The Annals of Statistics
1983, Vol. 11, No. 1, 68-77

SEQUENTIAL SAMPLING BASED ON THE OBSERVED FISHER
INFORMATION TO GUARANTEE THE ACCURACY OF THE
MAXIMUM LIKELIHOOD ESTIMATOR

By PATRICIA GRAMBSCH

Bell Laboratories

A sequential sampling scheme in which observations are taken until the
observed Fisher information exceeds a target value is considered for a re-
stricted class of parametric families. It is proved that the theorems for fixed
sample size asymptotic likelihood inference conditional on ancillary statistics
are directly applicable to the sequential sampling scheme for location families.
The fixed sample-size approximate ancillary statistic for two-dimensional
curved exponential families is shown to be ancillary in the sequential sampling
scheme. Evidence from Monte Carlo simulations suggests the applicability of
the fixed sample size conditional likelihood inference theorems to these
families as well. The distribution of the sequential sample size is shown to be
asymptotically normal.

1. Introduction. A recent series of papers (Efron and Hinkley, 1978; Hinkley, 1980;
Cox, 1980) has used asymptotic theory for likelihood functions to show how approximate
conditional inference can be made for single parameter models. Exactly or approximately
ancillary statistics are used to partition the sample space into reference subsets for
inferential probability calculations. An ancillary statistic is a function of the (minimal)
sufficient statistic whose distribution does not depend on the value of the parameter. Thus
far, the discussions have dealt with fixed sample size experiments.

Suppose that X;, ..., X, are independent and identically distributed (iid), with
probability density f; (x) where @ is a scalar. With s, = (xy, - - - , x,,), the log of the likelihood
function is

49(sn) = ¥, In fo(x:).

The first two derivatives with respect to § may be denoted by Zo(sn) and Z5(s.) and
abbreviated #, and #,. Under suitable regularity conditions, the maximum likelihood
estimate (MLE) 4, is a solution of Z, = 0. In addition to the a priori expected Fisher
information

(L1.1) Iy = nig = Var(4) = E(—4))
we consider the a posteriori observed Fisher information
(1.1.2) L, = -4,

Let A, denote an ancillary statistic. For those families for which exactly ancillary statistics
do not exist, we let A, denote an approximately ancillary statistic. Examples of such
statistics are asymptotically ancillary statistics for curved exponential families (Hinkley,
1980) and locally ancillary statistics for families with two-dimensional sufficient statistics
(Cox, 1980). We have the following asymptotic results for likelihood statistics conditioned
on ancillary statistics (Efron and Hinkley, 1978; Hinkley, 1980; Cox, 1980):

(1.1.3) limpowP{L(0, — 0)2 < c | An} = P(xi=<c) + Op(n™")
(1.1.4) limy o P{2(4, — &) < ¢ | A} = P(x2=¢) + O,(n7Y).
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Further, it is not the case that
lim, . P{5(0 — 6)*< ¢ | Az} = P(xi=c) + Op(n7?).

The rate of convergence is slower. Although, as is well known, I3 % is the appropriate
scale factor in unconditional likelihood inference, it is the wrong conditional scale factor.
Because of (1.1.3), we refer to I, as the true precision of 9, in contrast to the expected
precision .%.

These two precisions can be quite different and this difference has potential implications
for experimental design. Suppose that the model is parameterized in such a way that i, =
i, a constant. For large n, the difference between I, and .% can be quantified by the result
that (Efron and Hinkley, 1978)

I, —ni

(L15) ~ N(0, v3),

ivn

where v is the statistical curvature of f;(x). (See Efron, 1975, for a discussion of statistical
curvature.) For example, if f; (x) is the Cauchy density with location parameter 6, for which
i = % and yj = %, we find that in approximately 10% of samples, I,(x) < 4.5 for n = 20
although .# = 10. Choice of a fixed sample size n to obtain a specified mean position (ni)
may yield an experiment with a much lower true precision. A direct way to achieve a given
precision for the maximum likelihood estimate is to use a sequential design, sampling
sequentially until the observed information reaches a target level.

