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IDENTIFIABILITY OF FINITE MIXTURES
FOR DIRECTIONAL DATA

By JouN T. KENT

University of Leeds

In some problems of directional data, finite mixtures of simple distribu-
tions have been proposed as statistical models. In this paper we show that for
a wide class of directional distributions, all such mixtures are identifiable.

1. Introduction. The most common distribution used to model unimodal data on
the circle is the von Mises distribution. However, when modeling more complicated
features such as multimodality there are two frequently used approaches. First, one can
use a mixture of von Mises distributions,

(1.1) 81(0) =YX, Niexp{ricos(d — a;)}.

Alternatively, one can use an exponential family obtained by adding higher order trigo-
nometric terms to the exponent of the density,

(1.2) &:(0) = C exp{Y 21 y;c08(jO — B))}.
For an example with both (1.1) and (1.2) applied to bimodal circular data, see Mardia and
Spurr (1973). :

Two questions of identifiability arise here.
(i) Are finite mixtures of von Mises densities identifiable?
(ii) Are densities of the form (1.1) always distinct from densities of the form (1.2)?

One purpose of this paper is to show in a wide variety of situations that the answer to
both these questions is “yes”. More generally, the theorem proved below shows the
identifiability of finite mixtures for a class of distributions which is wide enough to include
both of the above choices. The identifiability of von Mises mixtures was first proved in
Fraser, Hsu and Walker (1981), who give several references to applications of von Mises
mixtures. This paper extends their results to more general distributions and more general
manifolds.

The classes of probability distributions covered by this paper include the following
examples: the multivariate normal distribution on R?; the von Mises-Fisher, the Bingham
and more general distributions on the unit sphere (Beran, 1979); a joint normal-von Mises
distribution on the cylinder (Mardia and Sutton, 1978, and Johnson and Wehrly, 1978); a
bivariate von Mises distribution on the torus (Mardia, 1975, and Jupp and Mardia, 1980);
and more generally, a joint Bingham-von Mises-Fisher matrix distribution on the product
of two Stiefel manifolds (author’s reply in Mardia, 1975). The identifiability of finite
mixtures of multivariate normals has been shown by Yakowitz and Spragins (1968) but the
other examples seem to be new.

For a general survey of finite mixtures of distributions, see for example Everitt and
Hand (1981) and Behboodian (1975).

The key argument in the proof of identifiability in this paper is contained in Section 3,
where we show that a suitable limit in the complex plane of the ratio of two densities on
the circle equals zero. The argument is similar in style to but more general than that used
by Teicher (1963), Theorem 2).

2. The framework of the paper. Let M be a connected manifold which can be
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naturally embedded in some Euclidean space, M C R”. Let E(M) denote the family of
functions on M of the form

exp{P(x)}

as P(x) ranges through the space of polynomials on R” of arbitrary finite degree.

Suppose the manifold M can be described as a finite direct product of Stiefel manifolds
and copies of the real line. Such manifolds are of interest in problems with directional data
as the above examples illustrate. The Stiefel manifold O (p, k) can be embedded in R?* as
the set of p X % matrices X such that X7X = I, the k-dimensional identity matrix. When
k = p, we add the additional restriction det(X) = +1 in order to make O( p, p) connected.
As a special case for 2 = 1, we obtain the unit sphere in p dimensions.

Call two functions f®(x) and f®(x) “essentially distinct” if they differ by more than a
constant factor. We make the following definition of identifiability for a family of functions
(see Yakowitz and Spragins, 1968).

DEFINITION. A family of functions F on M is called identifiable if all finite sets of
essentially distinct functions are linearly independent. That is, whenever f®(x), ---,

N (x) are essentially distinct functions and Ay, - - -, Ay are real numbers such that
2.1) MO + - +Anf M) =0, xE M,
then necessarily A\; = - - = Any = 0.

The following theorem is the main result of this paper.

THEOREM. Let M be a finite direct product of Stiefel manifolds and copies of the real
line. Then the family of functions E(M) is identifiable.

REMARKS.

1. Note that we have defined our concept of identifiability for functions in E(M). In
any statistical application we will want to talk about the identifiability of probability
densities on M with respect to some underlying measure u(dx), where the densities are
proportional to elements of E(M). Provided that the support of u(dx) contains an open
subset of M, then these two concepts of identifiability will coincide. For if a relation
between densities of the form (2.1) holds almost surely with respect to p(dx), then an
analytic continuation argument will ensure that the relation (2.1) in fact holds for all
x € M. In particular, the exact form of the underlying measure p(dx) is not important to
us here.

2. Note that two distinct polynomials on R? do not necessarily define distinct polyno-
mials on M. If Pi(x) — Py(x) = constant for x € M, then they define essentially the same
function in E (M), but they are not necessarily equivalent on all of R”. For example, the
polynomials P(x) = 1 and P(x) = {x? + x3}*, x € R? are equal on the unit circle, but are
not the same on all of R2,

3. It is clear from standard linear independence arguments that the property of
identifiability is closed under direct products. That is, if F and G are identifiable families
of functions on two manifolds M; and M, respectively, then the space of product functions
{f(x)g(y): fE F, g € G} is identifiable on the product manifold M; X M,.

In view of this last remark, it is only necessary to prove the theorem on the real line and
on all Stiefel manifolds. We shall start by proving it on a specific Stiefel manifold, the
circle. The result then easily generalizes to the full class of Stiefel manifolds. An argument
similar to that used on the circle can be used on the real line.



