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A MINIMAX CRITERION FOR CHOOSING WEIGHT FUNCTIONS FOR
L-ESTIMATES OF LOCATION

By Davip M. MasoN

University of Delaware

Let Xj, - -+, X, be independent with common distribution F symmetric
about u. Let T, = n7' Y3~ J(i/(n + 1))X.n be an L-estimate of p based on a
weight function ¢/ and the order statistics X), < -+ = X, of X3, -+, X,
Under very general regularity conditions n'/2T), has asymptotic variance o*(<J,
F). A weight function o, is found that minimizes the maximum of o*(J, F)/
s*(F), whenever s(F) is a measure of scale of a general type, as F ranges over
a subclass of the symmetric distributions determined by s(F') and <J ranges
over a class of weight functions also determined by s(F). The sample mean
and the trimmed mean arise as the solutions for particular choices of scale
measures. .

1. Introduction. LetX;, X, ... ,X,beindependent random variables with a common
distribution function F, where F is assumed to be a right continuous distribution function
symmetric about y. p is usually called the location parameter of F. We will say that F is
symmetric about p if F(x —p) =1 — F(— (x —pn) —) for all real x. Let X;, < +++ < X, be
the order statistics of X, -« - , X, and let J be a real valued weight function defined on (0,
1). Any estimate of p of the form

T.=n"'Yk JE/(n + 1)) Xin

will be called an L-estimate of u based on the weight function oJ.

Some of the minimum requirements for 7', to be a consistent estimate of p are that J
be symmetric about %, that is, J(u) = J(1 — u) for all u € (0, 1), and [ J (u) du = 1. For
convenience we will let # denote the class of all measurable real valued functions defined
on (0, 1) that satisfy these two conditions.

Under certain regularity conditions on J depending on the tail behavior of F, T, — p
a.s. See for instance Wellner (1977), van Zwet (1980) or Mason (1982). Other regularity
conditions on JJ and F in combination with symmetry of J and F imply that

n"*(T, — p) =4 N(0, 6*(J, F)),

where

1 1
0<o*(J, F) = j J Jw)J @) (uA v—uv) dF *(u) dF ' (v) < o,
0 0

with
FYu) =inf{x: F(x) = u} for ue€E(0,1]
Refer to Shorack (1972), Stigler (1974) and Mason (1981).
Let f be a density function that is symmetric about zero and consider the family of

distributions % = (F, ,: F, ; has density s 'f (s7}(x — u)), p € (=, ®), s € (0, ©)}. Under
certain regularity conditions there exists a weight function J; € #such that J; minimizes

1 o*(J, Fo,)
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among all J € ¢ and in addition the oJ; that minimizes expression (1) is asymptotically
efficient in the sense that

oX(Jy, Foy) = I,

where I is the Fisher information number
i f’(x)}2
I = — f(x) dx.
¢ J: w { @) f(x)
Since 0*(J, F,.;)s% = 6*(J, F,1), an alternate way of writing expression (1) is

(2 sup{o%(, F,)s%  F,,E %).

Additional regularity conditions imply that when T, has the optimal weight function
Jy, for each F, € %

s YHT, — p) —a N(O, I7Y).

See Chernoff, Gastwirth and Johns (1967) and Huber (1977, pages 22-23) for more details.
The problem of choosing a weight function that minimizes expressions like

sup{a*(J, F.)s2: F; € &)

among all J € ¢ (here F, means that F; has scale parameter s and & is some class of
symmetric distributions) has also been considered by Gastwirth and Rubin (1969) in a
more general context where point masses are allowed at particular quantiles in location
estimates. They require that & be a class of distribution functions such that each
distribution function in the class has a density which is symmetric about zero and satisfies
a certain uniform tail condition. See pages 27 and 28 of Gastwirth and Rubin (1969).

We will be concerned with an extension of the foregoing ideas. Let s(F) denote a
measure of scale. We will find that weight function </, that minimizes the maximum of
o?(J, F)/s%(F), as F ranges over a subclass of the symmetric distributions determined by
s(F') and ¢ ranges over a subclass of # also determined by s(F'). For some choices of scale
measures s(F'), finiteness of s(F') is saying something about the tail behavior of F. J, then
becomes the minimax choice, by our criterion, of a weight function for an L-estimate of
location for the class of all symmetric distributions which behave in a specified manner in
the tails determined by s(F'). Often it will turn out that for particular choices of s(F)
known limit theorems for L-estimates will imply that the T, with weight function o/, is
consistent and asymptotically normal with variance o*(J, F).

