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A NOTE ON OPTIMAL AND ASYMPTOTICALLY OPTIMAL DESIGNS
FOR CERTAIN TIME SERIES MODELS
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The problem of regression design in the presence of correlated errors is
considered. Under the assumption that derivative information is available on
the response process, uniqueness results for optimal designs given in Eubank,
Smith and Smith (1981) for the BLUE of the regression coefficient are
‘extended to a wider class of processes. In the event that derivatives cannot be
sampled, an asymptotic solution is developed and extended to the multipara-
meter setting.

1. Introduction. Consider the linear regression model in which one observes a
stochastic process, Y, of the form

(1.1) Y(¢) = Bre) + X(¢), telo,1],

where § is an unknown parameter, fis a known regression function and X is a zero mean
process with known covariance kernel R. The X process is assumed to admit 2 — 1
quadratic mean derivatives.

If the Y process is sampled at only a finite number of noncoincident design points, then
the best linear unbiased estimator (BLUE) of B is obtained by generalized least squares.
In this paper we consider the problem of optimal design selection for the BLUE. More
precisely, we consider the selection of an element from the set of all (n + 2)-point designs,
D,={(to, t1, ~++ , ta, tar1): 0 =to < &1 < +++ < t, < tp+1 = 1}, which provides minimal
variance for the BLUE.

For model (1.1) two types of BLUE’s have been studied in the literature. If information
is available on the Y process alone then, given T' € D,, the BLUE is computed using
{Y():t € T}. Let ,@T denote this estimator of 8. The properties of optimal designs for ,éT
have been studied by Sacks and Ylvisaker (1966, 1968, 1970) for £ = 1, 2 and certain types
of covariance kernels. As optimal designs are difficult to construct, they develop an
asymptotic (approximate) solution based on design sequences. If A is a continuous density
on [0, 1] then A generates a sequence of designs, {T,} with T, € D,, whose nth element
consists of the (n + 1)-tiles of A. This sequence is termed the regular sequence (RS)
generated by h which we abbreviate by :{T,} is RS(%). Their approximate solution is
obtained by deriving a density A * for which the corresponding RS,{T'%}, is asymptotically
optimal in the sense that

(1.2) lim,_.« {infrep, Var(r) — Var(8)} {Var(By,) — Var(§)} ™' = 1,

where ,é is the linear estimator of 8 based ont Y information from all of [0, 1] (c.f. Parzen,
1961a, b). One then samples according to T'; for n sufficiently large.

If, in addition to the Y process, its first £ — 1 derivatives can also be sampled, this
results in a different BLUE constructed from the observations {Y“(t):i=0, .--, k2 — 1,
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¢t € T}, which we denote as B r. Approximate solutions to the optimal design problem for
:812 1, similar to those for ,8T, have been developed by Sacks and Ylvisaker (1970), Wahba
(1971, 1974) and Hajek and Kimeldorf (1974); see also Speckman (1982) for some closely
related work.

In this paper the design problems for both A7 and Br.r will be considered for a specific
class of X processes. Define the covariance kernel

(1.3) K(s, t) = {( — 1)1} ZJ (s —w)e ' (t — w)t ™ du
0

where (x)% = x* for x = 0 and is zero otherwise. Let Z (¢) denote the corresponding normal
process and define a new process by

_|Z®) —EZW)|ZV(),j=k—q, -+, k—1], 0<g=<k,
(1.4) W) = {Z(t), q=0.
Now, and in subsequent discussions, we restrict R to the form
(1.5) R(s, t) = Cov{W(s), W(t)}.

The case g = 0 corresponds to the covariance kernel for a (k — 1)-fold multiple integral of
a Brownian motion process and has played an important role in previous work on this
design problem (cf. Sacks and Ylvisaker, 1970). When ¢ = 1, (1.4) is the covariance kernel
for a (k — 1)-fold multiple integral of a Brownian bridge process. Although not discussed
here, the results of this paper, in this instance, have applications to data compression for
location and/or scale parameter estimation using sample quantiles; see Eubank (1981) as
an illustration for £ = 1. The case of ¢ = & was studied in Eubank, Smith and Smith (1981)
which i is hereafter referred to as ESS (1981).

For ,Bk 7 our primary concern is with optimal designs, as an asymptotic solution follows
from Sacks and Ylvisaker (1970). In Section 2 it is shown that the uniqueness results for
optimal designs given by ESS (1981) in the case q = % for kernel (1.5) extend to all values
0 = g = k. As we will frequently draw from results in ESS (1981) the reader is referred to
that paper for notation or results not explicitly mentioned here.

