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AN EDGEWORTH EXPANSION FOR SIMPLE LINEAR RANK
STATISTICS UNDER THE NULL-HYPOTHESIS

By RoNaLD J. M. M. DoEs

Mathematical Centre, Amsterdam and University of Limburg, Maastricht

An Edgeworth expansion with remainder (N ') is established for simple
linear rank statistics under the null-hypothesis. The theorem is proved for a
wide class of scores generating functions which includes the normal quantile
function.

1. Introduction. Let X;, X;, .-+, Xy be independent and identically distributed
random variables with a common continuous distribution function F. If X;.xn < Xo.n <
... < Xn.n denotes the sequence X;, X;, --., Xy arranged in increasing order, then the
rank R;y of X, is defined by X; = Xz .~ and the antirank D,y is defined by Xp, = X,.n,

Jj=1,2, ..., N. We consider the simple linear rank statistic
R~ J
(1.1) Tn =3 chJ<N_I’_ 1) =35 CD,NNJ<m>,

where cin, con, -+, cnn, N =1, 2, - .-, is a triangular array of regression constants and J
is a scores generating function defined on (0, 1). The two-sample linear rank statistic is
obviously obtained as a special case by setting ¢y =0forj=1,2, ..., n, ¢,y = 1forj =
n+1l,...,NIfey=jforj=1,2, ..., Nand J(¢) = t for t € (0, 1) then the statistic Tn
is distributed as Spearman’s rank correlation coefficient p under the null-hypothesis of
independence.

The statistic Tx may be used for testing the null-hypothesis that all observations are
independent and identically distributed against classes of alternatives indicated by the
choice of regression constants and scores generating function. Both under the hypothesis
and under contiguous and fixed alternatives it was shown that T is asymptotically
normally distributed under very general conditions; cf. Hajek and Sidak (1967, Chapters
V and VI), Héjek (1968) and Dupa¢ and Hajek (1969). More recently a number of authors
have studied the rate of convergence in these limit theorems. Berry-Esseen type bounds of
order O(N~'/?) for simple linear rank statistics were established by Huskova (1977, 1979),
Ho and Chen (1978) and Does (1982a). The purpose of this paper is to establish an
Edgeworth expansion for simple linear rank statistics under the hypothesis with remainder
o(N7') for a wide class of scores generating functions including the normal quantile
function. We note that for the special case of the two-sample linear rank statistic,
asymptotic expansions both under the hypothesis and under contiguous alternatives were
obtained in Bickel and Van Zwet (1978). Asymptotic expansions for the simple linear rank
statistics under contiguous alternatives are established in the author’s Ph.D. thesis; cf.
Does (1982b).

In Section 2 we formulate our theorem. Section 3 contains a number of preliminaries.
The proof of the theorem is contained in Section 4. In Section 5 we compare our results
with those in Bickel and Van Zwet (1978) for the two-sample linear rank statistic. Finally
in the last section we discuss briefly the numerical aspects of our expansions. In the sequel
we suppress the index N whenever it is possible.
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608 RONALD J. M. M. DOES

2. An Edgeworth Expansion. Throughout this paper we make the following as-
sumptions.

AssUMPTION A. The regression constants ¢y, con, - - -, cyn satisfy

Yhion=0, YXiciv=1 maxi,en|cn|= O(N?).
This assumption implies that ETx = 0

AssuMPTION B. The scores generating function ¢/ is three times differentiable on (0, 1)
and

II (t)

J'(t)

(21) llm Supr—o0,1 t(l t)l < 2

there exist positive numbers I' > 0 and a < 3 + %4 such that the third derivative JJ ”
satisfies

2.2) |J” @) =T{tA -2t} forte (0,1).
Furthermore
(2.3) f J(t) dt =0, J J2(t) dt = 1.

0 0

We note that (2.1) ensures that the function J/’ does not oscillate too wildly near 0 and
1; see also Appendix 2 of Albers, Bickel and Van Zwet (1976). Condition (2.3) can be
assumed without loss of generality.

Taking
24) =_2’ ' <N+ 1)
we know that the variance o% of T (cf. (1.1)) is given by
1 j 2\
(2.5) ox =0 (Ty) = =1 N, <J(m> - J) ;
see e.g. Theorem II 3.1.c of Héjek and Sidak (1967). Define for each N = 2
(2.6) Tk = on' Tw
and
2.7) Ff(x) =P(TH<x) for —o<x < oo,

Furthermore define for each N = 2 and real x, the function Fy by
KaN

(28) Fn(x) =®(x) - ¢(x){K2 (x*—1) +—(x 3x) +—(x — 10 + 15x)}

where @ denotes the standard normal distribution function, ¢ its density and where the
quantities r3y and K4y are given by

(29) Ksn = 29’:1 C?N{ J' Js(t) dt}

and

(2.10) v = Y00 c}N{f JA(t) dt — 3} - % f JH(E) dt — 1}.
0 0
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Our theorem reads as follows.

THEOREM 2.1. If the Assumptions A and B are satisfied, then as N — o

(2.11) Supxer | FX(x) — Fy(x)| =2 (N 7).

