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SOME NONDEGENERATE LIMIT LAWS FOR THE
SELECTION DIFFERENTIAL

By H. N. NAGARAJA

The Ohio State University

The difference between the average of the top % out of n order statistics
and the population mean expressed in population standard deviation units is
known as the selection differential. This paper obtains some nondegenerate

¢ limit laws for this quantity. The results are applied to the construction of
tables used in testing for outliers.

1. Introduction. Let X, < X5, =< ... X,., denote the order statistics of a random
sample of size n from a distribution with distribution function (df) F, mean p. and variance
o”. Suppose we select the k largest values in the sample. The difference between the
average of the selected group and population mean expressed in standard deviation units
is called the selection differential, and may be written as Dy, = k™ Y&p_pi1 (X, — p)/o.
The selection differential has long been a familiar term to geneticists and breeders and is
a useful measure of improvement due to selection in breeding problems (see, e.g., Burrows,
1972). It also serves as a good test statistic in testing for outliers from normal populations.

Throughout this paper we assume that y and o are known and without loss of generality
take p = 0 and o = 1 in our discussion. We obtain nondegenerate limit laws for Dj,, in the
following cases: (i) the “extreme case”, where % is held fixed, and n becomes infinitely
large; (ii) the “quantile case” where k = [np], 0 <p <1 and n— «. Here [-] is the greatest
integer function. The extreme case is closely associated with extreme value theory, whereas
in the quantile case, the asymptotic results on linear functions of order statistics are
relevant. Finally, we compare the approximate percentage points for D, as given by these
limit laws with those obtained by simulation in Barnett and Lewis (1978).

2. Extreme case. Suppose there exist constants a, and &, > 0 such that
(1) P{(Xnn — @n)/br = x} = F™(an + box) — G(x)

as n — o, where G is a nondegenerate df. We then write F € D(G). Gnedenko (1943) has
shown that G can be one of the three types of distributions denoted by ®,, ¥, and A. From
Lamperti (1964) it follows that if (1) holds, then for each % = 1, the vector ((X,.. — @) /b,
(Xn-1n — @2)/bn, -+, Xn—rsr1n — @.)/b,) has, in the limit, the joint distribution of (T,
-+ +, T%), where a canonical representation for 7}’s in terms of standard exponential random
variables (rv’s) is given by Hall (1978). Since (Din — @n)/bn = k7' Y5y (Xnsit1n — Gn)/bn
is a continuous function of these components, it is immediate that (Dipn — @n)/bn — o (T
+ .-+ + Ty)/k = Dy, say. Using Hall’s (1978) representation for the 7’s, one can write a
representation for D,. It turns out that only when G = A, can one write the closed form
expression for the df of D, (see Nagaraja, 1980). It is given by the following result.

THEOREM 1. If F € D(A), then (D, — a,)/b, converges in law to a rv Dy whose df
for —o < x < 0 and k = 2 is given by

k—1 e L7

@ B = ﬁzf;; —,r J exp{—exp(u — x)}exp{—u(k — j) }u*"* du.
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Direct manipulation of the representation given by Hall proves the result. For details
see Nagaraja (1980). Numerical computations show that this limit distribution is positively
skewed and its density becomes more peaked as k increases.

3. Quantile case. Here we assume that k = [np], 0 < p < 1, and derive the asymptotic
distribution of Dy, appropriately normalized, as n — o. The limit distribution depends on
whether the gth quantile of F is unique where ¢ = 1 — p. When it is unique, the limit
distribution can be obtained as a corollary to the limit law for linear functions of order
statistics. Several authors have considered this problem, imposing different restrictions on
F and the linear function. However, the most general result for D, with the least
restrictions on F is obtained by appealing to Stigler (1973), since Dy, is a trimmed mean.
He does not require a unique gth quantile and his result is given below.

THEOREM 2 (Stigler, 1973). Let a = sup{x: F(x) < q} and A = a — inf{x: F(x) = q}.
Then as n — o (with p =0, 0 = 1),
3) VE(Din = tp) = Y1 + (@ — ) Y2 — A max(0, Yz)
where Y, is N(0, o2), Y2 is N(0, q¢) and Y, and Y, are independent. Here p, and o> are the
mean and variance of the distribution obtained by truncating F below at a.

