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BAYES EMPIRICAL BAYES: FINITE PARAMETER CASE!
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Since Robbins (1956), a large literature has evolved treating the empirical
Bayes formulation of a sequence of decision problems. In this paper we look
at the formulation and the asymptotic optimality criterion as a classical iid
problem and a consistency property. With this point of view and the finite

. state component problem, we evoke classical results on Bayes procedures to
prove a complete class theorem and to establish the asymptotic optimality of
Bayes empirical Bayes procedures.

1. Empirical Bayes. The empirical Bayes decision problem of Robbins (1956)
consists of a sequence of independent repetitions of a given component decision problem.
At the nth stage, data from the past as well as present stage are available on which to base
a decision. In this paper, we consider the empirical Bayes decision problem with a general
finite-state component and show that, at each stage n, the class of Bayes empirical Bayes
procedures is complete. Moreover, we prove that, for a prior with support equal to the
simplex of all conponent priors, the Bayes empirical Bayes procedure is asymptotically
optimal, i.e., has risk converging to minimum risk as n — o.

Consider the component decision problem with observation X ~ P, taking values in
%, parameters 6 € O, action space A, decision rules d € D, loss L(8, d(X)) = 0, risk R (6,
d), priors G € ¥, Bayes risk R (G, d), Bayes rules dg and minimum Bayes risk R (G). Here
0 can be anything from an index for a finite set of distributions to a distribution function
to be estimated.

The standard empirical Bayes problem is usually formulated as follows. Let (6, X}),
«ooy (6, X2), - -+ be iid with (6, X) having distribution G on # and, conditional on 6, P, on
X. Foreachn=1,X=(Xy, ---,X,) ~P%t=Pg X .-+ X Pg, where P; denotes the G
mixture of the Py. A decision is to be made about 6, using X with loss L(6,, t.(X)). A
sequence t, is referred to as an empirical Bayes decision procedure. It is said to be
asymptotically optimal (a.o0.) if

lim,EL(@,, t.(X)) = R(G) forall GeE %.

Empirical Bayes problems with a great variety of components have been treated in the
literature. Most work has concerned the development of ad hoc a.o. procedures.

A point of view which this paper adopts (also see Meeden, 1972, Section 4) better
exposes the classical structure of this decision problem. Let ¢ (X) denotes the X-section of
t, where X = (Xi, « -+, X, 1) so that E[L(6,, t.(X))|X] = R(G, ¢(X)). We call this “loss”
in the decision problem with observation X ~ P&} taking values in 2", parameters G
€ ¥, action space D, decision rules ¢ € ®, 16ss R (G, (p(X)), risk which we denote by R(G,
@), priors A € %*, Bayes risk R(A, ¢), Bayes rules ¢, and minimum Bayes risk R(A).

Admissibility considerations for the empirical Bayes rule ¢, in terms of EL(,, t,(X)) as
a function of G correspond to the usual admissibility considerations for ¢ in terms of its
risk function R(G, ¢). The Robbins a.o. property for the empirical Bayes decision rule £,
is seen to be the classical mean loss consistency of the decision procedure ¢. Schwartz
(1965), for example, defines the weak (in prob.) and strong (a.s.) versions.
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It follows that classical results in decision theory for models with iid Pgs-distributed
observations have immediate implications for the empirical Bayes decision problem
formulated in terms of the sections ¢. Among these results are complete class and
consistency theorems for Bayes procedures. This comment does not presently have a far-
reaching impact on empirical Bayes theory because the high dimensionality of the
parameter set ¥ limits the applicability of the classical theorems. However, we believe it
is worthwhile to set down some implications of classical Bayes theory to some simpler
empirical Bayes problems, in particular, for the finite ® component problem.