We note that k3y and k4n (cf. (2.9) and (2.10)) are asymptotic expressions for the third
and fourth cumulants of T% where terms of order »(N~') have been neglected. Hence Fy
may be said to constitute a genuine Edgeworth expansion for F%. We should also point out
that Theorem 2.1 allows scores generating functions tending to infinity in the neighbour-
hood of 0 and 1 at the rate of {¢£(1 — ¢)}~'/**" for some ¢ > 0. It is clear that this includes
the normal quantile function. Whenever we shall suppose in the remainder of this paper
that (2.2) in Assumption B is satisfied, we shall tacitly and without loss of generality
assume that a € (3, 3 + %4) and define § = 3 + %14« — a. Hence, from now on we replace (2.2)
in Assumption B by

(2.12) |J” (@) =T {#(1 — ¢)} W+ for te (0,1),
where
(2.13) 0<6< ¥

To conclude this section we define U;, Us, ---, Uy to be independent and uniformly
distributed random variables on (0, 1) and U;.y < Uz.y < -+ < Un.n the corresponding
uniform order statistics.

3. Preliminary lemmas. The aim of this section is threefold. In the first place we
approximate (N — 1)o% (cf. (2.5)) by an integral. Secondly we study the behaviour of the
characteristic function of T% (cf. (2.6)) for large values of the argument. Finally we prove
two technical lemmas, the purpose of which will become clear in Section 4.

LEMMA 3.1. If J satisfies Assumption B, then

. 2
N J _ gl _ 1/7-26
3.1) Y= {J<N T 1) J} N+ ON ).

Proor. Take § as in (2.12) and (2.13) and let 2 be a function on (0, 1) with A’(¢) =
' {t(1 — t)}""™*% With this in mind we can proceed exactly as in Lemma 3.1 of Does
(1982a) to obtain (3.1). See also Lemma 3.1 in Does (1981). 0

We now consider the behaviour of the characteristic function of T% for large values of
the argument. Let

(3:2) Un(t) = BT,

LEmMMA 3.2. Suppose that the assumptions of Theorem 2.1 are satisfied. Then there
exist positive numbers B, B and y such that

(3.3) | Yn(t)| = BN FlsN
forlogN=|t|=yN*?and N=2,3, ---.

ProoF. The present lemma is a special case of Theorem 2.1 of Van Zwet (1982). Since
we are concerned with independent and identically distributed random variables X;, X,,
-+, Xy—which we may assume to be uniformly distributed without loss of generality—
Condition (2.7) of this theorem is clearly satisfied. Moreover, the assumptions of our
theorem guarantee that there exists a positive fraction of the scores which are at a distance
of at least N™%2 log N apart from each other, so Assumption (2.6) of Theorem 2.1 of Van
Zwet (1982) is also fulfilled. Finally, it follows from Section 3 in Van Zwet (1982) that the



610 RONALD J. M. M. DOES

existence of positive numbers ¢ and C such that

(3.4) YNick=ec, Ylici=CN,

N J \_A N i \_ 4\
(3.5) >, {J<N+1> J} =cN, YL, {J<N+l> J} <CN

suffices to prove the present lemma. Assumption A guarantees the validity of (3.4), and
(3.5) is a consequence of Assumption B (cf. also (3.1)). 0

Let [x] denote the largest integer not exceeding x. Define m = [N¥"] and I =
(1,2, ---,m, N—m+1,...,N—1, N}.

LeEMMA 3.3. If Assumptions A and B are satisfied, then

5

j _ —1-76/3
3. E J = O(N
(3.6) ’ Yoer b, (N . 1) ( ),
1 N—m i 2 —4/3—148/15
(3.7) {—N — 2m J=m+1 (N ¥ 1)} E(Z} =m+1 CD!) (9(N ).

PROOF. According to Assumption A Y ¢, =0, Y ¢?=1 and
Yol lt = maxig=n| o2 Y ¢ = O(N'TM?),

for £ > 2. It follows that for distinct i, j, A, g, k, I €1

Ech, = O(N™), Ech,cp, = O(N™), Echch = O(N™),

Echch = ON7), Ech,cpcp, = O(NT*), Ech,chcp, = O(N™),

Echchch, = ONT?), Ec},cp,cp,cp, = O(N™°),  Echchep,cp, = O(NY),
Ech,cp,cp,cp,cn, = O(N™°),  Ecp,cp cp,cp,cp,cp, = O(N°).

Furthermore, Holder’s inequality yields

. 5 . 645/6
J
EJEI . J<N + 1) a { <Z]EI o J<N + 1) } .

In view of (2.12) and (2.13) we havefor k. =1,2, --., 6

j k e m 1—k/14+ks
- + —k/14+kS —
S A - )

Direct computation of the right-hand side of (3.8) produces (3.6). Since ), ¢, = 0, Ec%/ =
N and Ecpep, = —{N(N —1)}7" for i # j, we have

E(T)50 )’ = E(Sjer en)? = (9<%>

Since [ J =0 and § € (0, 1/14) (cf. (2.3) and (2.13)) and </ satisfies (2.1), we have in view
of (A.2.11) in Albers, Bickel and Van Zwet (1976)

i j
10)

13/14+8
= @({T_} ) + O(N ~13/1-0) = (N ~13/30-79/15)
N

(3.8)

(39) ZJEI
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and the lemma follows. 0
To conclude this section we prove:

LEMMA 3.4. If Assumption A is satisfied, then for any y <1and N — o
(3.11) P(Yjer c%} >1-1v) = O(N2/%),

PrOOF. Since E(Y erch) = 2mN " and

2w\ (N —2m) (o, ]
E(E/EICDI N) ) (EI=1CJ N)’

the Bienaymé-Chebyshev inequality ensures that for every y <1

1-v 4 2 2m ? —22/15:
p 2—2" SWE E/EICD]“W = O(N ).

