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INVERTING AN EDGEWORTH EXPANSION

By PETER HALL

Australian National University

We provide a method for inverting a general Edgeworth expansion, so as
to correct a statistic for the effects of non-normality. This technique is applied
to the special case of the “Studentized” mean. Explicit formulae are given for
the correction terms.

1. Introduction. The general theory of Edgeworth and Edgeworth-type expansions
has been described by many authors; see for example Wallace (1958), Chambers (1967),
Chibishov (1972, 1973), Bhattacharya and Rao (1976), Bhattacharya and Ghosh (1978),
Barndorff-Nielsen and Cox (1979), Ibragimov and Khas'minskii (1979) and Pedersen
(1979). The work of Bhattacharya and Ghosh (1978) provided a rigorous and very general
development of the somewhat heuristic results of earlier authors. Suppose the statistic §
= §, admits the Edgeworth expansion

(1.1) P{n'?@, — ) < x} = ®(x) + n2#0(x)d(x) + n 7 (x)d(x) + - -,

where the functions £, {12, - - - depend on characteristics of the underlying distribution of
the sample values, but do not depend on n. Here ® and ¢ denote the standard normal
distribution and density functions, respectively. We have assumed that n"2(§ — 6) has
unit asymptotic variance, but we shall show in the next section that this restriction may be
removed. The expansion (1.1) leads to the “corrected” expansion

(1.2) P{n"*(f, — 0) = x — n7%,(x)) = ®(x) + n b (x)p(x) + -+ -,

at least in some local sense. (Condition (1.2) may not be valid uniformly in all x, even if
(1.1) is valid uniformly in x.) Suppose we can estimate the function &, and that its estimate
11 behaves “reasonably,” in that it admits an Edgeworth expansion:

Pln'2(£(x) — £u(x)) =yl =0{y/o1(x)} + n Ppu(x, y) + --- .
Then it is at least plausible that (1.2) implies
(13) P{n'2(@, — 0) = x — n""%,,(x)} = O(x) + n7 ' (x)¢ (x) + n” 5 (x) (x) + - -,

where (in general) the function £ in (1.3) is different from £ appearing in (1.2). Of course,
(1.3) leads to another “corrected” expansion, an analogue of (1.2):

P(n'*(6, = 0) = x — n7%1(x) — n7%n(0)) = B(®) + n"E0(x) + -+ .

(This expansion requires smoothness assumptions about the function £;.) The function
£:» may be replaced by an estimate, and this procedure iterated ad infinitum, to produce
an approximation of the form

(14)  Pn"?@,-6)<x— nTV25(x) -o o — nT% V25, (1)) = ®(x) + O ().

This result might be interpreted as an “inversion” of the Edgeworth expansion (1.1).

In practice the number of correction terms which can be used depends on at least two
factors. First of all, if too many corrections are incorporated and the sample size, n, is not
sufficiently large, then overcorrection may occur, resulting in a worse normal approxima-
tion than would have been obtained without the correction. See Section 3 for an example
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570 PETER HALL

of this phenomenon. Secondly, there are considerable algebraic difficulties in deriving an
explicit form for the function 1, for large j, at least in a general context. For these reasons
we shall not proceed beyond 2 = 3 in deriving the formula (1.4). In the case of the
“Studentized” mean, taking £ = 3 permits correction for the primary and secondary effects
of skewness, and the primary effect of kurtosis.

Let us briefly discuss the way in which the formula (1.4) might be used. Suppose we
wish to construct a one-sided confidence interval for 6, of the form # = (X, ), which
covers § with (unconditional) probability very nearly equal to 0.95. If xo = ®7%(0.95) =
1.64485 - .. is the 95% point of the standard normal distribution, and if we take A = A; =
6, — n™"*xo, then £ will cover 8 with probability equal to 0.95 + O (rn /). But if we define
instead

A=Rs=0,— n7"%(x0 — n7%1(x0) — n " 'Ha(%0)},

the coverage probability will equal 0.95 + O (n~*?), and so for large samples will be closer
to 0.95. In many practical situations the sign of #:(xo) will equal the sign of the skewness
of the underlying distribution.

In the case of a two-sided interval, a simple correction of the type leading to (1.3) yields
a coverage probability with an error of only O(n~?). Better approximations may be
obtained by iteration.

In studying the asymptotic theory of inverse expansions in Section 2 we are guided by
a detailed and rigorous account given by Bhattacharya and Ghosh (1978) of the theory of
direct expansions. We examine the case of the “Studentized” mean in greatest detail, and
prove other results which demonstrate the broad scope of the method of inverse expansion.
In Section 3 we report on Monte Carlo trials of our procedure.