2. Bayes empirical Bayes. For notational convenience replace n — 1 by n and x by
X. An empirical Bayes decision rule ¢ is Bayes w.r.t. A € ¥* and is denoted by g, if it is
a minimizer (across ®) of

(1) R(A, 9) = f R(G, 9)A(dG) = J' f R(G, p(x)) P& (dx)A(dG).
A minimizer can be constructed pointwise (when possible) by choosing @a(x) to minimize
(2) f R(G, p(x))A(dG | x),

where A(-]x) is conditional probability on G given X = x in the model G ~ A and,
conditional on G, X ~ P¢. Since R (G, ¢(x)) is linear in G, it follows from (2) that ¢, is
given by

3) ax) = d¢

where G is the A(- | x) mixture of G. (This notation hides the display of dependence of G
on A and x.) Note that ¢, is pointwise component Bayes relative to the induced estimator
G. Of course, (3) exposes how loss consistency of @a can often be reduced to a question of
the consistency of the estimator G for G.

Lindley (1961, 1971) and other advocates of Bayesian statistics have proposed the use
of Bayes rules in the empirical Bayes setting. Deely and Lindley (1981) discuss Bayes
empirical Bayes methods and contrast the same with the usual ad hoc empirical Bayes
rules. However, from their Bayesian perspective, there is little to no interest in the
frequentist risk functions R(G, ¢) and asymptotic optimality.

3. Bayes empirical Bayes — finite ®. In this section, ® = {0, 1, ..., m}, where m
= 1 and S denotes the risk set in R™*! of the component decision problem. The class of
distributions % is the m-dimensional simplex of probability measures on ©, G = (go, &1,
<+, 8») and Pg = Y7 g:P;. We let o7 denote the o-field of subsets for the component
observation space % and adopt the S-game point of view.

For each n > 0, the class of nonrandomized empirical Bayes rules is
(4) &= {p|p= (9%, -+, ") is an x-measurable mapping into S}.

In the no (previous) data problem, n = 0, ® is taken to be the empirical Bayes action space
S.Forpe®, GE ¥ thelossatx e 2" is
(5) R(G, p(x)) = G'op(x),

the inner product of the vectors G and ¢ (x), and the risk is

(6) R(G, ¢) = J G'p(x)P&(dx).

REMARK 1. If S is compact and convex, behavioral empirical Bayes rules need not be
considered. For if ¢ is a mapping into the probability measures on S, then by (5) and
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Ferguson (1967, Lemma 2.7.3), it is risk equivalent to the element of ® which maps x into
the mean of ¢ (x).

Let A € *, the class of all probability measures on the Borel subsets of 4. The Bayes
risk of ¢ w.r.t. to A is

(7) R(A, ¢) = J G’ (x) Py (dx).
In (7), P, denotes the A-mixture of the P&, G € 4, and G is the conditional expectation

(8) G= f GA(dG | x).

REMARK 2. If S is compact, then (7) has a minimizer @a(x) = dg € ®. The existence
of a x-measurable pointwise minimizer g, of G’¢(x) is guaranteed by LeCam (1956,
Theorem 3.3.2), also by Brown and Purves (1973, Corollary 1); furthermore, it is seen to be
pointwise component Bayes with respect to G. Ifn =0, G is the mean of A.

REMARK 3. If S is bounded, then for each ¢ € ®, R(G, ¢) is a polynomial in G € %.
This is immediate in view of (6), the fact that P¢ = }'¢" & P;, and the boundedness of ¢
which ensures finite coefficients.

THEOREM 1. Suppose that S is a compact, convex subset of R™*'. Then for each n =
0, the class of Bayes rules,

9) % = {p € ® | p minimizes (7) for some A € G*},

is complete in .

Proor. If n =0, 4 consists of the component Bayes points in S and is complete by
Ferguson (1967, Theorem 2.10.2). Let n = 1. By Lemma 1 of the Appendix and Ferguson
(1967, Theorem 2.10.3), the class 4. of extended Bayes rules in ® is essentially complete in
®. Let ¢ € %.. Then by definition, for every integer m > 0, there exists a prior distribution
A, such that