The lemma follows because mN ' — 0 as N — .0

s 2m
S er ch, — o

N

4. Proof of the theorem. To prove Theorem 2.1 we start with an application of
Esseen’s smoothing lemma (see e.g., Feller, 1971, page 538), which implies that for all
Y>> 0

YN3/2 _
lf | ¥ (2) }\N(t)ldt+ O(N~),

4.1) supeer | F % (x) — Fy(x)| ==
™ N2 Itl

where Y denotes the c~haracteristic function of T'% (cf. (3.2)) and Ay denotes the Fourier-
Stieltjes transform of Fy, i.e.

(4.2) An(t) = J: : e dFy(x) = e’2/2{1 - ’%N it* + "2“% ¢t - %V tﬁ}.
The derivative of Ay is uniformly bounded and also
EN;NT(” =E|T%| =1L

Because Y~ (0) = An(0) = 1, we have
(4.3) J Lov® — A O o, _ o3,

lel=N~? Il
Similarly, Lemma 3.2 and (4.2) ensure that
(4.4) f Pw® = MOy gy-om),

log N<|t|=yN"/? | t I

From (4.1), (4.3) and (4.4) it follows that, in order to prove Theorem 2.1, it suffices to show
that

dt = O(N™),

5) et
teA

[¢]
where A = {t:N*? < |t| <log N}.

To solve this problem we use a conditioning argument. We take & as in (2.12) and (2.13)
and define m = [N¥®]and I = {1,2,...,m, N—m+1,..., N — 1, N} as in Section 3.
Let = {D,:j € I} be the set of antiranks D, with indices in I andlet w={d;:jE€ I} bea
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possible realization of Q. Finally define

j
(4.6) Zn =Y er ¢, J(m>

Because (T~ — Zy) and Zy are conditionally independent given £, we have
4.7) Un(t) = EeTF = E[E(ei‘"ﬁ'(TN—ZN) IQ)E(e”";"Z”m)]

— E[E(eitu&'((TN—ZN)—E(TN—ZN|Q)) I n)eita;/'E(TN—ZNlQ)E(eita?v'ZN I Q)]

We note that conditionally on @ = w, Tw — Zy = Y257, cp, J(j/(N + 1)) is distributed as
a simple linear rank statistic for sample size N — 2m based on a set of regression constants
{c1, ¢z, - -+, en}\{cq :j € I} and having a scores generating function

_ fm+ (N-2m+ 1)t
(4.8) JIn(t) = J( N1 ), te (0, 1).
We write this simple linear rank statistic as
QU
(4'9) T«.:N = Eﬂ1 b,JN(m y

where M = N — 2m, {b, b2, -+, bu} = {c1, ¢, + - -, en}\ca:JET}, @, @, - - - Qu are the
ranks of Vi, V,, -.., Vi, which are independent and uniformly distributed random
variables on (0, 1).

Define forj=1,2, ..., M

- 1 M-1
10 V’_E<M+1 )muritur "
and let S~ be a three-term Taylor expansion of T, viz.
(411)  Sunv =YX, b3 In(V) + I (V) 9 __y +1J'x,(l7) @ _y 2 )
“ = ’ A\M+1 )2 \M+1

Our plan of attack of (4.7) is as follows. We expand E(exp{itox'Zy} | Q) and control the
remainder term by bounding E | Zy|®. To achieve this, we clearly cannot have m tending
to infinity too rapidly (cf. (3.6) in Lemma 3.2). On the other hand we approximate
(Ton — ET,n) by (Suv — ES,.n) which involves bounding " on the interval (m/(N + 1),
1—m/(N + 1)). By (2.2), J"” may tend to infinity near 0 and 1 at a rate depending on «
and hence we can’t allow m to tend to infinity too slowly. For « < 3 + 1/14 as in
Assumption B, both demands on m can be reconciled and the resulting choice for m is
[ N 8/ 15]‘

For approximating (T~ — ET,~) by (S.y — ES.n) we need:

LemMA 4.1, Under the Assumptions A and B we have, uniformly in w,

(4.12) oX(Tun — Sun) = 1+ Qe cd/)z} O (N-2149/15),

Proor. Let,forj=1,2,..., M,

Q
M+1

—{JIn (V) + JN (D) @ __ 1 +1J,’(,(f/) @& % ’
J J M+ 1 J 2 J. M+ 1 7 N
Because Y)L; b; <1 and

| 22 bybr | = (2% 8)° = B0 07 | < 1+ (Tyer ca)?,

J#k

Y;=JN<
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the Cauchy-Schwarz inequality yields
6*(Ton — Sun) = E(Tuy — Sun)? = E(XL, 5, Y))°
= M, BEY + YY bbEY Y, = 2 + (Ber cg))EYE

J*k

Here YY), .. denotes summation over all non-negative distinct integers J, k satisfying 1 < j,
k = M. Define r(t) = {¢(1 — t)}~". By Taylor’s theorem, (4.8), (2.12) and the convexity of
the function r(¢) we see that

EY'<L1E @ -7 6supo<<1 J% (0 Q. +1-mW 2
=36 \M+1 == M+1

re @ o\ e+1/7-2s( M+ @ 6+r1/7-25[ T + M+ 1)‘71
S%E<M+1_V1 r Sy AR - N+1 )
The independence of the vector of ranks (@, @, - - - , @) and the vector of order statistics
(Vist, Vort, + -+, Varar) and Lemma A.2.3 of Albers, Bickel and Van Zwet (1976) imply that

& ) 6+1/7—28 m+ @
E<M+1 ) M+1
6 6
— M-1 EQI_I—VI po+1/7-25 m+ @
M+1 M-1 N+1
1 Qm J—1 ’ 6+1/7-2% m+j
“13) =m E(”:M M—l)r N1

_ 1 n s J 6+1/7-25( T +7\\ _ —2-145/15
- @(M“ Zo=r <M+ 1>r ~Nr1))" W )

Furthermore, the conditional distribution of @; — 1 given V; is binomial with parameters
M — 1 and V, and by application of a recursion formula for the central moments of this
distribution (cf. Johnson and Kotz, 1969, page 52) we find

E({@ — E(@:] VY| Vi) = 0 ({(MVi(1 — V)Y + MVi(1 — V).