2. Asymptotic theory. LetY, Y, Y, --- be independent and identically distributed
m-vectors, and fi, - - - , fx be real-valued Borel-measurable functions on R™. Define

Z=([(Y), -+, (Y), Z=(AY), -+, (Y)), 1=<i=n,

Z=n"'Y{Z andp=E(Z) = E(Z). Let H be a real-valued Borel-measurable function on
R*. Bhattacharya and Ghosh (1978) derived an Edgeworth expansion for the quantity
n'2{H(Z) — H(u)}. We shall begin by following their development.

Define au,...., = E[[]t=1 {£.(Y) — ©“}] for any vector (u, -+-, u,) C {1, ---, k}?,
provided the expectation exists. Note that a, = 0. Set
by, = (8710« o 9 “) H ()| ey

and let 6% = 4,400, @1 = Y2 4wotw and as = £bbttunw + 3 Liloluxttuany. (Here and below we use
the summation notation, so that 44aq,, stands for =, 2, 440, etc.) The first term in an
Edgeworth expansion may be described as follows.

LemMa 1. If H has three continuous derivatives in a neighbourhood of u, if E | f,(Y)|?
< o for each u and if the characteristic function Y of Z satisfies

lim supyg. | ¥(¢)] <1,

then
2.1) P[n'*{H(Z) — H(n)} < ox] = P(x) + n %11 (x)¢ (x) + o(n™?)
uniformly in x as n — o, where £&1(x) = —{a:/0 + %(as/o°)(x% — 1)}.

In many practical situations a statistic can be Studentized by dividing by an estimate
of o2 For example, suppose the values of the £’s are known, and define

&uu = n_l 7=1 ﬁl(Yl)ﬂ/(Yl) - {n_l :l=1 fu(Yz)} {n_l :’lzl fu( Yz)}
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Extend the vector Z by adjoining those products f,(Y)f,(Y) for pairs (i, v) with 44 # 0,
giving rise to a new vector Z*. If Z} and Z* are obtained from Z, and Z by the same
method of extension, we may write &., = a.,(Z*), where the function a., does not depend
on n. The Studentized statistic {H(Z) — H(n)}/ (Y Y. 44u.,)""? may therefore be written as
K(Z*), where K does not depend on n. A version of Lemma 1 in which 6% = 1 and Z is
replaced by Z* can be stated for this statistic.

If 62 = 1 then (2.1) implies that

(2.2) Pln*(H(Z) — H(w)} = x — n”%u(x)] = ®(x) + o(n™V?)

uniformly in x on compact intervals. The result (2.2) cannot be assumed to hold uniformly
in all x, for if a3 < O then the left hand side tends to zero as x — +oo, while the right hand
side tends to 1 + o(n~"?).

The parameters a; and a3 can usually be estimated very easily, the precise form of the
estimates depending on the nature of the problem under consideration. Our next result
shows that a; and a3 in (2.2) can often be replaced by these estimates.

THEOREM 1. If the conditions of Lemma 1 hold, if 6> = 1 and
2.3) P(ld1—ai|>€) + P(| s — az | >¢) = o(n™"?)
for each & > 0, then with £,(x) = —{G; + Y%ds(x* — 1)} we have
(2.4) Pn'*H(Z) - Hu) =x — n"ﬂéu(x)] =®(x) + o(n™"?

uniformly in x on compact intervals.

Further refinement of the term o(n~"?) on the right hand side of (2.4) depends
intimately on the form of the estimates d@; and d.. Let us consider initially the important
special case of the Studentized mean. The problem of deriving asymptotic expansions or
approximations for Student’s ¢-statistic is quite old, dating back to the work of Pearson
and Adyanthaya (1929) and Bartlett (1935). See also Geary (1936, 1947) and Gayen (1949).
Some of this work has been reviewed by Bowman, Beauchamp and Shenton (1977) and
Cressie (1980).

