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ON BANDWIDTH VARIATION IN KERNEL ESTIMATES—A SQUARE
ROOT LAW'

By IAN S. ABRAMSON
University of California, San Diego

We consider kernel estimation of a smooth density f at a point, but depart
from the usual approach in admitting an adaptive dependence of the sharpness
of the kernels on the underlying density. Proportionally varying the band-
widths like f7'/? at the contributing readings lowers the bias to a vanishing
fraction of the usual value, and makes for performance seen in well-known
estimators that force moment conditions on the kernel (and so sacrifice
positivity of the curve estimate). Issues of equivariance and variance stabili-
zation are treated.

Introduction. The idea of bandwidth variation across the sample is not new. Moti-
vated possibly by the familiar temptation to combine class intervals in the tails of
histograms, Breiman et al. (1977) pointed out the benefits of using diffuse kernel contri-
butions where the data is thinly scattered, and spikier ones in the data-rich regions where
there is less danger of raggedness in the resulting curve. But they proposed a dependence
proportional to nearest neighbor distances (regardless of dimension), so that on the line,
bandwidths would vary like f ', a dependence too strong in the light of our findings (which
indicate f~/%). In two dimensions, fortuitously, our dependences agree. Indeed, in private
communication, Breiman noted that the performance in their univariate study was
considered disappointing, and in their bivariate study, excellent.

Let X, .-+, X, be a sample from the p-variate Lebesgue density f assumed to have all
second order partial derivatives D,.(f) continuous with | Dj.f| = U,, a known bound
imposed by the user. Automatically then, there are constants U, and U, say, bounding the
| D,f| and f, and for technical reasons, we place a strict lower bound Lo > 0 on f at x = 0,
the target argument.

There is effectively nothing lost by choosing these bounds as generously as we like, and
the requirements can in fact be localized to a neighborhood of x = 0 at some price in the
elegance of the analysis. If the true density violates the bounds, the estimator we develop
will perform like one with fixed bandwidths. With little loss we choose as kernel w, a
smooth density supported in the cube [—1, 1]” and even in each argument. Our estimate
of f at 0 will be given by

(1) 0 =n"" Y b7 (X)) w by e (X) X)),

where the bandwidths b,c(X;)”! show dependence not only on n, germane to any asymp-
totic study, but also on the contributing point through a yet-unassigned scalar function ¢
on R?”, anticipated to depend on the local behavior of f only. We disregard feasibility
objections for the time being.

Our optimality criterion is mean squared error (MSE) at 0. (A practitioner might prefer
a globalized measure such as integrated MSE, and under uniformity conditions the
analyses are similar, though the question then arises of whether to admit bandwidth
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dependence on the target argument, which renders the resulting curve estimate a dishonest
density, and jars with the graphical spirit of kernel methods.)

We define a version of the density clipped below, viz. f(-) = f(-) \/ Yo f(0) (the small
fraction % is arbitrary), and are now equipped to state a theorem.

THEOREM. Let b, — 0 be any sequence with nb, — «. In the present context, the
estimator for f(0) given by (1) with

(2) c(x) = fO)/P~V% . f(x)"?

has

MSE = (nb‘,’,)lf(O)zf w@)?dv+o(bh)+0n'bL7)

»

asn— o,

NotEes. (i) Since fis bounded below, all bandwidths shrink uniformly to 0, freeing our
estimate of dependence on the points falling outside a vanishing neighborhood of 0.

(i) The usual bias term is missing from the MSE above; a fixed bandwidth estimator
(taking c(x) = ¢, say) has an additional multiple of b} in its MSE, viz.

Ya b:(z Y Dif(0) f

Yyew(y) dy>2c4

»

(see, e.g., Mack and Rosenblatt, 1979). We examine the implications presently.

(iti) The choice of multiplier £(0)”?~'2 in ¢(x) (which might apparently be absorbed
into b,) stems from scale equivariance considerations. If the sequence b, is to capture only
the decay rate and be used for all permissible densities, then equivariance entails that for
every k > 0, use of the scaled observations {kx,} to estimate the density from which they
arose, viz. £ ?f(k~" .), should yield simply % f,(0) (where f,(0) is the estimate based on
the unscaled observations using the same b,).