Hence,
Q ® errasf(m + (M + 1DV
E(M +1 V’) d N+1
B Vil = V) Vil = W)\ gurjrn(m + M+ 1)V

= (Q(N727148/15).
Combining (4.13) and (4.14) we find that EY] = ¢ (N*"*¥"%), This proves the lemma. [

It follows from Lemma 4.1, (2.5) and (3.8) that

15 | BV TBT) _ poiton'SuBSd) <\ ¢) 65" E | Tow — ETun — Sun + ESuv|
= O(| t| NP1+ (Fyer ca)} ),

uniformly in ¢ and w.
Our next task is to evaluate E exp{ito~'(S.v — ES.~)}. The technique for doing this
resembles that in Helmers (1980). Let x be the indicator function of (0, «) and define
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Sl = 2§M=1 bj{JN(ﬁ) - EJN(VJ)} = 1;1=1 bij(V,),

Se =m§§ b I (V)){(x(V, — Vo) = V}},

(4.16) : - _wva2 _ " (D _ _ 2
S = 2(M+1)2§§bw (V)X (V; = Vi) = V)2 = EJ% (V) {x(V, = Vi) = V)],
Si= SYY b % (V) (x(V, = Vi) = VIH{x(V; = Vi) = V).

2(M+ l)2 ey
It is easy to see that S,y — ES.v = Ys=1 S, and ES, =0 for » =1, ..., 4. First of all we
compute a number of moments.
LeEMMA 4.2. Under the Assumptions A and B we have, uniformly in w,
(4.17) E I S2 I3 = @(N713/10778/5), ES% = (O(N—22/15—148/15)’ ES4 (Q(N 7/6— 148/15)
Proor. By applying Hoélder’s inequality we obtain E | S, |* < (ES%)**. Let, for distinct

Jjand &, A(V,, V) = JN(V){x(V Vi) — V;}. Define h(x, x) = 0 for all 0 < x < 1. Direct
computation of ES3 shows that

1
ES% = 7S ()5 6% T8 T Tt ER(Vy, VR(Vy, V)R(VL, V)

-h(Vy, Vi)
+4 Y 5o (T T T TV ER(Vy, VIRV, V)RV, V)
Jk
-h(Ve, Vu)}

+ 3 ZZ bsz{zﬁl III:] 1[”:1 ZIL{=1 Eh(V], Vr)h(VI, Vs)h(VZy ‘/t)
(4.18) Ik

“h(Ve, V))
+ 6 X5 bfbubi(330 X35 X Xiie BR(Vy, VOR(V, VOR(V:, Vi)
Jk
~h(Vs, Vi)}
+ ZZZZ b,bkbzbn{zlrlil el M -1 ER(Vy, V)R(V,, V)R(Vs, V)
J#RAlER
-h(Vy, V)31

To bound the right-hand side of (4.18) we note that an expectation in (4.18) equals
zero if at least one of the indices (r, s, ¢, u) occurs only once. With the aid of the Cauchy-
Schwarz inequality, the non-zero expectations may be bounded by either EA*(V;, V;) or
{ERY(Vy, Vo)}Y'2ER?(Vy, V2) or {ER*(Vy, V2)}2 In view of (4.8) and Assumption B we can
prove that for 1 < & < 4,

(4.19) E| RH(V,, Va)| = O (N*/2-14/15-Ths/15)

According to Assumption A and the fact that {&), b;, ---, by} = {c1, €3 -+, en}\{ca:
J €I}, we have

| S0 b1 = | Siereq | = O(mN™"%) = O(N')

and similarly
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YM, b= O, [T b3 | = O(N"™),

J#k
(4.20) 22 bfbi =1+ @(N—7/15)’ I ZZZ bgbkbll = (Q(Nl/15),
e JrkAL
| IXFY b;brbibs | = O (N*").
JAkl%n

Combining these results we find that ES} = O(N *¥"%¥1) and hence E|S:|*
= O(N~'¥/1°"7%/5) In the same way one can obtain the other two assertions in (4.17). 0

Define, for real t and N = 2,

(4.21) on(t) = Ee'ton' (Sunv—ESun)
and
(4.22) pin(t) = Ee""“s'{l +— (S + 8+ Si) + (2”)2 SQ}.

The next lemma shows that py can be approximated by pin.

LEMMA 4.3. If the Assumptions A and B are satisfied, then
(4.23) lon(t) — pin(t)| = O (2N~ 1/15-14/15)

uniformly for |t| < log N and w.

Proor. Repeated use of Lemma XV 4.1 of Feller (1971) yields
|on(t) — pin(t)| = O(t*6 N E|S: || Ss + Si| + t°0o N E (S5 + S3) + | t|°0°E| Sz |?).

From (2.5) and (3.5) it follows that for all sufficiently large N there exist positive numbers
€1 < & such that &; < 0% < &. Lemma 4.2 produces the desired result. 0

Clearly our next task is to evaluate the right-hand side of (4.22) and we start with the
leading term. According to (4.16) S; = Y%, b,Jn(V;). We have EJy(V;) = 0 and for all
sufficiently large N, there exist positive numbers y; < y» such that y; < EJ%(V}) < v
(cf. (2.3)). In the sequel we shall assume

(4.24) Yerci<l-—y
for some y € (0, 1), to guarantee that
(4.25) 11 = 0%S1) = 72.