If A =0, a = £, the unique quantile, (3) can be written as
) VEDin = 1y) =+ N0, % + qlup — £)°).
We now investigate the case when % is not exactly [np], but is fairly close. To be precise,
when vn (p — k/n) converges to a finite constant, we find the asymptotic distribution of
Dy.

THEOREM 3. If Vn(p — k/n) — c, a finite constant, then
) VE (D = 1) = N(eltp = £)/Vp, 63 + gy — £)?)
if &, is the unique gth quantile.

Proor. Without loss of generality we take & 5 [np] in the proof and let S, = )y A——
X.n = kDy,. Then it can be seen that

Sk,n - S[np],n
k — [np]

Note that Xy — » & and Xp—(npn — » & (Smirnov, 1952, page 9). Hence (S, — Strpyn)/
(k — [np]) > » £, and consequently as n — ©  (Sy, — Siupyn) Nk — » (=) g,/«/; . Now

VE(Din = ) = ((Sen = Siuon)/VEY + {1701/ VE} ((Stupyn/ [10]) — i}
+ {wp([np] — k)/VE),

where the first term converges to —gqc/\/l—y in probability, the second term converges in law
to N(0, o, + q(u, — &)*) from (4) and the last term tends to cp,/~p . Hence we obtain (5).

mln(X —kny Xn—[np]:n) = = maX(Xn—k:n’ Xn—[np]:n)-

4. Application to testing for outliers. Let X;, X, ---, X, be independent rv’s, with
X, ~ N(ui, 0°),i=1,2, ..., n. Consider the problem of testing the hypothesis H: y; = pg
= .-+ u» = p against the alternative A: % of the p,’s are equal to p + §(8 > 0) and the
remainder are equal to p. In this outlier testing problem & Dy, = (S, — ku)/o is used as a
test statistic when p and o are known. In fact, when u and o are estimated by X and S,
Barnett and Lewis (1978, pages 95-96) point out that the test which rejects H for large
values of (Sk. — kX) has some desirable properties.
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TABLE 1 TABLE 2
Percentile points of the df Fi of Theorem 1. Values of the norming constants for selected n.
k 2 3 4 n a, an ba b.
k.95 1.800 1.154 0.715 30 1.8882 1.9146 3834 5223
50 2.1009 2.1118 3575 4735
oo 2813 1933 1.364 100 23663 23753 3295 4210

500 29075  2.9080 .2836 .3439
1000 3.1165  3.1153 .2690 3210

Because of the above motivation, considerable attention has been given to the percent-
age points of Dy,. Since the distribution of D, is free from p and o, without loss of
generality we take p = 0, 6 = 1. We compare approximations to 95th and 99th percentiles
of D, under H obtained by using the asymptotic theory assuming (a) & fixed, (b) & =
[np], 0 < p < 1, and the ones computed from Table IXg of Barnett and Lewis (1978). That
table gives percentage points for £D;, and is obtained by simulation.

(a) When £ is fixed since the standard normal df, ® € D(A), the 100sth percentile
point, &, of the limiting distribution of (D, — @.)/b, can be obtained from (2). It is given
in Table 1 for s = .95 and .99.

Now the problem is to use “good” choices of a, and b,. Often these are given as (see,
e.g., Galambos, 1978, page 65)

6) a, = (2log n)"’* — [{log(47 log n)}/{2(2 log n)"*}],
b, = (2log n)~"2,

It is also known that any other sequence a, and b}, such that b,/b, — 1 and (a, — a;,)/bx
— 0 as n — o would serve asymptotically. But Hall (1979) has shown that the best rate of
convergence of SUpP-w<i<w | P" (@, + b,x) — A(x)| is achieved when a, and b, are chosen
such that

(7) 27a2 exp(a2) = n® and b, = 1/a,.

Let a} and b} be the solutions of (7). Table 2 illustrates the differences in a, and b, as
*

given by (6) and a;, b;.

The approximate percentage points of Dy, are then given by a, + b.&.s and a;; + b} &,
for the two choices of constants, and are denoted by Ext(a., b.) and Ext(a;, b)),
respectively.