In this paper, we examine the properties of such a sequential sampling scheme, with
particular reference to location families and to curved exponential families. We imagine an
infinite sequence X;, X, - - - of iid random variables with associated sequences {f,:n =1,
««.}and {I,:n =1, 2, ...}. Sampling terminates at sample size N such that

(1.1.6) N = Np«=inf{n:I,=1I*},

where I* specifies the desired precision. For a particular realization of the sequential
experiment, we wish to know how to set confidence limits for 6, appropriately conditioned.
To summarize what follows, it appears that results (1.1.3) and (1.1.4) continue to hold for
large I'* for location families and curved exponential families parameterized so that is = i.
Thus, conditional inference proceeds as if n were fixed; the sampling rule is irrelevant to
the interpretation of the data.

The proposed sampling scheme is similar to one discussed by Anscombe (1952). He
considered a sequential sampling scheme designed to achieve a specified level of uncon-
ditional precision and showed that fixed sample size asymptotic results continue to hold in
the sequential schemes. Lindley (1957) suggested a Bayesian approach to the problem of
sequential sampling in the context of the estimation of the unknown proportion in a
binomial population. He compared different sampling schemes designed to achieve a
specified level of Shannon information in the posterior distribution for various parameter-
izations, and showed that they are asymptotically equivalent to sampling schemes designed
to achieve a specified level of Fisher observed information. Chow and Robbins (1965)
considered the problem of finding a confidence interval of prescribed width and coverage
probability for the mean of a population with unknown variance. They showed that a
sampling scheme similar to the one described here, in which one sampled data until the
estimate of the precision of the mean exceeded a prescribed level, was asymptotically
consistent and efficient.

Section 2 examines the theory of conditional sequential estimation. Section 2.1 proves
that sequential versions of (1.1.3) and (1.1.4) hold for local families. Section 2.2 considers
two-dimensional curved exponential families. It shows that the fixed sample size approxi-
mately ancillary statistic is also approximately ancillary under sequential sampling and
conjectures that (1.1.3) and (1.1.4) hold for sequential samples. Section 2.3 proves the
asymptotic normality of the sequential sample size. The results of two small Monte Carlo
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simulations, a Cauchy location family and a bivariate normal family with unknown
correlation coefficient, are presented in Section 3. Section 4 gives a brief summary.

2. Theory of conditional sequential estimation.

2.1. Location families. In this section, we show that (1.1.3) and (1.1.4) hold in the
sequential case for location families, families in which f;(x) = fo(x — 6). In location families,
ip = i and y§ = y%. We begin with a brief view of the fixed sample size results.

Let s, = (Xy, - - - , X)) be a random sample from f;(x). If we let d, = x, — x1, the labeled
distance from the first observation, then we have the following exactly ancillary statistic:

(2.11) an = (dz, ds, -+ , dn).

Fisher (1934) proved the equivalence of the likelihood function when reflected about 1ts
maximum and suitably normalized to the conditional density of the pivotal quantity, b,
—0.Let t, = 6, — 6. We have .

(2.1.2) [t | @n) = exp{£ie,)—t.(S2)} / J exp{Z.(sn)} du.

(This equation concisely summarizes the following manipulation: In location families, the
likelihood function for any sample s, depends on @ solely through the quantlty 9 — 0(sn)
where f(s,) is the MLE of the sample. If one substitutes the argument 6— 6 in which 8 is
considered as a random variable for the argument 6 — 6 (sy) in the likelihood function and
normalizes the function so that its integral over R is 1, the result is the conditional density
of 6—4.)

We note that in (2.1.2) we can substitute for a, that function of a, which corresponds
to the maximal invariant after minimal sufficient reduction. Efron and Hinkley (1978)
applied the results of Walker (1969) on the asymptotic normality of the likelihood function
to prove (1.1.3) and (1.1.4) from (2.1.2).