(10) R(An) =R(An, ¢) = R(AR) + %

Since %is a compact subset of R™*', the sequence {A,,} is tight. By the Prohorov theorem
(Billingsley, 1968, Theorem 5.1), there exists a prior A € ¥* and a subsequence {A,,'} such
that A, converges weakly to A. As seen by Remark 3, all risk functions R(G, ¢) are
polynomials in G and, hence, are continuous in G. Thus, R(A) = R(A, ¢) = lim R (A,
@) = lim R(A,.) where the last equality follows from (10). Also, lim R(A,./) =< lim R(A,
oa) = R(A, @a) = R(A), so that ¢ is seen to be Bayes with respect to A, i.e., ¢ € %. Hence
%B. = B, and the Bayes rules are seen to be essentially complete. For the class of Bayes
rules, essential completeness is equivalent to completeness. [

Under more restrictive conditions, % is minimal complete. Tsao (1980a) shows that if
the probability measures Py, Py, - - - , P,, are mutually absolutely continuous and the Bayes
component rules are unique up to risk equivalence, then % is minimal complete in ®.

Boyer and Gilliland (1980) give results on the relationship of compound admissibility
and empirical Bayes admissibility. One simple observation follows from the continuity of
the risk functions R(G, ¢); namely, that Bayes rules g5, where A has support equal to %,
are necessarily admissible. Snijders (1977) has proved a complete class theorem for the
empirical Bayes problem with component ® = {0, 1} = A, mutually absolutely continuous
Py, P,, and finite observation space %. The rules of his complete class have a monotonicity
property. Balder, Gilliland and Van Houwelingen (1981) have generalized Theorem 1 by
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replacing the finite ® requirement with compactness and continuity conditions on the
component structure.

THEOREM 2. Suppose that S is a compact subset of R™*' and Pg is identified by G.
Suppose that A € ¥* has support equal to 4. Then the Bayes empirical Bayes procedure
defined for each stage n to be o = dg of Remark 2 is a.o. i.e, R(G, pa) = R(G) for all
GeE %.

Proor. Let G € ¥ and let V be any %-neighborhood of G. Lemmas 2 and 3 of the
Appendix verify hypotheses (ii) and (iii) of Theorem 6.1 of Schwartz (1965) in regard to V.
Hypothesis (i) is trivially satisfied in this application. Therefore, the conclusion of the
Schwartz consistency theorem obtains, i.e.,

(11) A(V|X)—>1 as. Pg.

Let e > 0 be given and let V. = {F € 4| | F — G| < ¢} where || - || denotes the Euclidean
norm in R™*". Then by (8) and the Minkowski integral inequality (cf. Stein, 1970, page
271),

IIG—GII=IIJ’(F—G)A(dFlX)IISJIIF—GIIA(dFIX).

Partitioning the range of integration into V, and its complement, we obtain | G — G| < ¢
+ \/—2_(1 — A(V,]| X)) so that (11) with V = V,, and the fact that ¢ > 0 is arbitrary, shows
that | G — G|| — 0 a.s. Pg. Oaten (1972, Lemma 1) implies that

(12) 0=<R(G,de) —R(G)= (m+1)"’M|G-G|,

where M is a bound for the components of the compact set S, from which g, = d¢ is seen
to be a.0.0

The a.o. property of Bayes empirical Bayes procedures can be deduced from the
corresponding results for the compound decision problem. Robbins (1951) first proposed
the use of Bayes procedures in his compound decision problem and conjectured their
asymptotic optimality. However, the results for Bayes procedures and the m > 1 finite
state component compound problem have generally been obtained only under regularity
conditions on the distributions Py (cf. Vardeman, 1978), and only in the case m = 1 have
completely general results with rates been published (cf. Gilliland and Hannan, 1974;
Gilliland, Hannan and Huang, 1976).

The class of Bayes empirical Bayes rules % has been shown to be a complete class. A
Bayes empirical Bayes rule takes the form dg, i.e., is component Bayes with respect to the
conditional expectation G. The more easily computed classical empirical Bayes rules of
the form dg, where G is an unbiased estimator based on averaging a kernel across
components, are seen to be inadmissible. !