Finally we note that Assumptions A and B imply that ¥, b= O(N"') and that the

random variable JN(VI) has a finite 14th absolute moment. It follows from the classical

theory of Edgeworth expansions for sums of independent and non-identically distributed
random variables (see, e.g., Lemma VI 4.11 in Petrov, 1975) that

E exp{itSi/o(S1)} — e "% 1 —LZM_ bYEJTX(Vh) +t—4

60°(Sy) <71 Y7 246%(S))

t6

4.26)  -YM b H{ETN(V) - ETHVT) - T2

(S B ETX (V1)) }

=o(N7'(t* + [ t])e™?)

uniformly for |¢| = log N and w for which (4.24) is satisfied. Replacing ¢ by ty =
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to(S1)/on and expanding exp{—'t%) we find that uniformly for |¢| < log N and w for
which (4.24) is satisfied

o N it ~ A t* ~ A ~
Eemms. _ e—t /2{1 — —(:03 2,1111 bJSEJ?V(Vl) +““—2404 21111 bf {EJ?V(VI) - 3[EJ%I(V1)]2}
N N

¢ 5 ¢
= Tagr (2 IETR (V1)) + 5 (oh — 0*(S1))

4

t
+ m(o?v - 6%(Sy))? -

5
oy (04— 0" 50) 52, BTV ||
(4.27)

=o(N7It* + | t]))e™?) + 0(| ok — 02(S) || t| Pi(t)e ")
+ O(N7'| ok — 0%(S1) | t]| Pa(t)e™""),

where 0 < § < % and P; and P; are fixed polynomials.
We now turn to the remaining terms on the right in (4.22). Let

(4.28) v (t) = Ee"In®)

denote the characteristic function of Jx(V; ), so that
-1 b t
(429) EettoNS| = HJ l,uN( )

From the Assumptions A and B it follows by Taylor expansion that for distinct integers /i,
wl,wherel=n=<4

byt
(4.30) f_luN< ) =1-— {2 _1 bIYETH (V1) + O(N~2|¢)?),
ON 2

uniformly for | ¢| < log N and w for which (4.24) is satisfied.
In the last lemma we summarize the results we need.

LEMMA 4.4. If the Assumptions A and B are satisfied then, uniformly for | t|<log N
and w for which (4.24) is satisfied

- (BJ “‘71)}2]} = O(N"'|t| P(t)e™"),
(4.32) I E(e""SS;) — Ee“"”‘S'{% ES, Ss} l = O(N7|¢t| P(t)e ™),
(4.33) |E(e""Sy)| = @(N““ [t] P(t)e™),
(4.34) ’ E(e""583) — Ee““"Sl{Es2 +—ES: S} + 4(;; > [ET}(V1)
- {EJN(?I)}Z]} = O(N7"*|t| P(t)e™™"),

where 0 < 0 < %, e > 0 and P is a fixed polynomial.

Proor. The proofs of the statements (4.30) through (4.34) are highly technical and
laborious. As they all proceed in essentially the same manner, we shall only give the
basic ideas of the proof of the first statement; the interested reader is referred to Does
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(1981) for more details. Applying Lemma XV 4.1 of Feller (1971) to exp{iton'(b,Jn(V)) +
brdn(V)}, it follows after adding some zero expectations and some computations that

E exp{itox'(b,dn (V) + bpdn (V)Y In(V)(x(V, = Vi) — V)

(’” 200 T30 () T (V1)

= E[IN () (x(V;, — Vi) — V,)][ S+ (lt) L

(BT + B TR (V).
From (4.30) it follows that for distinct integers l1=j,k=Mand|t|<logN

b,
Hf"!k ,U,N( t) Ee LmNS'{l +——— (b2 + bk)EJN(?l + (9(1\7_3/2 I t 13 }
ON

uniformly for | ¢| < log N and w for which (4.24) is satisfied. Hence, combining these results
with Assumption A, we find after some algebra

(lt)2

E( Lta:v'S;S ) = [Ee’mNS'][ ES: S, + E82 S.

(it)® 30 bk = o o
+—= Y E[JN(V)(X(V; — Vi) — Vil 3777 IV (VD In (V)

6 ON jsk
3b2b;‘Z N PN b;b}
(4.35) M 1 IN(V)JIN (Vi) +M

1) bb b2 b ~ A A ~ A
+(‘—)yzz_%++’”{EJN(vk)J;v(w(x(w V- V,)}{EJ,%(VI)}]

- J?V(Vk)]

+ ON"2%e B {| Tn (V)| + T (V)| Ja (V)] + | JM(V]D),

uniformly for | ¢| < log N and w for which (4.24) is satisfied. From Assumption B and (4.8)
it follows that (see also (4.19))

E|T%(V)In (V) n (V)] = 0 (N7,
E|In(V)JI (V)| = O (NV*197);
E|T4(V)In(V)| = O(NVEP7); EJX (V) = 0(1);
EWJT&(V) + | TR (V)| + | In(V) | I (Ve) | = 0 (NVOT0/15),

(4.36)

Finally we obtain by partial integration
ETn(V) TR (V) Jn (V) (x (Vi = V2) = WR)

(4.37) M1
) <M

Combining (4.35) through (4.37) and (4.20) we arrive at (4.31). 0

M+1\' ., -
) EJ4(Vy + 1<M—:) (BT (V).