We now examine the sequential sampling scheme (1.1.6). Considerations of invariance
show that the sequence (d, ds, « -, dy, - - -) is the maximal ancillary.

Any function of this sequence is ancillary. Specifically, the following are ancillary:

(2.1.3) @) (I, Iy -+, Iy N), (i) Iv, and (iii) ay = (dz, - -, dn).
THEOREM 2.1.1. Under the regularity conditions listed below, as I* — « in the

sequential sampling scheme (1.1.6) where the X;'s are sampled from a location family, we
have

(2.1.4) P{In(n—0)’<c|Anv=an}) = P(x}= c) + O,(I*™)

and

(2.1.5) © P{2(4i— &) <c| Av=an} = P(xI = ¢) + O,(I*™).
CONDITIONS.

2.1.1(i). 'The following three integrals are finite almost surely (a.s.):

(a) J exp(45-. — £5) dt,

(b) f exp{(1 — 2s8)(£p-. — )} dt for s <%,
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® 1
(c) J exp{sInt*(¢-. — £3)} dt for s <3

2.1.1(ii). The first four derivatives of log f;(x) with respect to 8 exists a.s. in X for all
0 and have finite expectations under the true value of 6. The second derivative has a
strictly negative expected value under the true value of #. The fourth derivative is
continuous everywhere in 4 a.s. in X.

2.1.1(3ii). Let & = 8£5/360|g—s. We have £i/In = Op(1) forj = 3, 4, --- , and In/I* =
0,(1).

2.1.1(iv). For arbitrarily small § > 0, there exists ¢; > 0 such that
limz+ e P{supgssI* " (¢4—. — &) < —cs} = 1.

These conditions have been quite easy to check in the examples examined by the author.

ProOF. Because the ancillary statistic ay in the sequential sampling scheme is identical
to the ancillary a, in a fixed sized sampling scheme which results in the same sample and
because the sequence I, - -- Iy which determines the stopping time N is a function of ay
only, conditioning on the ancillary statistic in either scheme gives the identical reference
set in R". Therefore, we can apply Fisher's (1934) result to find f(¢tv|an) =
exp{Zd(s,)—¢y(sn)}/f exp{¢.(sn)} du. We now need merely utilize the proof in Efron and
Hinkley (1978) for (1.1.3) and (1.1.4) which also starts with Fisher’s 1934 result, modifying
it slightly to take account of the different sampling scheme. Condition 2.1.1(iv) guarantees
that the likelihood function will behave appropriately as I'* increases. Efron and Hinkley
(1978) use a similar condition, replacing I'* by n. For the technical details, see Grambsch
(1980).

In many location families, the minimal sufficient statistic provides substantial dimen-
sionality reduction. Suppose that a one-to-one function transforms the minimal sufficient
statistic into the pair of statistics, the MLE and the maximal invariant after minimal
sufficient reduction. Let b, denote the maximal invariant after minimal sufficient reduction
in the fixed sample size case. Because

] (B2, +-+, Ba)) = [t | br) = eXP{£ois—tn(sn)} /exp{4.(s:)} du,

reasoning similar to that used in the proof of Theorem 2.1.1 can be used to prove the
following corollary.

COROLLARY 2.1.1. Under the regularity conditions for Theorem 2.1.1,
(2.1.6) P{In(n—0)<c | By = b,} = P(x3=<c) + O,(I*™Y).
(2.1.7) "P(2(4— ) <c|By=b) = P(xi=c) + O,(I*).

When the minimal sufficient statistic is two-dimensional, the maximal invariant after
minimal sufficient reduction is the observed information. Example 2.1.1 discusses such a
location family. Section 3 shows that a transformation of the observed information
functions as the asymptotic ancillary statistic in curved exponential families with two
dimensional sufficient statistics.