(Short of requiring w to have spherical contours, we cannot obtain equivariance under
more general matrix transformations.)

Noting that the scaling map f— £ 77f(k~' .) and the clipping map f — f commute, we
verify by simplification that indeed,

n! Z:‘=1 b;pck*l'f(k*'.) (RX))w (b;ICk*Pf(k* L) (RX, )sz)

=k Y brP (X )Pw (b e/ (X,)X,) for every &, f,

when (subscripting ¢ by its corresponding density), c,(x) is given by g(0)/?~¥2g(x)?
according to (2). ‘

Proor oF THEOREM. We treat the squared bias and variance contributions to the
MSE separately, and for the purposes of showing that the bias is negligible to second order
in b,, our equivariance entitles us to make the artificial assumption that f(0) = 1.

The bias of (1) is given by

b7 | flx)Pw (b f(x)2x) f(x) dx — 1
(3) R
= [ [F®u0)?*f (Brv)w(f(bav)"?v) — w(v)] du,
o

and since w is compactly supported and f bounded below, the integration may be taken
over a bounded range; call it I; then neglecting finitely many n if necessary, f may be
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replaced throughout by f since they agree in a neighborhood of 0, giving
f[w(f(bnv)l/zv)f(bnv)””/2 —w()]dv= f [ (f(brv)'?) = J,(1)] d,
1 1

where J,1) = wiyv)y*"*, y € R, v € R*.

Heading for a partial Taylor expansion under the integral and writing E,(v) for
f(5,v)'* — 1 (which is 0(1) as n — ), the bias becomes

J [E. ()5 (1) + % E, (v)*J7 (1 + tE, (v))] dv,
I

with —1 = ¢ = 1, a generic quantity not necessarily the same at each appearance.
Calculating we obtain

Jo () =y Y Daw(yv)v, + (2 + p)y' Pw(yv)

JU(¥) =y*" T T Draw(yv)v,v, + 22 + p)y" P Y Dw(yv)o, + (2 + p)(1 + p)y"w(yv),
and

E.(v) = % b, 3 D f0)v; — % b2 {1 + En(tv)} (3, D;f(thav)v;)?

+ Y bi{1+ E.(tv)} ' I Y D f(tbv)vjvs,
so that substituting and rearranging, bias( f, (0)) becomes

—21— b. Y Dif(0) J’ vi[Y Dyw(v)v, + (2 + p)w(v)] dv

I

+ i b2 f {1+ E,.(tv)} ' ¥ 3 Dinf(tbv)vyun[¥ Drw(v)v, + (2 + p)w(v)] dv
I

+ él‘ b2 ¥ Y D;f(0) Dy f(0) J’ vUr[(2 + 3p + p*) {1 + tE.(v)}w({1 + tE, (v)}v)
I
(4) + (4 + 2p){1 + tE,(v)}'*” ¥ D,w({1 + tE, (v)}v)v,
+ {1+ tE.(v)}**? Y ¥ Dw({1 + tE, (v)}v)v,05] dv

- él— b:Y Y J D;f(tb,v) Dy f(tb,v)vur{1 + E, (tv)}
1

-[¥ Drw(v)v, + (2 + p)w(v)] dv + O(b2),

where O(b3) has arisen from the 52 terms in E,(v) on squaring the latter. A uniform

bound on the coefficient brings the integral under the O(-). Passing to the limit now, by
bounded convergence,

bias = —;— b, Y D;f(0) J’ vi[Y Drw(v)v, + (2 + p)w(v)] dv
+ 41 523 Y D f(0) J viue[¥ Drw(v)v, + (2 + p)w(v)] dv
© #5825 DAODSO) [ bor T T Do, do

1
*3 b7 ¥ Y D;f(0) D, f(0) J' vUe(2p + pP)w(v) dv

+ é b2 Y Y D;f(0)D, f(0) J’ ViUr(3 + 2p) ¥ D,w(v)v, dv + o(b2).
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The first line vanishes by symmetry properties of w, then applying the multivariable
identities,

J vur Y, Dyw (v, dv = —(p + 2) J vurw(v) dv

J vyUe Y, Y Disw()v.vsdv = (p + 3)(p + 2) J v vrw (V) du,

all other leading terms fall away, leaving, as required,
Bias = 0(b2) as n— .

