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ON MODERATE DEVIATION THEORY IN ESTIMATION

By WILBERT C. M. KALLENBERG

Vrije Universiteit

The performance of a sequence of estimators {7} of 6 can be measured
by the probability concentration of the estimator in an e.-neighborhood of 6.
Classical choices of &, are &, = cn™'/? (contiguous case) and &, = ¢ fixed for all
n (non-local case). In this article all sequences {e.} with lim, .. & = 0 and
limy . €172 = o are considered. In that way the statistically important
choices of small ¢'s are investigated in a uniform sense; in that way the
importance and usefulness of classical results concerning local or non-local
efficiency can gather strength by extending to larger regions of neighborhoods;
in that way one can investigate where optimality passes into non-optimality
if for instance an estimator is locally efficient and non-locally non-efficient.
The theory of moderate deviation and Cramér-type large deviation probabil-
ities plays an important role in this context. Examples of the performance of
particularly maximum likelihood estimators are presented in k-parameter
exponential families, a curved exponential family and the double-exponential
family.

1. Introduction. The performance of an estimator 7' of an unknown real valued
parameter 6 can be measured by

ale, 6, T) = Po{| T — 0] > ¢},

the probability dispersion of the estimator outside an e-neighborhood of 8. Unfortunately,
in most practical cases al(e, 8, T') can not be handled exactly and therefore one or another
asymptotic approach is exploited.

Two frequently applied approaches are as follows. Let {T\"} and {T\?} denote two
competing sequences of estimators where T'\” is based on n observations, i = 1, 2. If T,
is asymptotically normal N(6, n'6%(6)) as n — o, then for all ¢ > 0

(1.1) lim,.a(n %, 8, TY) = 2®(—c/0;(8)), i=12

where ® denotes the standard normal distribution function. In that case the asymptotic
relative efficiency of {T\"} w.r.t. {T.?} equals 0%(8)/03(d). If 63(8)/5%(6) > 1 the proba-
bility dispersion of T'\" is asymptotically smaller than the probability dispersion of T,”,
when sequences of &,-neighborhoods are considered with &, = cn™'/%.

For fixed ¢ > 0 however, the probability dispersion a(e, 6, T») tends to zero as n — o if
{T,} is consistent. In typical cases the convergence is exponentially fast. Therefore the
second approach is to measure the performance of {T,.} by the inaccuracy rate

(1.2) e(e) = lim,.. — n"'log al(e, 6, T).

The two approaches mentioned above can also be discussed in terms of sample sizes
needed for the two sequences of estimators to “perform equivalently”; cf. Serfling (1980),
Section 1.15.4. From a practical and philosophical point of view it seems rather peculiar to
consider in such approaches either sequences {e,} with &, of order n~"/? or sequences {ex}
with e, = ¢ is fixed. It is interesting to investigate a(e,, 8, T\) for sequences {¢,} with

(1.3) limeswe, =0 and lim, ,ee.n'? = o,
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in that way filling the gap between the two well-known extremes. By doing so a variety of
statistically important options of ¢’s are supplied, which enables the statistician to see what
happens if the comparison is based on e-neighborhoods intermediate between relatively
small (¢ = cn™"/?) or relatively large (e fixed for all n) neighborhoods. Moreover, there are
examples of estimators which are optimal w.r.t. the local criterion of asymptotic variances
and non-optimal in the non-local case of fixed e. One example is the sample median in
estimating the location parameter of a double exponential distribution, cf. Example 2.2
(continued). It is interesting to investigate where the optimality passes into non-optimality
when one runs from the contiguous case to the non-local case.

It is shown by Bahadur and Fu (1975) that, whatever the consistent sequence {7},
al(e, 0, T,,) cannot tend to zero at a rate faster than a certain exponential rate; that is, there
exists an upper bound for e(e), cf. (1.2). Partly for technical reasons (the large deviation
probabilities involved are rather hard to handle, except for maximum likelihood estimators
in exponential families, cf. Kester (1981)), and partly because of practical considerations
(statistically e must be small) comparison with an expansion of the upper bound is studied
ase— 0.