It is noteworthy that the size of the sequential sample is irrelevant to the applicability
of Theorem 2.1.1. Anscombe’s theorem on unconditional sequential inference, Theorem
2.2.1, mentioned in Section 1, requires a large sequential sample in order that the
asymptotic fixed sample size distribution of the estimator provide a good approximation to
the sequential distribution. However, Theorem 2.1.1 does not require large sample size; it
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simply requires large I'*. In this respect, the sampling scheme is similar to the sampling
scheme designed to achieve fixed width confidence intervals (Chow and Robbins, 1965)
mentioned in the introduction. The applicability of the fixed-width confidence interval
requires large achieved sample precision, irrespective of sample size. For sufficiently large
I*, the x} distribution may be a good approximation to the conditional distribution of 2(4

— ¢) and Iy(f — )® given the appropriate ancillary for sample sizes as small as one. The
following example provides an illustration.

ExampLE 2.1.1. Consider the normal circle example discussed by Efron and Hinkley
(1978). A sample point consists of a vector sampled from a bivariate normal distribution
with covariance matrix the identity whose mean vector lies on a circle of known radius p
centered at the origin. That is,

(2.1.8) E(XT) = p(cos 0, sin ).

Note that given n independent bivariate observations X, - .-, X,,, the minimal sufficient
statistic s = 3 x;/Vn satisfies (2.1.8) with p, = pvn in place of p. Let s have polar
coordinates (8, r.p,). The joint density of (4, r%p%) is

A 1 1 «
f@,ripr) = o exp{— 5 0(rs + 1)}exp{p%,r,.cos(0 -9)),
from which it can be seen that the density is of location form with 6 as the maximum
likelihood estimate of §. Considerations of invariance show that r, is ancillary. The
conditional distribution of § given r, is a von Mises distribution,

(2.1.9) F@|r.) = ¢ "exp{piracos(d — 0)},

where ¢ = 27Io(p%r,) is standard Bessel function notation. We note that I, = p2r,, so the
observed information is ancillary. Therefore, with n replaced by N, (2.1.9) applies in the
sequential scheme (1.1.6). It is clear that I = p%r, may be arbitrarily large with nonzero,
albeit small, probability. The application of standard results for the von Mises distribution
to (2.1.9) shows that conditional on ry, (6, — 0)pp/r_1 is asymptotically standard normal for
large values of p3r;. From this fact, we can easily derive (2.1.4) and (2.1.5) for samples of
size 1. (The precise order of the error term would require a fuller analysis.) Of course,
Theorem 2.1.1 could be applied directly to this example as well.

2.2 Ancillary statistics in a curved exponential family. In this section we consider
curved exponential families in two dimensions. The density takes the following form

fo(x) = g(x)exp{n’(0)s(x) + ()}

Here s(x) is a two-dimensional minimal sufficient statistic and 7 is a two-dimensional
parameter vector. We suppose that 7 is a continuously twice-differentiable function of 6, a
scalar parameter. Curved exponential families are discussed in Efron (1975). Example 2.1.1
is an example of a curved exponential family. We suppose that the model is parameterized
in such a way that i, = i, a constant.

Consider a random sample of size n from a curved exponential family model. In general,
an exactly ancillary statistic does not exist. However, Efron and Hinkley (1978) have
shown that

N/ (In )
(2.2.1) Ar=—|—-1

vé \ni

is asymptotically standard normal (cf. (1.1.5)). It functions as an approximate ancillary for
two-dimensional curved exponential families and as the dominant component of the
(k — 1)-dimensional ancillary statistic for general k-dimensional curved exponential fami-
lies. Further, in the parameterization in which i, = i, Hinkley (1980) has shown that
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Fisher’s (1934) result applies approximately. That is,
exp{Zs(s»)}

{1+ O(n™)}.
fexp(&(sn)} dt

fbla,) =

From this one can prove (1.1.3) and (1.1.4) (Hinkley, 1980; Cox, 1980).

We now consider the sequential sampling scheme (1.1.6). A natural sequential version
of the fixed sample size ancillary (2.2.1) is

VN (Iy

(2.2.2) Ay=—o ( 1).
We will apply a theorem of Anscombe (1952) to show that Ay is asymptotically standard
normal as I'* tends to infinity.