Our approach differs from the minimax approach for the choice of a ¢ function for an
M-estimate of location considered by Huber (1964) in the following manner. Huber’s
approach is in a sense semi-parametric, in that a ¥ function is found that minimizes the
maximum asymptotic variance of the M-estimate as Franges over a particular topologically
“small” neighborhood of a specified symmetric distribution. Whereas our approach is in a
sense semi-nonparametric, in that we restrict our distributions to lie in a certain subclass
of the symmetric distributions that possess a specified tail behavior. For some more recent
results related to Huber’s approach see Collins (1977) and Rousseuw (1981).

2. The minimax choice of a weight function for a particular class of scale
measures. < will denote the class of distributions symmetric about zero. Let #be the
class of nonnegative measurable functions defined on (0, 1) which are symmetric about %.
We will consider the class of scale measures defined via a function i € 5 as follows: For
h € #and F € & let

1

sth, F) = j h(u) dF ' (u),
(1]
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whenever s(h, F) is finite. It is easy to verify that when s(h, F') < oo, s(h, F,,) = s(h, F)7
for all u € (—», ©) and 7 € (0, ®), where F,,(x) = F((x — p)/7). This class includes some
common measures of scale. See the examples below.

Given any h € #, let us define the following subclasses of & and #: Let % be the
subclass of ¥such that for each F € %, (i) F~! and A have no common discontinuity points;
and (ii) 0 < s(h, F') < oo,

Whenever 4 is continuous except perhaps at a finite number of jump discontinuities in
(0, 1), let _#% be the subclass of #such that for each J € 4, J is continuous on (0, 1) except
perhaps where 7 is discontinuous, in which case / has only jump discontinuities. We will
define the asymptotic risk of using an L-estimate of location based on a weight function J
for a particular distribution F in %, to be

3 R(J, s(h, F), F) = o*(J, F)/s*(h, F).

It is easy to see that R is both location and scale invariant, so it was with no loss of
generality that we assumed from the beginning that each F is symmetric about zero.

At this point it is convenient to introduce the following subclass of & consisting of
symmetric three point distributions. The nice properties of this class will be essential to
the proof of our main result.

For any x, € (0, ) and » € (0, %), let G, ., be a symmetric distribution defined as
follows:

1 X, =x
1-v 0=x<ux,
-x,=<x<0
0 x < =X,.

G, (x) =

Let %be the class of all such distributions. Each G, ., € % has an inverse distribution g, x,

defined as follows:
x, l—rv<u=l
g u)=4 0 rv<usl-v»

-x, O<u=v
Let J €4 h € #and G, . € 9. Trivial calculations show that whenever o/ is continuous

at », 0*(J, G.,x,) = 2vx%J*(v), and whenever A is continuous at », s(h, G..x,) = 2x,h(»).

THEOREM 1. Let h € # be such that h is continuous on (0, 1) except perhaps at a
finite number of jump discontinuities, and

1/2
0<2 J hw)u? du= {Ch)} ' <.
)

Let Jy(u) = C(W)h(uw)u™ for 0 <u <% and = C(h)h(u)(1 — u)" for b <u<1. Then
Jn minimizes

sup{R(J,s(h, F), F) : F € %}
among all J € %, and
sup{R (Jn, s(h, F), F) : FE %) = 27'C*(h).
REMARK 1. The requirement that 2 and F~* and hence J and F~' have no common
discontinuity points is natural in the sense that this is one of the minimum assumptions

needed for the asymptotic normality of L-estimates. See Mason (1981), Shorack (1972)
and Stigler (1974).

We will postpone the proof until Section 3 and first give some examples.
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ExaMpLE 1. Choose 0 < p < o and set A,(u) = u'” for 0 < u < % and h,(u) =
1-u)”?forb<u<1l.For FEZ
1/2

1
s(hp, F) = j u'? dF '(u) + J' (1 — u)? dF \(u).
1/2

0
By integration by parts, s(h,, F') also equals
1/2 1
J’ | F~'(w)| u"?7" du + f F'w)Q — u)?7! du.
o 172
When p = 1, s(hi, F') becomes the absolute first moment of F. In the context of a scale
measure s(h, F) is often called the mean absolute deviation from the median. When 0 <
p<lorl<p< o, finiteness of s(h,, F') is very closely related to finiteness of the pth
absolute moment of F. Refer to the Appendix of Mason (1982) for a complete discussion
of this point.
Finiteness of s(h,, F) is also saying something about the tail behavior of F. It is
equivalent to saying that

| x|7"(1 — F(x) + F(-x)) >0 as x— o

at such a rate as to make
0 oo
j {(Fx)}77' | x| dF (x) + j {1 — F(x)}*"'x dF (x) < oo.
—oo (1]

In this case J,, (u) = C(p)u'?"*for0 <u =% and = C(p)(1 — u)?V*for h<u<]1,
where C(p) = (2 + p)p 1277372, S, is the class of all F € #such that 0 < s(h,, F) < o.
Observe that when p = 2, Jj, = 1, so that the L-estimate T, based on J, is just the sample
mean. This is reasonable since s(hs, F') < « is almost equivalent to F having a finite second
moment. See the remark immediately following this example.