986 JOHN KENT

3. Proof on the circle O(2,1). By using polar coordinates on the circle (x; = cos 6,
x2 = sin ), we can get a unique representation of an element of E(O(2,1)) in the form

(3.1) 8(0) = Cexp {¥ 71 kjcos(j6 — o)}

for some number m = 0. The parameters «; = 0 are uniquely determined, and if k; > 0 then
a; € [0, 27) is uniquely determined.

For any function g(6) of the form (3.1) and a real number o, define a size vector
v(o) = (v:(0), - -+, Un(0)) " by

vi(0) = kicos(jo — o), j=1, .+, m.

We can put a total ordering on size vectors as follows. For two size vectors of the same
length m, say that v'"(s) > v®(0) if for some j with 1 < j < m, we have

vi¥(0) > v{?(0)
and .
v}f)(o) = vj‘.?)(a) for j'>j.
Further, by appending zeroes to the end of a shorter vector we can also compare two size

vectors of unequal lengths.
On the circle the relation (2.1) takes the form

(3.2) MgP(@) + -+ Avg™M(8) =0, 6€ (0,27,
with
g9(0) = exp{ T kVcos(j8 ~ ay)}.
Since g*(6) is an analytic entire function of 8, we can extend (3.2) by analytic continuation
to hold for all complex numbers § = o + i 7. Further, since
cos(jo — aj + ij7) = cos(jo — aj)cos(ij7) — sin(jo — a;)sin(ijr)
= cos(jo — a;)cosh(jr) — i sin(jo — a;)sinh(j7),

it follows that

|g?(o + ir)| = exp{¥7=1 v"(0)cosh(jr)}.
Hence it is easy to see that if for some o, v'*(¢) < v"*"(0), then

g9+ ir)/g¥ e+ ir) >0 as 7 oo,

Now given two components of the mixture g and g!*”, there exists at least one j for
which (¢, ai?) # k!, a!*”). Hence for all but finitely many ¢ € [0, 27), we have
v (o) # v¥¥(0), and so v (c) % v (o).

Hence there is at least one ¢ which the v’ (o) are all distinct (in fact for all but finitely
many o). Choose such a ¢ and order the functions g*(8) so that v®¥(¢) > +-- > v ™ (0).
Dividing (3.2) by g¥(8) with 8 = o + ir and letting  — o gives A; = 0. Proceeding similarly
with the remaining terms shows that all the coefficients vanish, A\; = ... = Ay = 0, as
required to prove identifiability.

4. Proof on a Stiefel manifold. Our objective here is to reduce the problem on a
Stiefel manifold to the case of the circle and then to use the results of the last section. For
notational convenience, we shall denote an element of the Stiefel manifold O(p, k) as a
(p X k) matrix X rather than as a vector x.

Without loss of generality we may suppose that 2 = p. For suppose first that 2 < p. Any
polynomial P;(X;) defined for X; € O(p, k) can be extended to O(p, p) by the formula

P(X) = Pi(X,), X€ O(p,p),
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where X; contains the first 2 columns of X. Thus any relation of the form (2.1) between
essentially distinct functions on O(p, k) gives rise to an analogous relation between
essentially distinct functions on O( p, p).

Hence let us take 2 = p and suppose a relation of the sort (2.1) holds between N
essentially distinct functions, f*(X) = exp{P”(X)},I=1, .-+, N, in E(O(p, p)). We want

to show that the coefficients vanish, A\; = ... = Ay =0.
The identity matrix I, lies in O(p, p). Without loss of generality we may choose the
additive constants in the polynomials P’(X), I =1, ---, N, so that P*(I,) = 0. Since

PY(X) is an analytic function on the analytic manifold O(p, p), it is determined on
O(p, p) by its values on any open subset in O(p, p). Hence given any two distinct
polynomials on O(p, p), the points at which they differ must be dense in O(p, p).
Therefore, the points at which PV (X), ..., P™(X) take N distinct values must also
be dense. Take such a point X*.
Let A(6) denote the 2-dimensional orthogonal matrix,

A(0)=[ cos 6 sinﬂ] .

—sin @ cos @

for 8 € [0, 27), and set ¢ = [ p/2], where [ -] denotes integer part. Define a p-dimensional
block diagonal orthogonal matrix by

B(by, -, ;) = diag(A(6y), ---, A(6,)) (p even),
B(6y, --- ;) = diag(A(6y), - --, A(6,), 1) (podd),

where if p is odd, there is also a last 1-dimensional block to be included. By a decomposition
theorem for orthogonal matrices (see for example Herstein, 1964, page 306), there exists
another orthogonal matrix H such that

X*=HB(0t, ---,05)H"

where 0F € [0, 27),i=1, ..., q.

Consider the submanifold M, = {HB(6,, ---, 0,))H": 6, € [0, 27),i=1, ---, ¢} C
O(p, p), which is a multidimensional torus containing both I, and X*. Any polynomial in
X can be regarded as a polynomial in (cos 6;, sin 8;), i = 1, ---, q, on M,. Hence the
functions f”(X),1=1, - -, N, can be regarded as essentially distinct functions in E (Mo).
In view of Remark 3 in Section 2 and the results proved in Section 3, these functions must
be linearly independent on My, and so A; = --- = Ay = 0, as required.

5. Proof on the line. Identifiability of the function space on the line, E(R), can be
proved in a manner similar to Section 3. In fact the argument is simpler because there is
no need to move into the complex plane. A ratio of any two distinct functions in E(R) will
be either 0 or  as x — .
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