The higher order contact the exponential rate of an estimator has with the expansion
of the upper bound as ¢ — 0, the better the estimator. This concept suggests to be an
optimality criterion for the case of small ¢ and large n. However here is a uniformity
problem. It is not sure that taking first the limit w.r.t. n (to «) and afterwards the limit
w.r.t. e (to 0) yields the same as sending ¢ and n simultaneously to 0 and . This is only
valid if the remainder terms, which disappear by taking limits, are small uniformly in € and
n. Therefore if one wants to investigate the case of small £ and large n rigorously, it is more
natural to derive directly an upper bound for —n 'log a(e,, 6, T,) with ¢, in the range of
intermediate ¢'s and to make comparison with this upper bound, which is adjusted to the
range of ¢’s under consideration. Accomplishing this for all sequences {e,} satisfying (1.3),
the region of small but not contiguous e-neighborhoods is covered in a uniform sense.
Especially in studying second order Bahadur efficiency (Fu, 1982) the classical indirect
approach and the here proposed direct approach are different, see also Remark 2.1.

In addition another phenomenon has to be mentioned. Suppose that an estimator is
efficient in the sense of asymptotic variances, and also efficient in the sense of achieving
the upper bound for all sequences {e,} satisfying (1.3). Then the local optimality is
extended to a much larger class of e-neighborhoods. The importance and usefulness of
local optimality gathers strength by such a result. A similar statement with respect to non-
local optimality can be made.

Apart from studying optimality one may also wish to compare two estimators: in Section
2 a method of comparison is presented. The performance of particularly maximum
likelihood (m.1.) estimators is investigated in the examples in Section 2. Three examples
are presented: (1) It is shown that the m.1. estimator is (second order) optimal in full
exponential families (Example 2.1 (continued)); (2) In curved exponential families the m.1.
estimator is typically not second order optimal (due to non-convexity); this is exemplified
in Example 2.2 (continued); (3) Example 2.3 (continued) concerns the double-exponential
family as a famous example of local optimality and non-local non-optimality of the m.1.
estimator.

The role of central limit theorems in the contiguous case (cf. (1.1)) and Chernoff-type
large deviation theorems in the non-local case (cf. (1.2)) is here taken over by moderate
and Cramér-type large deviation theorems. The moderate deviation theory approach in
statistics is not new; see for instance Rubin and Sethuraman (1965), Johnson and Truax
(1974, 1978), Groeneboom (1980, Section 3.4), Kallenberg (1983). Although a lot of
moderate and Cramér-type large deviation theorems are available (for a recent review see
Vandemaele, 1981), the domain cn'/® < n'/%, = o(n'’?) is as yet rather unexploited.

2. Results and examples. In Bahadur, Gupta and Zabell (1980) a lower bound for
large deviation probabilities is presented. Here we give a slightly different version of their
theorem adjusted to our situation.
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Let S be a space of points s, <7 a o-field of subsets of S. For eachn =1, 2, - .. let 4, be
a o-field such that 4, C o/, n = 1, 2, - - -. For each probability measure P we denote by P,
the inner measure on S determined by the restriction of P to %,, i.e. P.(B) = sup{P(C):
C € %,,C C B} for all BC S. Note that if B € %, then P,(B) = P(B). For a more extensive
description of this framework cf. Section 2 of Bahadur, Gupta and Zabell (1980).

ProposITION 2.1. Let {A,} be a sequence of subsets of S and let P, @™, n =1, 2,
..., be probability measures on o such that @™ < P on %,. Denote by r.(s) a Bn-
measurable function such that 0 < r,(s) < o and such that d@"™(s) = rn(s) dP(s) on %,.
Define B,(t) = {s:r,(s) > e™}, then

@2.1) lim inf, .. Po(An)e™ = lim infon (@™ (4s) — @™ (Ba(t)))
for all sequences {t,}. In particular if lim inf,_.Q ™ (A4,) > lim sup,_-Q ™ (B.(t.)), then
(2.2) lim inf,_.P.(A,)e™ > 0.