From Lemma 4.4 it follows that uniformly for |¢| < log N and w for which (4.24) is
satisfied (cf. (4.22)),

(l )2 (lt

piv(t) = {Ee”"”'s'}{ 7 [2ES:S: + 2ES:S; + ESH] + o [Es“’s2 + ES,S3]
(tt)

a 8Nok

[ET&(V) - {Ei%v(fa)}zl} +ON | ¢] Pe™),

where e > 0,0 < § < % and P is a fixed polynomial. Using (4.25), Lemmas 4.1 and 4.2, as
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well as the fact that ES;S; = 0, we obtain

2ES,S; + 2ES,S; + ES3 = 6X(Sun) — 0X(S1) + O(N~V7/15-14/15)
(4.38)
= o*(T.n) — % (S) + (1 + ($)e: cdj)Z)l/Zw(N—l—m/w)’

uniformly for w satisfying (4.24). Writing A(V, V2) = J i ( Vl){x(Vl — V,) — V1} as before,
we find by repeated use of Assumptions A and B (cf. (4.19), (4.20) and (4.36)) that,
uniformly for w satisfying (4.24),

ES:S, + ES,S3 _AT\‘]’izz Biby + O(N™'7),

Tk
where ¢ > 0 and
4.39) A = EJX(V)h(Va, Vi) + 2ETy (V) In(V)R(Vi, Vo)
+ 2B (VOA(V, Va)h(Va, V5).
It follows that uniformly for | ¢| < log N and w satisfying (4.24),

2
pm(t)={Ee"“’“'S'}{ (”) [Z(TMN)—aZ(sn]

(lt) Ain 2 (i) _ o s
(4.40) 2% N (E‘é% b;bx 8No& N AA [EJN(Vl) {EJn(V1)} ]}

+ ONT | t| PO)e (1 + (e €)DD),

where ¢ > 0,0 < § < % and P is a fixed polynomial.
Let us turn back to our starting point (4.7). Choose y € (0, 1) and define the event B
= {Y,erch <1 -y} (cf. (4.24)). According to Lemma 3.4, P(B°) = O (N /%), so

() = Ee'™
— E[X (B )E (eita;" {Tn—Zn—E(Tn—2N|Q)) I Q)eim;VIE(TN_ZNIQ)E(eit”;l‘ZN I ﬂ)] + 0 (N_22/15).

From Lemma 3.3 it follows that E|Zy|> = O(N""? and E(E(Txn — Zn|Q))*
= (O (N~*/314/1%) Hence by Taylor expansion we obtain

II/N(t) — EeitTﬁ — E[X(B)E(eito;,‘(TN—ZN—E(TN—ZNlﬂ)) l Q)

(lt)2

{ {E(ZNISZ +E(TN—ZN|Q}+ {E(Z | )

(4.41) +2E(Zy | QE(Tx — Zy | )} +—(f-)—E(ZN 19) +3 (”) T B | 9)”

+ (Q(N—22/15) + @([tz + I t I5]N—1—78/3)’
uniformly for | ¢| < log N. In view of (4.15), (4.21) and (4.23) we have, uniformly for | ¢| =<
log N and w satisfying (4.24)

E(eito&'(TN—ZN—E(TN—ZN|Q=A:)) I Q= 0.)) — Eeito&'(TuN—E(TuN))

=pn(®) + O(| t| N1 + (Fer ca)?)'?)
(4.42)
=pw(®) + ONT' | t| PO + Tjer ca))?),

where ¢ > 0 and P is a fixed polynomial.
Before substituting this in (4.41) we shall provide uniform bounds forvthe quantities o%
— oXT.n) and 6*(T.n) — 6%*(S)). Theorem II 3.1.c of Hajek and Sidak (1967) and
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Assumption A imply that

) 1 ) . B 2
az(TwN) = Ml_ 1 <1 - Z,el Cé, - M (2,51 Cdj)z> Zj‘il (JN<M{G- 1) - JN) s
where (cf. (4.8))

3 J J
JIn= J == Y,m .
N 2’ ' N(M+ 1) D <N+ 1)
It follows from (3.10) that | Jy| = O (N~'¥*"71%) and from Assumption A that | Y, es ca)
= O (NY*), hence

(4.43) oA(T.n) =

(1= Fercl) B3t J&(-M{L 1) + o)

~13/14-3)

uniformly in w. Furthermore we know from (3.10) that |J| = 0N , So in view of

(2.5) and Assumption B we have
|o% — 6*(Tun) |

_.1_ N 2 J _ 1 _ 2 M 2 J
N—121_1J<N+1> M—l(l ZJEch,)Zj=1JN M1

+ (Q(N713/15—146/15)

1 J 1 2m J
e () T (Be - ) 2 7(351)|

+ @(N—13/15—146/15) = (Q(N_Z/5_146/15)

(4.44)

uniformly in w.
To obtain the second bound, we argue as in Lemma 3.1 with / and 4 (¢) replaced by Jn
and An(t) = h((N + 1) (m + (M + 1)t)) to conclude that

21 I (M‘:- T ) = EJ?V(VI) + ON~ 14/15—145/15)‘

One easily verifies that | EJ% (V1) — EJ% (V1) | = O(N7'¥15=1%/1%) and together with (4.43)
and (4.16) this yields

(4.45) [6H(Toy) — 0%(Sy) | = O(N™1¥/15-145/15)

uniformly in w.
A few more facts are needed to complete our calculation of Yy (¢). First we note that for
a=(m+ 1)(N+1)"'= 0(N"""%), Assumption B and (4.8) imply that