It is interesting to note that if 7', is the L-estimate with weight function J;, and the
underlying distribution F satisfies 0 < s(h,, F') < =, that the weight function and the scale
condition exactly interlock to imply asymptotic normality of T, (actually for a slightly
trimmed version of T, for the case when 0 < p < 2). Refer to Theorem 1 of Mason (1981).

REMARK 2. Suppose instead of the scale measure s(h;, F'), the standard deviation s(F)
= ([ {F'(w)}? du)"? is used. Then the weight function /5, = 1 also minimizes

sup{R(J, s(F), F): F€ ¥*}
among all J € #, = {J € ¢: J is continuous}, where #* = {F:0 < s(F) < «}. To see this,
choose any F € & *. Then since

1 1
o*(Jn,, F) = j j (w A v—uv) dF ' (u) dF'(v) = s*(F),
o Jo

R (Jn,, s(F), F) = 1for all F € &*. Let J € %, be such that J 7 1 for some point in (0, 1).
Since o is continuous and [ § J (u) du = 1, there must exist a point » € (0, %) such that J(»)
> 1. Now choose any x, € (0, ©) and G»,, € ¥, we see that

oX(J, F) = 2vx2J%(v) > 2vx2 = 02(J;,,a, F).
Hence oJ;, = 1 is the minimax choice of J with respect to the standard deviation. It can be

shown that %, C &*, but ¥* Z %,,. Refer to Hoeffding (1973) or Mason (1982).

EXAMPLE 2. Choose a € (0, %) and set A(z) = 1if a =< u =1 — «a and zero otherwise.
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Whenever F! is continuous at « and 1 — «
s(h, F) = F'(1 — a) — F Y(a).

Observe that s(h, F) is a symmetric interquantile range. In this case Jx(u) = C(h)u~"? for
a<u=<Y%=Ch)(1-u" for%k<u=<1- « and equal to zero elsewhere, where C (%)
= {4272 — a'?}7L. % is the class of all F € ¥ such that 0 < s(k, F) < © and F' is
continuous at « and 1 — a.

L-estimates based on J, are not quite trimmed means. Increasingly more weight is
placed on the outer quantiles up to the ath and the (1 — a)th quantiles than on the inner
quantiles. The symmetrically trimmed a — mean is obtained by using the scale measure
s(h, F) with h(u) = u?fora<u <%, h(u) = (1 — u)? for ¥ < u <1 — a, and zero
elsewhere.

EXAMPLE 3. Choose o € (0, %) and set h(u) =ufora=u=<% h(u) =1—ufor o <
u =<1 — @, and zero elsewhere. Whenever F' € #and F! is continuous at « and 1 — a, we
see by integration by parts that
FY(1—a)
sth, F) = a{F'(1=-a) — Fla)} + f | x | dF (x).

F~Ya)

So s(h, F) is an a-Winsorized mean absolute deviation from the median. In this case Jx(u)
=Chu?fora<u=<%=CH)(1 —u)’?for b <u=<1-— a and zero elsewhere, where
C(h) = %(27%% — a*?)7, %, is the same class as that given in Example 2.

ExaMPLE 4. Choose 0 < a < %, and set A(u) = (1 — 20) N(u — a) fora =u =% =
(1 —-2a)"'(1 —u—a)fors<u=<1- «aand equal to zero elsewhere. By combining
Examples 2 and 3 we see that
F~Y(1-a)

sh,F)=(1-— 2a)_‘j | x| dF (x).
F~Y(a)
s(h, F) is an a — trimmed mean absolute deviation from the median. Jn(u) =

Dh)(u—a)u P fora<u=<% =DMh)(1—a—u)(l—u)y2forh<u=<1-—a,and equal
to zero elsewhere, where D (k) = {(% — 4a)27Y% + 8 a¥%}~! with D(k) = C(h)(1 — 2a).

REMARK 3. If it is assumed that F has a finite absolute pth moment for some positive
D, then each of the L-estimates based on the weight functions in Examples 2, 3 and 4 are
asymptotically normal. Refer to Theorem 5 of Stigler (1974).