Suppose Z = (Y, Y?) for a scalar random variable Y, and define

H(Z) = H(Z“), 2(2)) = (Z(l) _ m)/{zm _ (2(1))2}1/2,

where m = E(Y). Then u = (m, s> + m?) where s?> = var(Y), and 0% = ¢a;; = 1. It is
common to normalize using the unbiased estimate of s?, rather than the biased estimate
implicit in the use of H(z). Thus, H(z) should really be replaced by (1 — 1/n)2H(z).
However, this change does not alter the Edgeworth expansion up to terms of o(n~"?), and
we may deduce directly from (2.2) that with § = {(n — 1)7' ¥ (Y: — Y)*}'/% we have,
under appropriate moment and smoothness conditions,

P{n'*(Y —m)/§ = x — n™2%A3(1 + 2x2)} = ®(x) + o(n™V?)

uniformly on compact intervals, where A\; = E(Y — m)®/s®. A convenient estimate of A3 is
As=n"' Y (Y, — Y)*/8% If E| Y|”? < » then it may be proved using results of Baum
and Katz (1965) that for all ¢ > 0,

P(n'SIY—EY*|>e) + P([n"' S Y} — EY?| > )
+P(|n 'Yt Y, —m|>¢) =o0(n""?

as n — o, and consequently (2.3) holds. We may now deduce from Theorem 1 that if
E|Y|° < » and lim supy+,—= | E exp(itY + it,Y?)| < 1,

P(n'*(Y —m)/§ = x — n”"*%Aa(1 + 2x%)} = ®(x) + o(n™"?).
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Our next result refines the remainder in this expression. Let
£1(x) = %As(1 + 2x?)
and
En(x) = x{%(x? + 2) — Ay Vi2(3x% + 5) + A% Vaa(16x% + 23)},

where Ay = E (¥ - m);‘/ s*, and let éll anq 532 denote the same functions but with A3 and
A4 replaced by Az and Ay = n™' 37 (Y; — Y)*/§* respectively.

THEOREM 2. If E(Y'") < o and lim Supj+jj+4—= | E exp(irY + isY? + itY®)| < 1 then

P(n"(Y —m)/§ = x — n""n(x)} = ®(x) + n"'¢n(®)$(x) + o(n™")

and
(2.5) P(nVAY —m)/é < x — n" %1 (x) — n (%)) = @(2) + o(n™)

uniformly on compact intervals.

It does not seem possible to state a single result which covers the majority of inverse
expansions like (2.5). The form of the estimates @, and d; in (2.4) will vary, depending on
the amount of information available about the quantities 4, 4., a., and a..,. This leads to
a wide range of possible forms for (2.5). Our aim in the next result is to provide some idea
of the broad scope of the method of Edgeworth inversion. The conditions imposed in this
theorem, and the proof we shall give in Section 4, are typical of those in a great many
similar situations.

Let us assume for the sake of definiteness that the derivatives 4, and 4, are known, but
the quantities a,, and au. are unknown. Let & = k(k + 1)/2, and {(u11, V1), ---,
(t1x,, U1x,)} denote the set of &, unordered pairs (u, v) with 1 < u, v < k. Suppose there are
ke unordered triples (u, v, w) such that 444, # 0, and let these be {(u21, Va1, wa1), -+,
(sr,y Uon,, wor)}. We extend the k-vector Z to a vector Z* = (Z Uy of length ks = k& + &, +
ks, whose elements are ZY) = f(Y) for 1 =j <k,

ZUHJ) = {fuu(Y) - l"(ul/)}{fvu(y) - :U'(UU)}, 1 S] = kl’
and
YA . {ﬁ‘z;(Y) _ u(uzﬂ} {ﬂg,(Y) _ #(vzj)} {fwz;(Y) - #(u»z/)}, 1 5]5 ko.

This type of extension will be denoted by the symbol *. Thus, if Z; = (Z ), 1=<=i<n,isa
sequence of k-vectors, then (Z*)) = n™' Y7 Z{" and (Z*)**) = n7' T2, (ZW) — p@)
AZWD — p ) for 1 =/ < hu.
An estimator of au,...,. is given by
au,,---,up= n_l =1 I/)=1 {fMJ(Yl) - Z_(uj)},

and we may define @, and ds by replacing a., and auuw by &y and .., respectively, in the
formulae for a; and as. The statistic H(Z) and the correction terms 4, and d. are all
functions of Z*.

Define the quantities

@2 = 2(X) = YolpglrsOprtgs + bplarsOipgatrs + (x% — 1)
- (x* - 1) (%o tlalybepars + totarpgr + (£pqpg) (Gplaty par) },
as = édléfsapqm - 3 + 124)4{&‘&%“1)3“(1}‘[ + 1247fq{;s£uapraqtasu + 44)£q4£stuapsaqtaru-

These may be estimated by replacing the «’s by their estimates.
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THEOREM 3. If H has four continuous derivatives in a neighbourhood of p, if
0’ =1, E|| Z*|' < « and the characteristic function B of Z* satisfies lim SUP|e *jeo | B (E*)]
<1, then