Anscombe’s theorem is the following:

Let {Y.,n=1,2, ...} be an infinite sequence of random variables for which there exist
a real number 6, a sequence of positive numbers {w,} and a distribution function G such
that

(2.2.3) hmMP( Y. 0_ x) = G(x)

Wrn

at each continuity point of G. Let N, be a sequence of random stopping times. If the
conditions below are met, then '

THEOREM 2.2.1 (Anscombe, 1952).

limr_mP($s x) = G(x)

at continuity points of G.

CONDITIONS

2.1.1(i). Uniform continuity of {Y,}: Given any small positive ¢ and £, there exists a
large V and a small positive ¢ such that for any n > V,

P(|Y, — Y| <ew, Vn'such that|n' —n|<ecn) >1-¢

2.2.1(ii) Convergence of {N,}: Let {n,} be an increasing sequence of positive numbers
tending to infinity. We have P(N, < ») = 1 for all » and N,/n,.—p 1 as r — .

We will apply Theorem 2.2.1 to prove the asymptotic standard normality of Ay. In the
notation of that theorem, Y, = I./n, = 1, w, = n""%iy,, n, = E(N;+) and N, = N;-. We
know that (2.2.3) holds by virtue of (1.1.5). In Section 2.3, which discusses the asymptotic
distribution of N, we will see that condition 2.2.1(ii) is met. We show that Y, satisfies
2.2.1(i) by showing that it is asymptotically equivalent to a statistic X, which satisfies

2.2.1(31).

LEMMA 2.2.2. Let
E{fa(xli)fe(xl)} 29<x,)] \

& = n—I/Z

In - 27=1 I:"'Zﬂ(xj) +

Under the regularity conditions 2.2.2(i)-(iii) below, in a fixed sample size sampling
scheme

&—> 0 as.and & = 0,(n?).



74 PATRICIA GRAMBSCH

CONDITIONS.

2.2.2(i). The first four derivatives of log fs(x) with respect to 8 exist a.s. in X in an open
neighborhood including the true value of 4.

2.2.2(ii). For all 4 in an open neighborhood including the true value,
| £8(x1) | < M(x) where E{M(X)} <K < .
2.2.2(i). E{—fy(x)Zo(x1)} = E{ %(x1)}.
These conditions are met in curved exponential families (Efron and Hinkley, 1978).

ProoF. The result follows from a Taylor series expansion of I, about the true value of
8 and the use of the strong law of large numbers. Let

E{lo(x1)05(21)} @,
—

Y. = n“[ " — dolxj) + 1 fo(xj):l ;

Y, is a sample average of iid random variables with mean i and variance i’yj. Thus, w, =
n~"%{y, is the scale factor for Y,. In the same paper, Anscombe showed that sample
averages and statistics asymptotically equivalent to sample averages satisfy 2.2.1(i). By
Lemma 2.2.2, I,,/n satisfies 2.2.1(i). Therefore, we have shown that

VE(N '
(2.2.4) Gl (I—N - 1) —-¢N@0,1) as SF*—> o,
Yo Ni
But, as will be shown in Section 2.3,
VN
(2.2.5) —>p 1.
vE(N)

Further, it is an easy application of Anscombe’s Theorem 2.2.1 to show that On—p 6 and
therefore, if vy is a continuous function of 6,

(2.2.6) Yo/ vy —p L.
Thus, we have established

THEOREM 2.2.2. Suppose Conditions 2.2.2(i)-(ili) are met and, in addition, vy is a
continuous function of 0. Then
VN/(T,
—A(—N_ - 1) —4N(0,1) as I*— o
Yo \NI

This result, showing that Ay given by (2.2.2) functions as an approximate ancillary in the
sequential sampling scheme, leads to the conjecture that for two-dimensional curved
exponential families with i, = i, the following asymptotic results hold:

@2.2.7) P{In@y— 0 <c|dn=a) > PA=<c) as I*— o
and
(2.2.8) P{2(4,— t)) =clAn=a} > P(xi<c¢) as I*— .