3. Proof of Theorem 1. First observe that J, € %. Let %, be the subclass of ¥
consisting of all those G,. € ¥ such that G, and & have no discontinuity points in

common and s(A, G,,.,) > 0. Note that %, C %. The proof of Theorem 1 will consist of the
following steps:

StEP 1. We will show that
(4) R(Jn, sh, G,), G,.) =27'C*(h)

for all G,,,xy (S gh.

SteP 2. For any F € %,
(5) R(Jy, s(h, F), F) < 27'C%*(h).

StEP 3. For any J € %, such that J and «J,, disagree at a point » € (0, 1) where both



322 DAVID M. MASON

and J} are continuous there exists an F € %, such that
R(J, s(h, F), F) > 271C?(h).

By the definition of 4, for any J € 4, such that J 5 Jj, J and J;, can only disagree
where they both have jump discontinuities or both are continuous. Steps 1, 2, and 3 imply
that

sup{R(J, s(h, F), F) : F € %} > sup{R(J, s(h, F), F) : F € %} = 27'C*(h),

whenever J and oJ, disagree at a point where they are both continuous. If they only
disagree at points where they both have jump discontinuities, continuity of F~* at those
points implies that

sup{R(J, s(h, F), F) : F € %) = sup{R(J, s(h, F), F) : F € %} = 27'C?(h).
These remarks show that o/, is indeed minimax.

PROOF OF STEP 1. Choose any G,. € %, then oX(Jy, G.) = 2Ji(r)rx? =
2C%(h)H2(v)x2 and s%(h, G, ) = 4x2K3(v) > 0.0

ProOF OF STEP 2. Let % = (F™':F € %) and for any F! € 4, set 7(Jn, F') = o(Js,
F). It is easy to see that .%, is a convex class of functions. We claim that 7(Jy, -) in a

convex functional defined on 4%,
Let U be a uniform (0, 1) random variable. Application of Fubini’s theorem gives

2(Jn, F7Y) = Var(j {I(U=u) — u}Jn(u) dF‘l(u));
()

where I(x <y) = 1 or 0 according to whether x <y or x > y.
Let Fi'and F3' € 4, and choose 0 = a<1.Fori=1,2let

1
Z;= J {I(U = u) — u}Jn(u) dF;'(u).
0

Now
T(Jp aFT' + (1 — a)F7Y) = [Var{aZ; + (1 — )Z,}17*
= a(Var Z))"? + (1 — a)(Var Z)"?
= ar (J, F1') + (1 — a)7(J, F2'),

proving the claim.
To show (5) for all F € %, is equivalent to showing

1
(6) ' T(Jh, F‘l)/f h(u) dF ' (u) = 272C(h)
()

for all F~! € 4,

We will begin by first assuming that A4 is continuous and strictly positive. Choose any
F~!' € 4,. Now choose any ¢ € (0, %) such that [ h(uz) dF'(z) > 0 and ¢ is a continuity
point of F~". Choose a sequence of partitions of the interval [, %] e = v, < p1n +++ < Vnn
< Y% such that each v, for i =0, - - - , n is a continuity point of F™, maxXoi<n—1(Vi+1,n — Vin)
—0and % — v,,—> 0. ForeachO<i=n—1andn=1set

Vitln 1—e
Din =2 J' h(u) dF_l(u)/j h(u) dF ' (u),

in

and
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Yn+ln 1-e
Pon = j h(u) dF () / f h(u) dF (),

'nn

where vpi1,n = 1 — Vpp.
Observe that Y7o pin = 1. For u € [¢, 1 — €] set

H,(u) = ¥io Din8uinx, (¥)

where x, = {2h(vin)} ' for0<i=<n.
Also, for u € [, 1 — €] set

1—¢
H(u) = F_l(u)/j h(v) dF ().

CrLaiM. Whenever u € [¢, 1 — €] and u is a continuity point of F~*, then H,(x) — H (u).

.

Proor. First assume that u € [¢, %) is a continuity point of F~'. Now for n large,

Hn(u) = vaau = Pin Xy,

Vitln 1-e
= —Z.,,,,.»,,.auf h(s) dF~'(s) / {h(vin) j h() dF~ 1(1’)}

Yn+1,n 1—e
—f h(s) dF_l(s)/{2h(vnn)J h(r) dF_l(V)} .

Since 4 is uniformly continuous and bounded away from zero on [¢, 1 — ¢] and F' is
continuous at u, a standard argument shows that

S s f " h(s) dFs) (o)) — f " h(s) dF(5) (2hm) !