Pn"*{H(Z) — H(u)} < x + n"V3{(d, + %ds(x* — 1)}]
(2.6) =®(x) — n7'x{% a; + Ysa,(x? — 3)
+ Ysaas(x® — 8) + Yasa3(2x* — 10x% + 11)} + o(n7™Y)

uniformly in x on compact intervals. If in addition E | f,(Y) f,(Y) f(Y)|? < o for all triples
(0, g, 1), and E | f,(Y) [o(Y) (Y) f(Y)|? < o for all quadruples (p, q, r, s) with 44,44, 7 0,
then

P[n'*{(H(Z) — H(p)} = x + n7Y2{G, + %ds(x® — 1)}
2.7) + n7'x{Yeds + %ads(x® — 3) + Y%dids(x® — 3) + YedZ(2x* — 10x% + 11)}]
=®(x) + o(n7")
uniformly in x on compact intervals.
3. Monte Carlo trials. We shall report on a series of Monte Carlo trials involving
the x% and exponential distributions. If we take x = —1.644854 (the lower 5% point of the

standard normal distribution) in the formulae of Theorems 1 and 2, we may compute the
following end points of confidence intervals:

b=T +n"21.644858 4= ¥ + nV25(1.64485 + n"/21.0654,);
b =Y + n"/%5(1.64485 + n""/21.0685A; — n."'(3.8700 + 1.514473 — 1.79791)}.

The interval (—e, ) covers the mean, m, with probability 0.95 + O (n /).

The Monte Carlo trials are summarised in Table 1. They suggest that long inverse
expansions may lead to over-correction when the sample size is small, but can provide an
improvement when the sample is large.

4. Proofs.

Proor oF LEMMA 1. The existence of the expansion follows from Theorem 2 of
Bhattacharya and Ghosh (1978). It is necessary only to compute the form of the term of
order n~"2 Let us define

V“p"'»“p = n_l/z Z:lxl [H7=1 {fuj(Yz) - #(u,)} - au|,~~,u,,]'
Bhattacharya and Ghosh’s “Taylor expansion” of n'/2{H(Z) — H(n)} is given by
W:; = 44Vu + n1/2(1/2)4quVu,

TaBLE 1
Simulated coverage probabilities. n = sample size and p, = proportion of simulations in which the
interval (—x,¢,) covered the mean m. (5 X 10° simulations were used in the x5 case, with 10°
simulations in the exponential case.)

xXi(m=4) exponential (m = 1)
n 10 15 20 50 10 15 20 50
P 0.874 0.898 0.904 0.928 0.849 0.873 0.877 0.906
D2 0.895 0.915 0.922 0.945 0.860 0.885 0.896 0.924
D3 0.886 0.915 0.923 0.947 0.853 0.879 0.900 0.929
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and if sufficiently many moments are finite then
E(W) =n""%(1/2)bwow, E(WD) =06>+ 0™
and
EW2) = n™ " {lutotutiusns + Ysulobun Qe + Cuastor + tustts)} + O(n~?)

as n — co. Therefore the cumulants of W7, are given by ki, = n7"%a; + o(n™"?), kg, =
0® + o(n™"?) and k3, = n""%a3 + o(n"/?). The first term in the Edgeworth expansion (2.2)
is computed by inverting the first term in an expansion of the characteristic function of
Wi

ProoF oF THEOREM 1. In view of (2.3) we may choose &(n) decreasing slowly to zero
with n and such that (2.3) continues to hold if the constant ¢ is replaced by the function
&(n). Therefore on the interval [—A, A] the left hand side of (2.4) is dominated by

P[n'*(H(Z) — H(p)} < x + n7"%{a, + %as(x2 — 1)} + n~%(n)(A? + 2)]
+ P{| i — a1 | > () + P{| Gs — as | > e(n)}
= P[n'*{H(Z) — H(n)} < x(n) + n""*{a; + Y%as(x*(n) — 1)}] + o(n™?)
= ®{x(n)} + o(n™?) = ®(x) + o(n™"?),

using (2.2), where x(n) satisfies supy=)|x — x(n)| = o(n""%). A lower bound may be
obtained in the same way, and so the theorem is proved.
Theorem 2 is proved in the manner of Theorem 3.