J {IJ(t) Ik + IJ(I _ t) lk} dt = (O(N—7/15+k/30—7k8/15),
0

fork=1, --.,4 and hence
IEJN(‘?I)I - @(N—13/30—78/15),

ET(0) =122

(4.46) EJ(Vy) = N+ 1 J' Jo(t) dt — 3 (Z+ 1) {J JA(¢) dt}{J J(¢t) dt}

+ (0 (N—13/10—78/3)

J J2(t) dt + O(N71/15-18/15)

o on N+1 (7
EJN(Vy) = Sy J’ JHE) dt + O(N-1¥/0-/15),
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Furthermore, Lemma 3.3 yields
(447)  E(o% — o*(Tn — Zn|Q))
= E(E(Z%|Q)) + 2E(E (Zn|Q)E (Ty — Zn|R)) + O(N~437149/15)

Substituting the random versions of (4.42), (4.40) and (4.27) in (4.41) and combining (4.46)
and (4.47) with (4.44) and (4.45), it follows after some computations and repeated use of
Assumptions A and B that, uniformly for N™*? < | ¢| < log N,
_ ep it’ ¢ o
(4.48) IPN(t) =e 1 —mK3N+mKAN_72—O_?V—K3N
+o(N7' | t] P(t)e™™) + O(N7I7* | t] P(t)),

where ¢ > 0, 0 < 8§ < %, P is a fixed polynomial and ksy and k4 are given by (2.9) and
(2.10).
To conclude the proof of Theorem 2.1 we note that (3.1) implies

ok =1+ ON2),

Substituting this in (4.48) we obtain (4.5) with Ay as in (4.2) and the proof of the theorem
is complete. 0

5. Two-sample linear rank statistics. In this section we compare our results with
the expansions for the two-sample linear rank statistics in Bickel and Van Zwet (1978). Let
1=n=N,\A=nN"and assume that e = A = 1 — ¢ for some fixed ¢ € (0, %) and all N.
Define ¢, = (1 — A)/{NA(1 = AN)}"%j=1,2,---,nand ¢, = =N/ {NAQ1 - AN} % j=n+1,
.-+, N. It is easy to check that in this case the ¢/'s satisfy Assumption A.

Taking a scores generating function J which satisfies Assumption B, we define the two-
sample linear rank statistic as in (1.1). For the distribution function F3 of the standardized
version of this statistic, Theorem 2.1 provides an Edgeworth expansion with remainder
o(N7Y):

if
Frl@) = 0(x) — 6(x) {—6-{—]\,;(1;_2?\)7 < fo e dt)(x2 —1)
(5.1) +Wll—}\) [(1 — 6\ + 6)?) J: JHt) dt — 3(1 — 2A)2j| (x® — 3x)
7—2(1%—?(12—)\_%([ JA(¢t) dt)z(x"’ — 102 + 15x)} ,
then supser| Fi(x) — F'N(x)’| =o(NY), as N— o,

Bickel and Van Zwet (1978) consider the two-sample linear rank statistic 7% for an
arbitrary vector of scores a = (a1, az, -- -, an), i.e.

(5.2) Ty=3r 1V,
where
1,1=D,=n,
’= {O, otherwise,

forj=1,2, --., N and where D;, D, ---, Dy denote the antiranks. In their paper they
establish asymptotic expansions for the distribution function of 7'y under the null-hypoth-
esis as well as under contiguous alternatives. A related paper is that of Robinson (1978)
which deals only with the null-hypothesis.
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In order to compare the results in Bickel and Van Zwet (1978) with Theorem 2.1 in the
present paper, we introduce the following assumption on the scores a;.

AssuMPTION C. Let a, = J(j/(N + 1)) forj =1, 2, ..., N. This scores generating
function J is twice continuously differentiable on (0, 1) and satisfies (2.1) and (2.3); there
exist positive numbers K > 0 and 0 < 8 < 1/6 such that its first derivative J’ satisfies

(5.3) |J(t)] < K{t(1 — )} /" for te (0,1).

LEMMA 5.1. Ife <A =<1 — ¢ for some fixed ¢ € (0, %) and Assumption C are satisfied,
then as N — o
Tv—ETn ~
4 rep| P\ ————=< —F = -1
(5.4) Supzer| ( o (T%) <x) n(x) | =0o(NT),
where Fy is defined in (5.1).

Proor. The present lemma is almost an immediate consequence of Corollary 2.1 of
Bickel and Van Zwet (1978). Assumption C guarantees that there exists a positive fraction
of the scores which are at a distance of at least N™*2 log N apart from each other.
Furthermore, in view of Lemma 3.1 and Appendix 2 of Albers, Bickel and Van Zwet (1976),
Assumption C yields that

Yliag = 0N, $NXiaj=N+ ONV),
1 1
Yiial= NJ J3(t) dt + O(NV2%), TN af = NJ’ JHE) dt + O (N?*~*5),
0 0

Substituting this in the expansion R(x, \) (cf. (2.56) in Bickel and Van Zwet, 1978) and
standardizing T% with the exact variance ¢%(T%), the result follows. 0

For the two-sample case, Lemma 5.1 is clearly a better result than Theorem 2.1, as was
to be expected. Roughly speaking, Assumption B in Theorem 2.1 requires a bit more
smoothness than Assumption C in Lemma 5.1; it also requires [ |J|""* < « instead of
[ |J|%** < . For practical purposes, however, Assumption B is already quite satisfactory.
It is gratifying to find that the expansions in the two results coincide. We note that some
numerical examples are contained in Bickel and Van Zwet (1978).