The design problem for §r is more complicated and only asymptotically optimal designs
are considered. In contrast to previous studies, however, such designs are constructed for
general &, not just £ = 1 or 2. These results are also extended to the multiparameter or
multiple regression setting.

2. Optimal designs for ,Bk r. The optimal design problem for B consists of finding
a T* € D, that satisfies Var(ﬁk r+) =infrep, Var(ﬁk 7). This may be reformulated as a best
approximation problem 1nvolv1ng £, the regression function, through use of the reproducing
kernel Hilbert space (RKHS) that is generated by R and is congruent to the X process (see
Parzen, 1961a, b). Denote this RKHS by H(R) and its norm by || - || z. Also, for T € D,, let
R} 7 denote the H(R) subspace spanned by {R*”(-,¢):7=0, ...,k —1,t € T}, where

1+

(2.1) R“(s, t) =—— R(s, t),

as'at’
with associated orthogonal projection operator #,,r. It can then be shown that || %, rf|| z*

= V(). As || Zurfl = 1fI% = | f — 2. rf||% the optimal design problem is now seen as
equivalent to finding a T* € D, such that

(2.2) |f— 2y r+fllr = infrep, | f — Rrrf 5.

For covariance kernels of the form (1.5), it can be verified that a function f € H(R)
admits 2 — 1 absolutely continuous derivatives with f* € L,[0, 1] and will satisfy the
boundary conditions f'(0) =0,/ =0, ... ,k—1land fV(1) =0,j=k—gq, ---, k — 1 for
l=sg=skorjustf”0)=0,j=0, ...,k —1for g =0. The norm for f € H(R) is
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(2.3) Il =171

where || - || is the usual L2[0, 1] norm. If we now let R} r denote the L,[0, 1] linear span of
{R*)(.,¢):j=0, .-+, k—1,t € T} with associated orthogonal projector %% r then, from
(2.3), the optimal design problem is also equivalent to: Find T* € D, such that

(24) If* = R P || = infrep, | f* — Rh2f™|.

To study the properties of optimal designs a connection will be established between
problem (2.4) and the best L,[0, 1] approximation of f* by piecewise polynomials with
variable breakpoints. The results we require, subsequently, regarding this latter problem
can be found in Section 3 of ESS (1981). However, slightly different notation is employed

here that is now summarized. For (&, ¢, - - - , tn, tr+1) € D, we will use Py, to denote the
set of all piecewise polynomials of order & with breakpoints at ¢, ---, t, and @, 1 to
represent its associated L.[0, 1] orthogonal projection operator. We also define

(2.5) pis)=({t—s)7/G=1, i=1,---,k

with the convention that

(2.6) p'(s) =pi(s) =1 —s)7/G—=1, i=1,---,k

It is well known that {pi: i =1, --., k, t € T} provides a basis for P, r and that the
subspace of polynomials of order g, denoted P,, is spanned by {p=i=1, ---,q}. We now

proceed to examine the form of R} r.
Define »'/ () as the ¢ X 1 vector having ith element

1
pfﬂ(s)l’q_l(s) dS, i=07"'7q_1yj=0y"')k_17
[

(2.7 v (t) = . .
p77(t), 1=0,--+,g—1j=kr

Also, let B denote the ¢ X ¢ matrix whose elements are
1

(2.8) b, = J P (s)p?s) ds, 1,j=0,---,q—1
)

Straightforward calculations then show that
(2.9) R™(s,8) = pi™(s) = (»"(s)) B~ (v (1)),

which is recognized as the error function from the L,[0, 1] approximation of pf~ from P,,.
Thus, from (2.9) and a dimensionality argument, we see that Py, = R%r ® P,. Conse-
quently, problem (2.4) is a form of variable breakpoint L.[0, 1] piecewise polynomial
approximation problem for f**. However, to apply available results on piecewise polyno-
mial approximation it is first necessary to.show that 2, rf*® = %% rf*®. This can be
accomplished as in ESS (1981) through integration by parts and application of the H(R)
boundary conditions. A shorter statistical proof has been supplied by a referee who notes
that f € H(R) is isomorphic to some Z in the Hilbert space spanned by {Z(¢): 0 <t =< 1)
and, due to f’s membership in H(R), Z L Z“(1),i=k — q, ---, £ — 1. The result now
follows from

E[Z|WY(t),0<i<k tE T]=E[Z|W"(t),0=<i<ktE T,ZV(1), k—q=<j<k]
=E[Z|ZP@),0= i<k teT, ZV(1),k—q=j<k]

upon noting that the kth derivative for the first term is 2% 7f® and Z, rf ® for the last.
We can now apply Theorems 3.1 and 3.2 of ESS (1981) to problem (2.4) and conclude,

therefore, that Theorems 2.1-2.3 of ESS (1981) hold for processes with covariance kernels

of the form (1.5) for all values 0 < g < k. Thus, in particular, if f € H(R) N C*[0, 1] and
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£ is of one sign on [0, 1] with log f* (or log-f ®* as appropriate) concave on (0, 1) then
Br.r has unique optimal designs for each n.