P}EOOF OF THEOREM 3. In the notation preceding the theorem, define U} =
n"%(Z* — p*). It may be deduced from the definitions of the estimators 6, and 6, that we
may write

(il =a; + n_l/zAll(U:) + n_lAIZ(U:)
and
d2 = a2 + n” A (U%) + n7'Az(U}) + n™"2As(U}) + n"2A,(U?),

where the functions A1, A, A1, Ag, Az and Asg are of ks variables, are infinitely
differentiable everywhere and do not depend on n. Given a real number x, define the
function g.(-) = gn(-, x) of k3 variables by

&(z") = n'{H(p + n™"2) — H(w)} = [x + n™"*{a; + Y%as(x® — 1)}]
= nTH{AN(") + An(z*)%(* — 1)) = 0™ {Ai(z*) + Am(z*)%(x® — 1)}
— n"H{An(2*) + n 2 A5(2%) ) Ye(x? — 1),
Then the inequality
n{H(Z) — H(p)} < x + "G + %as(x? — 1))

may be rewritten as g,(U}) < 0.

Our function g, replaces that defined on the line above (2.4) in Bhattacharya and Ghosh
(1978). Bhattacharya and Ghosh’s proof of their Theorem 2, part (b), may be reworked
with only minor modifications. The uniformity derived by Bhattacharya and Ghosh over
Borel sets must in our case be transferred to a uniformity over the functions g, indexed by
x € [-A, A]. As far as existence of the expansion goes, this transferral is readily accom-
plished by using Corollary 20.2, page 214 of Bhattacharya and Rao (1976), where the
function f should be taken equal to the indicator of the event {z*:gn(2*; x) = 0}. The
bound on the right hand side of Bhattacharya and Rao’s (20.44) may be shown to equal
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o(n™") uniformly in x € [-A, A], using analogues of (2.18) and (2.19) of Bhattacharya and
Ghosh (1978). Identification of the expansion may be achieved by invoking an analogue of
Bhattacharya and Ghosh’s Lemma 2.1, and using an algebraic argument which we shall
now describe.

We first obtain a “Taylor Expansion” of g(U). This contains an analogue of Bhatta-
charya and Ghosh’s W7, which we call W},. It can be shown that

(4.1) gUy) = W —[x+ n "*{a; + %as(x* — 1)}] + 0,(n7")
where
W' = Vo + n720(8) 6 VoV + 07 (56) oo Vo Vo Vi
— 1 (Yalog Vg + 96(5” = 1) X bl (Voar = Vittar = Vit = Vyctpg)
+ Y(x? — 1)4lylos(0pg Vis + 0rsVig) ).
If Z has sufficiently many moments finite then
E(V,V,) = apg, E(V,V,V,) = n”ap,,
E(V,V,V,V)) = (apgtrs + 0prttgs + 0psttyr) + 07 {0pgry — (@pgltry + 0prttgs + psttgr) },

E(V,V,V,.V,V)) = 72 (0pgrst + + + + + Qullpgr) + O(n732)
(a total of ten terms covering all permutations within the brackets),

E(V,V,V,V,V,V.) = (0pglrstisu + +++ + apitigrats) + O(n™")
(a total of fifteen terms within the brackets),

E(V,Vy) = apgr, E(VpVars) = tpgrs,
E(V,V,V,Vy) = apettrst + 0prtgst + 0grotpss + O (n™1?),
E(VoV,V, Vi) = tpgOrstu + Cprtigst + 0grttpses + O(n™"?)
and
| E(V,V,V,V,V V. V)| + | E(V,V,V.)| + | E(V,V,V, V)| = O(n"?),
for all values of p, q, r, s, t, u, v. It may now be proved after some tedious algebra that the
cumulants of W/ are given by ki, = n7%2a; + o(n™!), ken = 1 + n7'az + o(n7Y), k3, =
n""?a; + o(n™') and k4, = n7'as + o(n”"). Consequently W/ has characteristic function
given by
e ’[1 + nV*{ita; + %(it)’as)
+ n 7%t (a2 + at) + Yea(it) (as + da1as) + Y2(it)®a%) + o(n™h)],

and Edgeworth expansion given by

P(W7=y) =) —n™"*{a + % as(y” — 1}é()
(4.2) — n7'y{%(as + a}) + Yulas + daias)(y* — 3)

+ Vai(y* — 10y* + 15)}¢(y) + o(n™").

On noting (4.1) we see that the identification of the Edgeworth expansion of P{g(U) < 0}
is completed by setting y = x + n”*{a, + Y%as(y* — 1)} in (4.2). This closes the proof of
the first part of the theorem.

For the second part of the theorem, it follows from a result of Baum and Katz (1965)
that under the given conditions,

?=I P(I dz - a l > E) = o(n_l)
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uniformly in |x| < A, for each ¢ > 0. This represents an analogue of (2.3), and the proof may
now be completed as was that of Theorem 1.

Acknowledgment. I am grateful to Professor C. R. Heathcote and Dr. C. C. Heyde
for helpful discussions.
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