Because of the above mentioned correspondence the proof of Proposition 2.1 is omitted.
Proposition 2.1 will be applied to obtain a suitable upper bound for the probability
dispersion of estimators. Next the considerations of Section 1 are made more precise by
studying the following estimation problem.

Let the parameter space ® be a subset of R* (unlike the situation in Section 1, 2 may
be greater than 1). Let S = (Xi, X,, ---) be a sequence of i.i.d. random elements in the
probability space (%, <7, Py), § € ©. It is assumed that P, # Py if § # 0’. The distribution
of S is denoted by Py, when § € © obtains. For each n =1, 2, . .. let T, be a measurable
function of S into R* depending on Xj, - - -, X,, to be thought of as an estimator of 6. An
important role is played by the Kullback Leibler information number defined by
EglOg (dPg/dPgo) if Py Pgl,,

o otherwise.

(2.3) K6, 6o) = {

Let 6, € int © be fixed. The behavior of T, in a neighborhood of 8, will be discussed.
Suppose that the following regularity assumptions are fulfilled.
CONDITION 1.

(2.4) K@, 60) > 0= 80— 6.

CONDITION 2.
[
(25) 0< Al(eo) = lim infa_,goM = lim supa_,go—K(ﬁ’—HO)j = Az(a()) < o0,
16— 6] 6 — 6l

ConbpITION 3. For each sequence {6} such that K(6,, 60) — 0 and nK(8,, ) — = (i.e.
6, — 6, and n|| 6, — 6 ||* — ) .
=1 {log(dPs,/dPs,)(X.)} — nK (6., 6o) D,
{2nK (6., 60)} ">

(2.6) U,

where —DE”—> denotes convergence in distribution under P, , and U has a standard normal
distribution.

Note that Ejlog(dPy, /dP,)(X:) = K(6., 6b) and that in regular cases Vary log
(dPy,/dPy)(X1) = (0, — 60)'Jo(6. — 6o) = 2K(B,, o). Here oJ, is the Fisher information
matrix at 6. Further it has to be noted that Conditions 1, 2 and 3 are in terms of the
family of distributions and not in terms of the estimators.

ExaMPLE 2.1. Let {Py: 6 € ©} be a full k-parameter exponential family with canonical
parametrization. If 6, is an interior point of the natural parameter space then it is easily
seen that Conditions 1, 2 and 3 are fulfilled.
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ExampLE 2.2. Consider the bivariate normal distribution with covariance matrix I,
the identity, and mean vector (4, %yo8?), # € ® = R, vy, a constant (cf. Efron, 1975).
Conditions 1, 2 and 3 are fulfilled (the distribution of the left-hand side of (2.6) is exactly
standard normal).

ExaMpLE 2.3. Consider the double exponential distribution
dPy(x) = Yeexp(—|x — 8]), x, 0 € R.
Then
(2.7) K@#,60,)=0—6]—1+e7 1%, 66, €R.
Again it is easily seen that Conditions 1, 2 and 3 are fulfilled.

ExaMPLE 2.4. Let P, denote the uniform (0, §) distribution, § > 0. Then Conditions 1,
2 and 3 fail.

Define
(2.8) Ale) ={0€0:]|0— 6| >c¢)
and
(2.9) K(e) = inf{K (6, 6) : 0 € A(e)}.
THEOREM 2.2. Let {e.} be a sequence of real numbers with lim, ..e, = 0,

lim,_« e.n"% = 0. If Conditions 1, 2 and 3 are fulfilled, then we have for all u € R

lim inf, .. Pg(|| Tn — o] > €x)exp{nK(e.) + uv2nKi(e,)}
(2.10)
= lim inf,. o infsence, Po(|| Tr — Go|| > &2) — @ (—u).

ProoOF. Since 6, € int © and ¢, — 0 it follows by (2.4), (2.8) and (2.9) that K(e,) — 0.
Let 0, € A(e,) satisfy K(6,,, ) < K(e,) + n~% Then K(6,, §o) — 0 and by (2.4) 8, — 6o;
hence by (2.5) nK(6,, ) — , because ne2 — . In view of Condition 3, application
of Proposition 2.1 with P = Py, A, = {s:| Ta(s) — 6| > €.}, ™ = Py and ¢, =
K@, 00)[1 + u/{%nK (8., 6,)}"*] yields

1im inf, o Pgy([| T — Oo| > e, ) ™K n0) +u2nKibfo)
(2.11)
= lim inf, .. Py, (|| T — 6o]| > x) — ®(—u).