= Z"m?”nna" {F_I(Vin) - F_I(Vi+1,n)} - {F_l(vn+1,n) - F_l(l’nn)}/z + 0(1)
=F'u) — F'(%) + {(F'(%) — F (% +)}/2 + o(1) = F X (u) + o(1).
Hence H,(u) — H(u). Now let u € (%, 1 — €] be a continuity point of F~*. For n large,

Vitl,n 1—e
H,(u) = 21_,,,,,,<1_,,,-,,<,,f h(s) dF_l(s)/{h(v,-n)j h@) dF_l(v)}

Vin

Vn+1,n 1-e
+J’ h(s) dF(s) / {2h(vnn) f h() dF- 1(V)}.

n

The same argument as above gives

s <ton < f " h(s) dFN(6) ()} + J T h(s) dF(6) (2R )}

in 'nn

= Zl—v,m<l—vin<u {F_I(Vi+l,n) - F_I(Vi,n)} + {F_l(vn+l,n) - F_I(Vnn)}/z + 0(1)
=F'%) —F'(1—u) + {F'(%+) — F'(%)}/2 + 0(1),
=FY(u) + o(1),
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since F is symmetric about zero. Hence H,(x) — H(u). If u = % is a continuity of F!then
H,.(%) = 0, but in this case F~!(%) = 0, so H,(%) = H(%) = 0. An argument very much like
that given for Proposition 8.15 on page 165 of Breiman (1968) shows that

1—e 1—¢ 1/2

(7 (J f Jr(w) Jn(v)(u N\ v — uv) dH, (u) dHn(U))
I_E 1_5 1/2

(8) N <f J' Ju() Jn(v)(w A\ v — uv) dH (v) dH(v))

1-e pl-e 1/2 1—e
9 = <J J Jn(@) Jn(v) (@ A v — uv) dF(u) dF_l(v)> /f h(s) dF(s).

Expression (7) is equal to 7(Js, H,), which by convexity of 7(cJ», -) is less than or equal
to

(10) 2?=0 PinT (Jn, gym,n,") .

Observe that foreach0<=i=<n
7(n, 8ru,) = 27 2C(R).

Thus, expression (7) and hence expression (9) is <27"/*C (). Since the limit of expression
(9) as € | 0 through any sequence of continuity points of F'is equal to

1
7(Jn, F) /f h(u) dF ' (u),
0

we immediately have that (6) is true for all F~' € .%, whenever % is continuous and strictly
positive.

To show that (6) is true for all F~! € %, for any h satisfying the conditions of the
theorem, one only has to slightly modify the above argument to the interior of the region
in (0, 1) where h is strictly positive and continuous. This completes the proof of Step 2. [

ProoF OF STEP 3. Let J €_%, be such that o and J, differ at a point » € (0, 1) where
they are both continuous. Since [§ J(z) = 1 and ¢/ is symmetric about %, we can assume
that » € (0, %) and J(v) > Jx(), for if not, we can always find such a continuity point. We
must consider two cases.

CaSE 1. Jx(v) > 0.
Choose any x, € (0, ») and the G,,., € % that corresponds to x,. Since J(v) > Ju(v) >
0,

R(J, 5(h, G,.r), Grz) = TP 0)R2@) > 27°C*(R) = R(h, s(h, Goz), Gis,)-

CASE 2. Ji(v) =0.

Choose a point u € (0, %) such that Jx(z) > 0 and % is continuous at u, and choose two
points x, and x, € (0, ®). Let g5, and g,,.. be the inverses of G.,., and G, respectively.
Define F to be that distribution which has the inverse 27 g,,, + 2 'gu.x, -

It is easy to check that F' € %. Now since A(v) = 0,

1
s(h, F) =J h(t) dF'(0)
0
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1

1
=g j A(t) dgus, () + 27! J h(s) dg,.s,(s) = % h(u).
o 0

Also,

1 1
o*(J, F) =j j J(S)J(t) (s N\ t — st) dF ' (s) dF ' (t)
0o Jo

1 1
=47 j f J(8)J () (s N\ t — st) dg,,»,(s) dg,,x(t)
o Jo

=27 J?(v)x2,
and since Ji(r) = 0, 62(Js, F) = 2 'uJ%(u)x2. Hence i
R(J, s(h, F), F) = 27'C*(h),
but
R(J, s(h, F), F) = vJ*(v)x}/ (225 12 (w)).

We are free to choose x, and x, so that the right side of the last inequality is as large as
desired. This completes the proof of Step 3 and subsequently the proof of the theorem. O
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