n;)} € C]

(11)
= j 5 (1 + N™Van (x)] dx + o(N"2) + O@5 @B/ ™)
(o]

where ay is a polynomial whose coefficients are polynomials in {A;}, and the moments of
G; of order 6 or less. Note that B = {b;;}2x2 With by = Ns? the variance of VN % ¥;. Now
(11) combined with Lemma 5 entails

P(s T8 (Y - X)[1 - %)s2 3k ¢/n)]= x)
(12)
X
=®(x) + N‘“J b(y)e(y) dy + o(N7?),

.

where b is a polynomial whose coefficients are continuous functions of B~', A; and the

moments of G; of order 6 or less.
Define Cy = (VN Y#|¥; — X;| <log N} and Dy = {N*?| X% (¢;/n;)] <log N}. On Cn
N Dy one has

(13) tr=sT TV (Y - X)[1 - (4)s* Tf &/n)] + O(N"'(og N)?)

(taking I, = .- I = 1). Since the 6th moments of {Y1;} are bounded, it follows from the
proof of Theorem 2 of [7] that

14 [1 - P(Cn)] + [1 — P(Da)] = o(N"V?),
Thus (12), (13) and (14) yield (5)
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