The variance requires no such expansion; simply
var £, (0) = n-‘[ f b fO)* #f(x)w (b F(0) P~ *F(x) *x)*f (x) dx — {Ef, (W] :

Changing variables, and arguing as before, this gives as required

var £,(0) = (nb%)'f(0)* f w()® dv + O(n~'b,7"),
and adding the contributions to the MSE, the proof is complete.

A feasible version. Evidently for implementation, a pilot estimate of f is needed.
The asymptotic analysis is quite blind to hamhandedness in its construction, so long as
crude consistency requirements are met. A user could presumably deviate with impunity
from the following proposal

Let £,(0), D, ), £ (0), D, f.,(0) be any consistent estimators of fand its respective derivatives
at 0, based on an independent auxiliary sample, a vanishingly small fraction of the
observations, say. Such estimates do exist, e.g. as obtained by differentiating a kernel
estimate with slowly decreasing bandwidths. )

With no loss of consistency, we consider | D, ,(0) | and | D £, (0) | truncated to 0 in any
region where they violate the bounds laid down on the corresponding true derivatives.

For a curve estimate, we construct the quadratic approximation

fo®) = 72(0) + 3 D, £ 0)x, + % 3 Y Dinfo(0), 22

(accurate only near 0, but adequate for our analytic needs) and winsorize £, (x) without
notational change, above and below at the respective bounds U, and L,. Again this does
not harm consistency near 0 of f,, and its derivatives.

Denote by #, the ¢-field generated by the pilot sample, and suppose fin our infeasible

estimator (1) is replaced by f‘ = f v Yo f (0). Then bias (£, (0)) = EE 5[ f.(0) — f(0)], and the

inner expectation is the same as at (3) with; replacing f.
The following random convergence lemma justifies invoking consistency under the
integral.

Lemma. If{Y.(v):n=1,2, --.,0; v € K C R” a compact} is a jointly measurable,
uniformly bounded family of random variables, then Y, (v) —p, Y.(v) for (almost) every
v, implies

EJ Y. (v) dv—>EJ Y. (v) dv.

A proof (which could go through with weakened assumptions) follows standard lines in
measure theory, and is left to the reader.

Examining (4), it is seen that we need umform convergence to f(0), D,f(0) and D, f(0),
of the respective quantities f(b,v), D, ), f(Bav), D, f(bnv) for v ranging over a fixed compact;
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we argue for a first derivative; the others are no harder:

sup vj=r| D, f(Bav) — D;f(0) | = supjuj=| D; £, (0) + ¥, D,; £ (0)bv — D;£(0) |
< pb,HU, + | D;£,(0) — D;f(0) | = 0,(1)

by consistency of fn(O), as required. Passing to the limit, and noting that our Y.. is actually
not random, we have shown that our bias behaves just as before.
The variance is dealt with by noting its decomposition as

Var £,(0) = E Varg, f,(0) + Var Er, f.(0);

the expected conditional variance is handled just as the bias has been, and we observe that
the conditional expectation in the other term has variance no larger than the mean squared
conditional bias which can evidently be absorbed into o(b}).

The adaptation result is in the same spirit as one of Woodroofe’s (1970), but is less
critically dependent on a prescribed form of the pilot estimate, and more so on the
independence between the pilot and the main phase. There is evidence that a tightness
argument, which has been applied to the fixed bandwidth estimator (Abramson, 1982)
would permit us to dispense with this independence as well, but the calculations are
unwieldy.