REMARK 2.1. The work in this section has the consequence that optimal designs for
model (1.1) with R as in (1.5) can be constructed using the algorithm in Eubank, Smith
and Smith (1982). These processes, therefore, provide some of the few instances where
optimal designs can be readily computed.

REMARK 2.2. It follows from Sacks and Ylvisaker £ 1970) that if f € H(R) N C* [0, 1]
then the asymptotic behaviour of optimal designs for B r is characterized by

) . (k1) 1 .
(2.10)  lim,n® infrep, || f* — Birf® ||? = RIERR) | £ () |25 e o1,

One can, however, exploit the connection between the design problem for these processes
and piecewise polynomial approximation to obtain (2.10) under weaker conditions such as
f € H(R) with f € C*7'[0, 1] and f®® € Li[0, 1] (see Burchard and Hale, 1975). Similar
comments can be made for other asymptotic results about designs for B r.

3. Asymptoticallonptimal designs for ﬁq- In this section, we consider the problem
of design selection for Br. An optimal design, in this setting, is a T* € D, that satisfies

3.1) Var(Br.) = infrep, Var(Br).

It has been noted by Sacks and Ylvisaker (1966) that for processes which are differentiable
in quadratic mean the optimal designs may lie on the boundary of D, and, hence, require
the use of derivative information. We will, however, develop an approximate solution to
(3.1) that does not involve the use of derivatives of the Y process.

To devise our approximate solution, problem (3.1) will be reformulated as an L,[0, 1]
variable knot spline approximation problem for . In the process we will have occasion
to use several spline subspaces and, since all projections are in L2 [0, 1], adopt the notational
convention that the projection operators for subspaces are denoted through the use of
script symbols. For example, given T = {t, t1, -+, ts, tar1} € D,, define the set of all
splines of order % with knots at ¢, - - -, £, by Sx.r = P, r N C*72[0, 1]. The L2[0, 1] projection
operator for S, 7 is then denoted % r.

Problem (3.1) can also be formulated as a best approximation problem in L,[0, 1]. For
T € D,, let R% denote the L,[0, 1] linear span of {R*? (-, ¢): t € T'}; then by arguments
such as those in Section 2, it follows that selecting an optimal design for ,éT is equivalent
to finding a T* € D, that satisfies

@2 |/ — REF | = infrep, | £ — REF 2.

Upon examination of (2.9), we see that Rxr C Sk and, hence, (3.2) is a form of free knot
spline approximation problem for f*. In fact, when q = &, it follows from Section 2 that
Sir = R% ® P, with f® L P,. Therefore, %.rf* = #%f* and results from the theory of
spline approximation may be applied directly. This fact was used to obtain Theorems 5.1
and 5.2 in ESS (1981). We now concentrate on extending these results to ¢ < .

For g < k assume that f € C%*[0, 1] and admits the representation

1

(3.3) f(t) = (-—l)kj fe(s)R(s, t) ds.

0
This has the consequence that f satisfies the additional boundary conditions
(3.4) fE21) =0, j=¢, -+, k=1L
Also, observe, from (2.9), that R*% (., ¢) satisfies (3.4) except for ¢ = 1 when R*%(1, 1) =
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1. Thus, for T' € D,, let T’ denote the set obtained by deleting the element ¢,+; = 1 and
consider the subspace R%, spanned by {R* (-, t):¢t € T"}. This latter subspace is properly
contained in Sj ;, the set of all splines in S;,r satisfying (3.4). A dimensionality argument
and results from Section 2 show these two subspaces are related by S}, = R% @ P,.
Problem (3.2) is then very nearly a variable knot spline approximation problem where
both the splines and function being approximated are subject to boundary constraints.

The asymptotic properties of free knot approximation by splines and splines subject to
boundary conditions have been studied by Barrow and Smith (1978, 1979). For the problem
at hand their results have the consequence that

tim, o infrep, | /% = S af® | = limy-.oninfrep, | 1 = Surf ™.