In Section 3, we present evidence for this conjecture by means of the results of a Monte
Carlo simulation.

2.3 Asymptotic distribution of N. In this section we show that the sequential size N
has an asymptotic normal distribution when suitably standardized.



SEQUENTIAL LIKELIHOOD INFERENCE 75

THEOREM 2.3.1 Under the sequential sampling scheme (1.1.6) and given the regularity
conditions 2.2.2(i)-(iii) for Lemma 2.2.2,
= (I*/7)
——————>¢N(0,1) as I*— oo,
YoV (I* /1) oD
Proor. The author gratefully acknowledges the comments of the Associate Editor in
suggesting a simpler proof of this theorem than that originally presented. In fact, the
theorem follows by standard methods from the following two results: (i) a theorem (see
Theorem 2, Section 9.4 of Chow and Teicher, 1978) on the asymptotic normality of
stopping times for sequences of sums of iid random variables, and (ii) Lemma 2.2.2, which
shows that I, when suitably normalized is asymptotically equivalent to a sum of iid random
variable in the strong sense of convergence with probability one.

3. Monte Carlo simulations. In this section we present the results from two small
Monte Carlo simulations, one for a location family and one for a two-dimensional curved
exponential family.

The location family was the Cauchy translation family with pdf

fox) =77 {1+ (x — )’}

The Univesity of Minnesota CDC Cyber-172 was used to generate 1000 sequential samples
with § =0 and I* = 10.0. For each sample, the sample size N and the MLE, by = 0 were
obtained and three statistics were computed. Two of them were the two asymptotlc x3
statistics of the theory, 2(£) — 4) and IN(0 #)?. For comparison, j;he gsymptotlc x: for
unconditional inference for the fixed sample size sampling scheme, % (0 % 9)* was obtained.
In this case, % = N/2. We examined the distribution of the three statistics conditional on
N, which was shown to be ancillary in Section 2.1. The samples were divided into nine
roughly equal groups on the basis of N. For each group the proportion of values of each
statistic exceeding various upper-tail values of x; distribution was obtained. Table 3.1
shows the results for the 95th percentile. The results for the 90th and 99th percentiles are
similar. The standard error of each proportion is approximately 0.02. The behavior of these
statistics is in accordance with the theory. The proportion of values above 3.84 varies
randomly with N for the two statistics 2(& — #) and In(d — 6)% For %(8 — 6)® the
proportion above 3.84 increases with IV because .#p = N/2. The proportion above 3.84 is
closer to the theoretical value of 0.05 for the statistic 2(£ — &) than for Ixy(6 — 8)2. The
improved behavior of the likelihood ratio statistic is also found in the fixed sample size
sampling scheme (Efron and Hinkley, 1978) and is in accordance with the higher order
expansion of the error terms in the asymptotic conditional distribution of these statistics
(Grambsch, 1980).

TaBLE 3.1
Proportions of SLmulatzon Statistics Exceeding 3.84, Grouped by N, in Cauchy example
Statistics
N Frequency " "
2(¢45 — 4) 6 - 0y 10 - 0)°

6-11 96 042 .052 0
12-13 95 .032 .042 .021
14-15 118 .093 .110 .059
16-17 128 .055 .055 .047
18-19 133 .046 .053 .030
20-21 115 .026 026 .026
22-24 121 .066 .099 .099
25-28 105 .048 .086 .162
29-52 89 .034 .034 .090

average proportion .050 .063 .060
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TABLE 3.2
Empirical conditional distribution of T = 2(¢;, — ¢,) given ay for I* = 30 in correlation example.
For each decile interval of an, entries are observed frequencies (in 100 samples) with which T
falls in stated x} percentile range.