Since K(8,, 6y) < K(e,) + n~2 the desired result is obtained. O

The behavior of the inaccuracy function is studied for local but non-contiguous e.
Therefore we consider not the class of asym}itotically normal estimators nor the class of
consistent estimators, but something in between. Bahadur, Gupta and Zabell (1980) use
the consistency to obtain that Py(|| T, — | > ¢) — 1 if |@ —6| > & So the class of
consistent estimators is replaced by the class of estimators satisfying

(2.12) lim inf,_ winfyca e Po(|| Tn — o] > £n) > 0,

where ¢, — 0 in such a way that ne% — » as n — . For this class of estimators a lower
bound for the probability dispersion is provided by the following corollary.

COROLLARY 2.3. Let {e,} be a sequence of real numbers with lim, ,.e, = 0,
lim, . e.n'? = . If Conditions 1, 2 and 3 are fulfilled, then for all sequences of

estimators {T,} satisfying (2.12) we have

(2.13) Poy(|| T — o || > €,) > e "Kled=OWVRKGE) oy 5 o0,
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Because the corollary immediately follows from Theorem 2.2 the proof is omitted.

Next we discuss how to compare sequences of estimators and how to define optimality
in this context. Let {T'\"} and {T\?} denote two competing sequences of estimators, where
T® is based on n observations, i = 1, 2. In typical cases we have for all sequences {e.}
satisfying (1.3)

—log Py, (ITY — 6ol > en)

(2.14) K@)

— ¢ (f) asn— o, i=1,2

In such a case the two estimators may be said to perform “first order equivalently” at
respective sample sizes n, and n; satisfying

K (en,)"'log Poy([| Tn) — b0l > &n)

K (en,) 'log P, (| T2 — 6o > €n,)

In this case

ng —(an(Enl))AllOg Pgo(" Ti,ll) - 00 ” > Enl) C1 (00)

2.15 —_~ s
(2.15) 7~ TuK(en,) Tog Pa(| T2 — o] > ey)  <2(60)

yielding ¢1(6o)/c2(60) as a measure of first order asymptotic relative efficiency of (T}
relative to {T?}.If ¢1(6o) > c2(6o), then {T\"} is better than {T'”’} because asymptotically
the same result is obtained with less observations for {7\"} than for {T\?}. In view of
(2.13) an estimator {7} is called first order asymptotically optimal if

—log Po(|| Tr — 6o || > &)

nK(e)

If the estimators {T{"} and {T?} are first order equivalent, i.e. ¢:(6o) = c2(fo), then {T';"}
is at second order asymptotically better than {T?} if

—log Po(| T = 8 | > en) + log Pan(| T — 60| > e)
—
{nK(En)} 172

(2.16)

— 1 asn— o

(2.17)

In view of Corollary 2.3 a sequence {7} is called second order asymptotically optimal
if

nK (e.) +log Pay(|| To = b0l > ea) _
{nK(e.)}"*

(2.18) lim sup,—e

ExAMPLE 2.1 (continued). For the maximum likelihood (m.l.) estimator 6, we have for
some constant ¢ > 0

Pau(||6n — 80| > 1) < Po(K(Bn, 60) = K(en)) = c{nK(ex)}/?* Pexp{-nK(ea)};

c.f. Lemma 3.2 in Kallenberg (1981). Hence the m.l. estimator is (first and) second order
optimal in k-parameter exponential families,

ExaMPLE 2.2 (continued). Denote the sample by (Xi, Y1), - -+, (X», Y»), where X; and
Y; are independent and where their distAributions are normal N (6, 1) and N(%eyo6? 1),
respectively. Consider the m.1. estimator 6, and the estimator X, = n™" ¥’-; X,. Note that