(b) For given n and % we can take p = (k/n) and use (4) of the quantile case set-up. For
a normal parent, Burrows (1975) has tabulated the limiting variance ¢ = o} + q(u, —
£,)? for various values of p. Also w, = ¢(¢,)/p, where ¢ is the standard normal density.
Burrows (1972) has also obtained an approximation to E (D) which converges to u, at
the rate of 1/n. Hence we can use his approximation g, = u, — [(n — R)/{2u,k(n + 1)}]
instead of y, in (4). These give another pair of approximations to the percentage points of
D,.,, namely p, + z.0p/vk and {1, + z.0p/ vk where z, is the upper 100a percentile point
of ®. These are denoted by Qnt(u,) and Qnt(fi,) respectively.

We compare the above four approximations to the simulated 95th and 99th percentile
points of D, obtained from Table IXg of Barnett and Lewis (1978). These simulated
points are labeled Sim (B&L). Table 3 gives these five approximations for 2 = 2, 3, 4 and
n = 20, 30, 40, 50, 100.

DiscussioN. The empirical evidence expressed in Table 3 shows that Ext(a., b,) does
much better than Ext(a}, b}) for all n, k£ and the percentages considered in the sense that
it is much closer to Sim (B&L) than the latter. Even though a;f and b} are supposed to
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TABLE 3
95% points 99% points
n Ext Ext Qnt Qnt Sim Ext Ext Qnt Qnt Sim
(an,bn) (a:ﬂb:l) (o) (ﬁ'p) (B&L) (an,byn) (a:;,b:.) (1p) (fip) (B&L)

k=2

20 2.44 2.78 2.46 2.34 2.37 2.86 3.36 2.76 2.64 2.72

30 2.58 2.85 2.61 2.50 2.561 2.97 3.38 2.89 2.78 2.84

40 2.67 2.92 2.70 2.58 2.62 3.05 3.42 2.97 2.85 2.93

50 2.74 2.97 2.78 2.67 2.68 3.10 3.45 3.04 2.93 3.02
100 2.96 3.13 3.00 2.90 2.92 3.29 3.56 3.23 3.13 3.20

k=3

20 2.18 241 2.17 2.08 2.10 2.50 2.85 2.43 2.34 2.39

30 2.33 2.562 2.33 2.25 2.26 2.63 2.92 2.57 2.49 2.54

40 2.43 2.60 2.44 2.36 2.38 2.72 2.98 2.67 2.59 2.63

50 2.51 2.66 2.52 2.44 2.45 2.79 3.03 2.74 2.66 2.72
100 2.75 2.86 2.76 2.69 2.70 3.00 3.19 2.96 2.89 2.94
k=4

20 2.00 2.156 1.96 1.89 1.90 2.26 2.63 2.20 2.13 2.16

30 2.16 2.29 2.14 2.08 2.08 241 2.63 2.36 2.30 2.32

40 2.27 2.38 2.26 2.20 2.21 2.61 2.70 2.46 2.40 2.43

50 2.36 2.46 2.34 2.28 2.28 2.59 2.76 2.54 2.48 2.53
100 2.60 2.68 2.60 2.54 2.55 2.82 2.95 2.78 2.72 2.78

Five approximations to the percentage points of Dy, for the normal parent population.

make the convergence of the df of X,,., faster in the sense of the supremum over the entire
real line, Ext(a;, b%) does not perform as well as Ext(a., b,) at the 95th and 99th percentile
points of Dy .. Further, the quantile approach seems to yield better approximation than
the extreme approach. At 95 percent level Qnt(j,,) comes closest to Sim (B&L), but is
always less than the latter. Also, at this level Ext(a,, b.) and Qnt(u,) approach each other
as n increases for £ = 3 even though both are off from Sim (B&L). But at the 99 percent
level Qnt(u,) does very well indeed, the better with increased % for given n.

5. Concluding remarks. In this paper we considered two cases where £ is fixed and
k = [np], 0 < p < 1, while obtaining the limit distribution of D,,. One may also consider
the asymptotically extreme case where & — o but 2 = o(n). We are as yet unable to obtain
the limit distribution for an arbitrary F under this setup. For the standard exponential
parent, however, we can show that V& {Drpn — log(n/k)} = » N (0, 2). Our proof uses the
independence of the spacings and the representation for X, ., in terms of standard
exponential rv’s (see Renyi, 1953, page 194).
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