Theoretical ay decile
x:

percentile 2 3 4 5 6 7 8 9 10
range
0-10 11 13 14 11 6 19 11 13 10 11
10-20 11 11 5 18 9 10 11 14 10 12
20-30 7 10 11 11 8 13 7 9 10 13
30-40 7 7 15 6 8 6 11 3 5 12
40-50 11 9 10 8 10 11 7 10 8 8
50-60 9 11 1 9 13 8 12 4 14 5
60-70 12 10 11 10 17 11 10 12 7 10
70-80 6 15 3 9 8 6 5 11 8 9
80-90 10 5 9 8 11 6 13 11 11 11
90-95 6 6 6 5 6 5 7 7 12 5
95-100 10 3 5 5 4 5 6 6 5 4

TABLE 3.3

Empirical conditional distribution of T = IN(q§N — ¢)? given ay for I* = 30 in correlation example.
(Entries as defined for Table 3.2.)

Theoretical ay decile
x:
percentile 2 3 4 5 6 7 8 9 10
range
0-10 11 13 14 11 6 19 11 13 10 11
10-20 11 11 5 18 9 10 11 14 10 12
20-30 7 9 11 11 8 13 7 9 10 13
30-40 6 8 15 6 7 6 11 3 5 12
40-50 12 8 10 8 11 11 7 10 8 8
50-60 9 11 10 9 11 8 12 4 14 5
60-70 12 10 10 9 19 10 10 11 7 10
70-80 5 15 4 10 6 7 5 12 8 10
80-90 10 5 9 8 13 6 12 10 11 10
90-95 5 6 7 4 3 4 7 7 12 5
95-100 13 4 5 6 7 6 7 7 5 4

The second Monte Carlo simulation is a two-dimensional curved exponential family.
We illustrate the conjectures of Section 2, (2.2.7) and (2.2.8) by means of the normal
correlation example discussed in Efron and Hinkley (1978). Let {(xy, x2:),:=1,2, ...} be
a sequence of iid pairs sampled from a bivariate normal density with mean vector zero,
unit variances, and correlation 6. The information in this parameterization is not constant.
We reparameterized to ¢ = v2 tanh™'(f v2) — tanh™'(ns) where 7, = 6(1 + 62)"2. We
note that i, = 1.

Several very small Monte Carlo simulations were done on the University of Minnesota
CDC Cyber-172 using various values of I'* and ¢ and the results were in accord with the
conjecture. We present the results for I* = 30.0 and ¢ = § = 0.0. One thousand sequential
samples were generated. The conjecture that conditional on ay, In(én — ¢)® and
2(¢3, — ¢;) would be distributed approximately as x{ random variables was examined by
obtaining empirical conditional distributions for the two statistics. The empirical distri-
bution for the ancillary statistic was divided exactly into deciles. A grouped empirical
frequency distribution was obtained for each of the two observed likelihood statistics for
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the 100 sequential samples whose ancillary fell into each decile. The groups corresponded
to the deciles of a x{ distribution, with the exception that the 10th decile was divided at
the 95th percentile to examine tail behavior. The results are shown in Tables 3.2 and 3.3.

The frequencies expected under a 3 distribution would be 10 in each of the first 9 rows
and five in each of the last two. The empirical data fit the x} distribution quite well in both
tables.

For each table, we computed the Pearson goodness-of fit statistic x> = (O — E )2/E
which is asymptotlcally distributed as a xi0. We found x® = 98.10 for 2(¢;, — &) and x*
= 111.70 for In($ — )% There is good reason to be satisfied with the hypothesis that the
statistics have conditional x? distributions given the ancillary statistic. These two Monte
Carlo simulations show that the conditional distribution of the two likelihood statistics is
approximated quite well by a x? even for moderate values of I*.

4. Summary and conclusions. In this paper, we have examined a sampling scheme
in which observations are taken sequentially until the precision of § reaches a desired level,
and have shown that asymptotic conditional inference based on likelihood statistics is
identical to that in the fixed sample size experiment. More theoretical work is needed for
the curved exponential family and extensions of it. Useful applications should be examined.

Acknowledgments. The author wishes to thank David Hinkley for many useful
discussions on this topic.
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