Now by contrast with the fixed bandwidth estimator where (for fixed f) there is a “best”
sequence b, = Bn~'" (balancing squared bias against variance), and a corresponding
“best” MSE ~ kn~*® (Rosenblatt, 1971), the upshot of our findings here is that by taking
B sufficiently large in b, = Bn™'/° the asymptotic MSE can be shrunk to an arbitrarily
small multiple of n™*/°. In fact, there is even a rate at which B could grow with n to achieve
MSE = o(n™*"), but this claim is marred by a real feasibility objection; the decay rate of
the residual bias to 0 (which governs how fast B might grow) cannot be known more finely
than our established o(b2%), because there is critical dependence on the consistency rates
available for f”, which in our Sobolev-like class, can be arbitrarily slow. As for uniform
rates over this class, it is a matter for further investigation to what extent bandwidth
variation copes simultaneously with the unfavorable densities (with second derivatives
“only just” continuous near 0, hence capable of inflating the residual bias for finite n), and
how it compares with its locally matched competitor, the estimate using fixed kernels with
vanishing second moments. Of course the work of Farrell (1972) will preclude a uniform
result such as

inf sup/lim sup n*°E[ f(0) — f(0)]* = 0,

the infimum being taken over estimating procedures.

A Monte Carlo study (Abramson, 1981) indicates that the technique is no asymptotic
curiosity; implementation is straightforward, and makes for sharp improvement over fixed
bandwidths. By contrast, as Sacks and Ylvisaker (1981) comment, the constrained kernel
estimators need prodigious sample sizes before their optimality detectably takes hold.

On the possibility of other solutions. Our proposal forcing the bias to vanish
appears unmotivated, and the reader may question whether different dependences could
achieve the same effect. Restricting ourselves to one dimension for simplicity, let us briefly
rework the bias calculation from (3), carrying the unassigned function c(-) in place of
QR

Omitting the algebraic details (see Abramson, 1981) (5) becomes

Bias = b2 [% ¢(0) "%f”(0) J viw(v) dv + ¢(0) ¢’ (0)f (0) f viw(v) dv

+ ¢(0) *c’(0)f'(0) j vw’(v) dv + % c(0)c”(0)f(0) j viw(v) dv
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+ —21— ¢(0) %c”(0)£(0) J v®w’(v) dv + c(0) e’ (0)%£(0) f viw’(v) dv

+ -;— c(0)*¢’(0)*f(0) J’ viw” (v) dv} + 0(b2)

which further reduces to

o [ B[l ¢'0) o c”(0) 0’

Bias = b, f vw(v) dv ¢(0) [2 f70) —2 <0 f(0) C—(O)—f(O) + 3{ c(O)} f(O)] .
Note how this generalizes Rosenblatt’s (1971) formula for fixed bandwidths. The squared
bias is asymptotically minimized when the expression in brackets vanishes. Furthermore,
invoking a natural location equivariance argument viz. that c(-) corresponding to a shifted
density should itself simply shift correspondingly, we replace all zero arguments in the
bracket by a variable x, to get a differential equation

c’(x) _ c¢”(x) c’(x)
@ f'(x) e flx) + 3{ <@

(an expression that the bias actually vanishes to order 52 over a whole interval about 0).
Solving this proved rather troublesome, but a substitution validates the general solution

-21_f”(x) -2 } fx) =0,

e(x) = f(x)*(Ax + B)™'?; A, B arbitrary constants.

Again, location considerations render any nonzero assignment of A unappealing, and we
are left essentially with our inverse square root proposal.

Variance stabilization—a logogram. It is well known that when using fixed
bandwidth estimates to construct confidence intervals for univariate densities, a square
root transformation (Tukey’s Rootogram) approximately frees the variance of dependence
on the underlying density. A benefit is that for small bandwidths, when the variance
swamps the squared bias and an asymptotic normality law comes into force, an approximate
confidence interval for f(0)'/* based on the rootogram has radius free of £(0), and in fact
confidence bands for the whole curve have constant width. Other powers are indicated for
other dimensions. For our estimator the dependence of the variance on fis linear in f(0)?
(regardless of dimension), and the asymptotic formula

Var{h(f)} = (h'(f) }*Var(f)

indicates the stabilizing transformation 4(f) = log f in place of Tukey’s square root.
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