6. Finite sample computations. In this section we investigate the performance of
the Edgeworth expansions as approximations for the finite sample distributions of one
special statistic, namely Spearman’s rank correlation coefficient py. In particular we
compare our expansions with the usual normal approximation. As noted in Section 1 we
know that, under the null-hypothesis of independence, Spearman’s rank correlation
coefficient py is distributed as

12 . 3(N+1)

.1 H= N .
6.1) L 7 Y YD AL Ry v e
From Theorem 2.1 it follows that, as N — o
(6.2) F¥(x) = P(Th < x) = Fn(x) + o(N7"),
where

~ 9N?Z — 21 1
6.3 F = 0 T2 ) (x® = 3x).
(6.3) n(x) = ®(x) + ¢(x) (100N(N2 — + 10N)(x 3x)

We note that the third cumulant is zero because the scores generating function is
symmetric.
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In Olds (1938) the exact distribution of 7'¥ under the null-hypothesis was given for N
= 2 through 7. The same results, together with the exact distribution for N = 8, were
obtained by Kendall, Kendall and Babington Smith (1939). Further extensions of the exact
distribution of Spearman’s rank correlation coefficient under the hypothesis of indepen-
dence were given in David, Kendall and Stuart (1951). They established the exact
distribution for N = 9 and 10 and showed that the formal Edgeworth expansions including
the N~ term would be quite satisfactory in practice for N = 10.

In Table 6.1 a comparison of the Edgeworth expansion Fy and the normal approximation
® with the exact distribution F'5 is made for sample sizes N = 5, 10 and 20 and various
values of the argument. We note that Fy is truncated at 1. Furthermore, we note that for

TABLE 6.1
Comparison of the exact distribution function with the Edgeworth expansion and normal
approximation for N = 5, 10, and 20

X Fif F 5 ﬂo F. 10 F;;o F 20 [
0.0 0.5250 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
0.2 0.6083 0.5707 0.5810 0.5749 0.5759 0.5771 0.5793
0.4 0.6583 0.6399 0.6460 0.6475 0.6506 0.6515 0.6554
0.6 0.7417 0.7062 0.7200 0.7158 0.7190 0.7207 0.7257
0.8 0.7750 0.7679 0.7760 0.7778 0.7821 0.7830 0.7881
1.0 0.8250 0.8234 0.8350 0.8322 0.8363 0.8368 0.8413
1.2 0.8833 0.8715 0.8760 0.8781 0.8821 0.8815 0.8849
1.4 0.9333 0.9112 0.9169 0.9151 0.9174 0.9172 0.9192
1.6 0.9583 0.9423 0.9431 0.9437 0.9450 0.9445 0.9452
1.8 0.9917 0.9653 0.9666 0.9647 0.9647 0.9644 0.9641
2.0 1.0000 0.9812 0.9805 0.9793 0.9791 0.9783 0.9772
2.2 1.0000 0.9914 0.9913 0.9888 0.9879 0.9875 0.9861
24 1.0000 0.9973 0.9964 0.9946 0.9935 0.9932 0.9918
2.6 1.0000 1.0000 0.9992 0.9978 0.9966 0.9966 0.9953
2.8 1.0000 1.0000 0.9999 0.9995 0.9984 0.9985 0.9974
3.0 1.0000 1.0000 1.0000 1.0000 0.9994 0.9994 0.9987

TABLE 6.2

Comparison of the exact distribution function with the Edgeworth expansion and normal
distribution after a continuity correction, for N = 5 and 10

X F. : F. 5 (] FTo ﬁ 10 L
0.0 0.5250 0.5354 0.5398 0.5000 0.5000 0.5000
0.2 0.6083 0.6056 0.6179 0.5810 0.5816 0.5864
0.4 0.6583 0.6736 0.6915 0.6460 0.6475 0.6554
0.6 0.7417 0.7377 0.7580 0.7200 0.7217 0.7318
0.8 0.7750 0.7965 0.8159 0.7760 0.7778 0.7881
1.0 0.8250 0.8485 0.8643 0.8350 0.8367 0.8457
1.2 0.8833 0.8924 0.9032 0.8760 0.8781 0.8849
14 0.9333 0.9278 0.9332 0.9169 0.9181 0.9219
1.6 0.9583 0.9548 0.9554 0.9431 0.9437 0.9452
1.8 0.9917 0.9741 0.9713 0.9666 0.9663 0.9655
2.0 1.0000 0.9870 0.9821 0.9805 0.9793 0.9772
2.2 1.0000 0.9948 0.9893 0.9913 0.9895 0.9867
24 1.0000 0.9991 0.9938 0.9964 0.9946 0.9918
2.6 1.0000 1.0000 0.9965 0.9992 0.9980 0.9956
2.8 1.0000 1.0000 0.9981 0.9999 0.9995 0.9974

3.0 1.0000 1.0000 0.9995 1.0000 1.0000 0.9987
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N = 20 we have employed a Monte-Carlo simulation based on 90,000 samples to estimate
the exact distribution function F .

Inspection of Table 6.1 shows that the agreement between the estimated exact distri-
bution function F% and the expansion Fy is almost perfect. It also shows that the
expansion performs much better than the normal approximation. For N = 5 and 10 the
agreement between Ff and Fy is reasonable but not nearly as good as for N = 20. This is
due to the fact that the probabilities of single values are still rather large for such small
values of N; one can’t expect to approximate a distribution function with large jumps by
a continuous one in a satisfactory manner. To overcome this problem, we have employed
a continuity correction. In Table 6.2 we summarize the results with this continuity
correction for N = 5 and 10. Inspection of this table shows that the approximations Fy are
much improved; for sample size N = 10 the expansion Fj, performs quite well. It also
shows that the expansions provide much better approximations than the usual normal
approximation.
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