The classical empirical Bayes procedures are easily shown to be a.o. based on the
consistency derived from a simple law of large numbers. As we have shown, empirical
Bayes procedures which are Bayes versus diffuse A have the same a.o. property and have
admissible risk behavior for each n. Tsao (1980a, b) examines questions related to their
computation and compares their small to moderate n risk functions with those of selected
classical empirical Bayes rules.

APPENDIX

Let 1 be a measure dominating {Po, Py, ---, P»} and p; = dP,/dp,i=0,1, ---, m, so
that the polynomial risk function R(G, ¢) (cf. (6)), can be written

R(G, ¢) = J X0 8:9'(x) [T7_ Zh=o grpa(x)p"(dx).
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Without loss of generality we take u = Y¢* P; so that a.e. u” is equivalent to a.s. P¢ for all
G € . We also extend ® to include all measurable mappings from Z " into R™*' such that
@(X) € S a.e. p”. For ¢ € ® we define f(p) € R" to be the vector of coefficients for the

polynomial R(G, ¢) based on a specified ordering of terms gigi -+ gz, o+ i1+ +++ + im
= n + 1. Finally, without loss of generality, we take the observation space % to be the
simplex in R™*! through reduction by the sufficient statistic (po(X), p1(X), -+, pn(X))

and take .« to be the Borel subsets of Z.

LEMMA 1. Let n = 1. Suppose that the component risk set S is a compact, convex
subset of R™*'. Then ® is compact with respect to the topology induced by f~' and the
open sets of R™, and R(G, ¢) is continuous with respect to this topology for each G € %.

ProoF. It suffices to prove that the range f[®] is a compact subset of R". For metric
spaces, compactness follows from sequential compactness. Let {f(¢,)} C f[®] with the ¢;
taking values in the set S. The weak compactness theorem (Lehmann (1959, page 354))
applied to components of {¢;} and the diagonalization process produce a subsequence
{¢,/} with weak limit ¢ € ®. It follows that f(g;) converges to f(¢) in RY.0

LEMMA 2. Suppose that Pg is identified by G. Let G € 4 and let V be any 9-
neighborhood of G. There is a uniformly consistent test of P = P versus P € {Pp|F €
% — V} based on X1, X5, - .- iid P.

Proor. The alternatives are contained in the finite union U B; where B, = {Pr|F €
9, |f. — &| = &} and the ¢ > 0 are sufficiently small, i = 0, 1, -.., m. By Kraft (1955,
Theorem 7), it suffices to show that for each i, there exists a uniformly consistent test of
P = P; versus P € B,. Suppose h = (h°, h', - .-, ™) is bounded and such that [ A’ dP; =
8:;, the Kronecher delta function; for example, A° A', - - . , ™ can be taken as a basis dual
to the densities po, p1, + -+ , pm in Lo(p) as observed, e.g., by Robbins (1964). The Hoeffding
bound (1963, Theorem 2) shows that the test function [|n™" Y- A'(x) — &.|> &/2] is
uniformly consistent for P = Pg versus P € B,. [0

For F, G € ¥ the Kullback-Leibler information number between the densities ps and
pris KL(G, F) = —[ In{pr(x)/pc(x)} Pc(dx).

LEMMA 3. Suppose that Pg is identified by G. Let A € 9* have support equal to %.
Let G € Y and let V be any %-neighborhood of G. Then given & > 0 there exists a subset
W C V such that A(W) >0 and KL(G, F) <e¢for FE W.

Proor. Let O be an open set in R™*' which contains G and let V=0 N % For 0 <
p < 1 consider the rectangle

U={FER"" |pg=f<pg+1-p,i=0,1-.-,m)

and note that G € U,. Let p be sufficiently close to 1 so that -lInp <eand U= U, N ¥
C V. For such a p let

Wp={FER’M+1|pgo<ﬁ)<pgo+(1—p)’
1
Pgt<fz<sz+E(l—p),L= 1,2’ ...’m}
and note that W= W, N % is a nonempty open set in % with W C U C V. Since A has

support equal to 4, A(W) > 0. For F € W, pr = ppc and, therefore, KL(G, F) < —Inp <
e O
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