They have also shown that an asymptotically optimal design (knot) sequence is generated
by the density proportional to | f ¥ |2#**!, To apply these results to problem (3.2), we need
only observe that

@35 NP =Lif U= =R fON= O = RO NN = SurfP

which, in view of Theorems 3.3 and 3.4 of ESS (1981) and previous comments, allows us to
state the following theorem.

THEOREM 1. Suppose f satisfies (3.3) with f® € C[0, 1]. If h is a continuous density
on [0, 1] and {T,} is RS (h) then

1
(3.6) lim,..n™ | f* — &% P |* = C% J’ [ (x))*/h(x)] dx,
0

where C, = | Bar | /2k! and Bay, is the 2kth Bernoulli number. An optimal density is

1
3.7) h*(x) = |f(2k)(x)|2/2k+l/j |f(2k)(s)|2/2k+1 ds
0

for which the corresponding RS, {T'%}, satisfies

o™ || f* = Rl fP|? = limon™infrep, | f* — 257 |

1 2/(2k+1) 2k+1
= C;‘Z{ J dx} .
0

REMARK 1. Theorem 1 provides the first result of its kind, of which we are aware, for
general k. By reference to Sacks and Ylvisaker (1970), {T'*} is found to also provide
asymptotically optimal designs for 8 r. The only difference in the limits of n| f* —
R5x f® ||?and n?* || f® — &% v f*| is their respective asymptotic constants C3 and (k!)?/
{(2k)!(2k + 1)!}. We conjecture that this type of result holds for more general processes
such as those considered by Sacks and Ylvisaker (1970).

(3.8)

f(2k) ( x)

REMARK 2. It should be noted that the best spline approximant to /¥’ may have
interior knots (design points) with multiplicities. This means, as noted previously, that
optimal designs may require derivative information. However, as a result of Theorem 1,
we can do as well asymptotically without derivatives by using Bry.

To conclude this section we consider the extension of Theorem 1 to the multiparameter
setting where Y has the form

(3.9) Y(@#) =YL Bif(0 + X@), te][o,1]

The objective now is to obtain asymptotically optimal designs for ,éT the BLUE of 8 =
(B1, + -+, Bs) . Let A7' denote the variance-covariance matrix for 87 and let 8 denote the
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linear estimator of B, with Var( ,é) = A7 say, obtained using information over all of
[0, 1]. To accomplish our objective it suffices to prove the following analog of Theorem 3.2
of Sacks and Ylvisaker (1968).

THEOREM 2. Forj=1,--.,J assume that f; satisfies (3.3) with f*® € C[0, 1] and for
any set of positive constants a,, - - -, as define the density

310)  A*) = [Tk o (@] / J (S5 @ (£ (5))°17/" ds.
0

If {T,.} is any design sequence and {T*} is RS(h*) then

lim inf"%wn”‘ Z}Ll a, " fj(k) _ '@];‘,,f(k) "2
(3.11)

1 2k+1
z limuen® Nl a| £ = R4 (P 1* = CH| | [Z5% o {7 @)Y/ dx) .
J J
0

Proor. It suffices to prove the inequality in (3.11) as the remainder follows from
Theorem 1. This can be accomplished by modifying the proof to Theorem 2 in Barrow and
Smith (1978). We highlight the differences here and refer the reader to the latter paper for
more details.

First note from (3.5) that the result will follow upon showing that

1 2k+1
(312) YL a,uf;’“—yk,rnf‘k‘||220%< J (255 @ (£ (x) )]/ D dx) .
0

The proof now proceeds by showing that (3.12) holds first when f* (¢) = ¢,¢*/k! where ¢,
is a constant and then when f* (¢) € C*[0, 1] with ¥ ;~; a,{ /** (¢)}* = § > 0 before finally
considering the general case of f*' € C*[0, 1]. The details involved in verifying (3.12) for
these cases can be deduced from Barrow and Smith (1978).

Using Theorem 2 it is now possible to obtain analogs of the theorems given in Section
4 of Sacks and Ylvisaker (1968) using similar methods of proof. For example it follows
from Theorem 2 that if ¢(x) = (f*(x), ---, f#¥(x)), the density proportional to
{¢(x)' A7 p(x)}/®*D generates an asymptotically D-optimal design sequence, {T%}, in the
sense that

limp— {det(A) — suprep, det(Ar)} {det(4) — det(A;.)} ' = 1.
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