Yn = —[‘Yo(00 + E)]_I[Xn —_ (00 + 8)] + 1/2 '}/()(00 + 8)2
|6, — 6] = e <4 and
Y. = —[y0(60 — &)1 [ X0 — (6o — &)1 + 2 Yo (6o — €)°
and

K(en) = % €2[1 + 03vE — v§60en + Y4 yiel).
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The following results hold: 6, is first order optimal for all 6, (cf. (2.16)); X, is first order
optimal iff 6, = 0; §, is second order optimal for all @, if e,n /> = O(n"/?), and X, is second
order optimal at 6y = 0 if e,n'> = O(n'®), because the left-hand side of (2.18) ~
(¥2/8) v3n'/%3. So b, is better than X, except in the point 6, = 0, where they are
equivalent.

In contrast with the situation of a full exponential family, here the m.l. estimator is not
second order optimal; it is due to the non-convexity of {(6, %y08?) : 0 € R} as subset of the
full parameter space R? of the bivariate normal distribution. This is typical for curved
exponential families.

ExampLE 2.3 (continued). For the m.l. estimator M, = median (X, - --, X,) it holds
that

log Pey(| M, — 60| > €x) + nK(e,) = % nel {1 + Of(en)},

while K(e,) ~ Y%ne2, cf. (2.7). So M, is first order optimal; it is second order optimal if
e.n'? = O(n'*), but not second order optimal if e,n'/* — o,

It is well-known that the sample median is locally efficient and non-locally non-efficient
(cf. Sievers, 1978). The result here shows that at first order the optimality remains true

and that even second order optimality holds if ¢, is not too large.

We conclude with some remarks.

REMARK 2.1. It is seen from Corollary 2.3 that K(e,) + O(VK(e,)/n) is an upper
bound of —n""log Py(|| T =8| > €.). If €, = ¢ is kept fixed and the limit w.r.t. n is taken,
the O-term of course disappears. In typical cases K(e) = cie® + coe + cze* + - -+ as e — 0.
Considering such an expansion up to and including cse*, say, as an approximation of the
upper bound for small ¢ and large n without referring to the O-term seems not reasonable
if e3vn = O(1). Because in that case the O-term is of the same order as the term cse% and
can therefore not be omitted. It is seen that w.r.t. first order approximation problems such
as these do not arise. However, in studying second order Bahadur efficiency (cf. Fu, 1982)
the classical indirect approach and the here proposed direct approach are different.

REMARK 2.2. The sharpness of (2.13) is seen by the following example. Let X;, Xo,
-+ be iid. normal N(6, 1) random variables, where § € R is unknown. Define T, =
{1 — A(e.n'?)"}X,, where A is a positive constant. Choosing 6, = 0 we have Po(| T, | >
en) = 20(—e,Vn/{1 — A(esn?)™"}) = exp[—nK () — V2AVRK(en) {1 + 0(1)}].

REMARK 2.3. Some obvious generalizations (with adjusted conditions) are possible.
For instance, the parameter space © can be taken more general; estimating 6 can be
replaced by estimating g(6), where g is some (riot necessarily 1 — 1) function; the random
variable U in (2.6) may be any random variable with Pr(U < ») = 1 without affecting
Corollary 2.3; Conditions 1 and 2 can be left out if (2.6) holds for a sequence {6,} with
0, € Ale,) and K (0., 8y) — K(e,) sufficiently small.

REMARK 2.4. In effect Proposition 2.1 and therefore also Theorem 2.2, is an application
of the Neyman-Pearson lemma, so it is not surprising and very natural that in Condition
3 the likelihood ratio dPy, /dPs, appears. Verification of (2.6) can be done by using central
limit theorems for a triangular array, cf. Serfling (1980, Section 1.9.3).

REMARK 2.5. If the class of estimators satisfying (2.12) is restricted to the class of
uniformly asymptotically normally distributed estimators, that is, if

(T — 0.3 vn -2,
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where U has a k-dimensional normal N(0; ) distribution with some positive definite
covariance matrix %, then (2.13) can be sharpened: O(1) can be replaced by o(1). For a
proof cf. (2.11).

Acknowledgment. I am indebted to a referee for comments which led to a consid-
erable improvement in presentation.
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