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THE FUNCTIONAL-MODEL BASIS OF FIDUCIAL INFERENCE

By A.P. DawiID AND M. STONE

University College London

“. .. not to confute the genius but to perfect the conjecture”
(Ian Hacking, Logic of Statistical Inference)

The role of functional models and their associated fiducial analysis is
explored in an attempt to uncover a general theory of fiducial inference.

1. Introduction. The chequered history of fiducial inference has been covered in
recent reviews and books: Pedersen (1978), Seidenfeld (1979), Buehler (1982), Edwards
(1982) and Stone (1982). Despite all this effort, we believe that the unifying and simplifying
virtues of the functional model approach have been largely unrecognized. Although the
term “functional model” appears to have been introduced by H. Bunke (1975), the concept
is implicit in Fraser’s structural inference (1961, 1968) and in earlier justifications of the
“fiducial argument;” the more recent work of Plante (1979a, b) deals with functional
models explicitly. The present paper sets out to integrate under a single mathematical
structure the primary ideas that may be developed with functional models. However, we
make no claim that this treatment reflects the whole spectrum of interpretations of the
fiducial argument, or that it would have met with the approval of its originator, R. A.
Fisher.

Sections 2 and 5 present the basic structure of functional models and some examples.
In Section 3, we consider the problem of inference about a function of the parameter, and
show agreement between two possible approaches. Section 4 considers the connections
between fiducial probabilities and confidence coefficients. In Section 6, we come across an
inconsistency that may arise when partial information becomes available about the
parameter: again there are two approaches, but now they yield different answers in general.
We show that this inconsistency vanishes for parametric information that indexes a pivotal
submodel. In this case, the Fisher-Yates justification of a fiducial property involving
confidence coverage probabilities may be demonstrated; this is the subject of Section 7.
Finally, an Appendix shows the close connection between general functional models and
those possessing certain properties of group-invariance. We believe that our approach
through functional models unifies and streamlines the disjointed body of known results on
fiducial inference.

2. Simple functional and fiducial models. The models we consider have three
ingredients: data X, parameter ©, and error E, whose possible values range over known
spaces %, ©, & respectively. It is supposed that:

(i) X is a uniquely determined function of © and E (the value of X when © = § and E =
e being denoted simply by fe);

(i) E has a known distribution P over & whatever the value of © (written E ~ P);

(iii) X alone is observed;

(iv) inference is required for © which is to be treated as “completely unknown.”

Such models have been called functional models by H. Bunke (1975), in distinction to
distribution models which merely specify the distributions {Ps} of X given © = §. While
any functional model determines an associated distribution model in which Pj is the
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distribution of 6 E where E ~ P, important structural distinctions are lost in such reduction.
For example, the two distinct functional models with (a) X; = E;, X; = OE, +
(1 — 6)2E,, and (b) X1 = (1 — 6)?E; + OFE,, X, = E,, in which E; and E; have
independent standard normal distributions, both determine the same bivariate normal
distribution model for (X3, X5).

For x € %, e € &, call x and e compatible if x = fe for some 6§ € ©. We denote {e:x and
e are compatible} by &. Similarly, mutatis mutandis, we define the compatibility of x €
& and 6 € O, and the sets %y, .. We shall denote by 2 the set {(x, §) € Z X ©@:x and §
are compatible}.

Throughout this paper, we will assume invertibility in the sense that, for x € £ and e
€ &, the solution for 8 of x = fe is unique. For Sections 2, 3, 4, however, attention will be
restricted to simple functional models defined as those for which &, = & We will write
(X = OF, E ~ P) for the simple functional model (SFM for short) and 6 = xe ! for the
unique solution of x = fe. After any observation X = x and in the absence of definite
information about ©, no value of E is ruled out as incompatible with the data. In such
circumstances, the present version of the fiducial argument is that the observation of X
gives no cause to alter the original assignment of the distribution P to E. This motivates

the following.

DEerFINITION. The (simple) fiducial model, corresponding to the simple functional
model (X =OE, E ~ P), is given by

@.1) (6 =XE™\,E ~ P).

In other words, the fiducial model is itself a simple functional model, with the roles of X
and O interchanged: it is implicit in (2.1) that E is distributed independently of the value
of X, in contrast to the assumption of the original functional model that E is independent
of the value of ©. Fiducial inference then consists of regarding © as a random variable
generated by the fiducial model following the observation of X. This leads to an associated
distribution model {II.} for ©, where II, denotes the distribution of xE ! when E ~ P. We
call T1, the fiducial distribution for © based on data X = x. Then I, is concentrated on
0..

ExampLE 2.1. One parameter family of cdfs. An interesting and theoretically useful
class of specialized SFMs is defined as follows:
(i) ZCR',®CR! &=(0,1) and P is the uniform distribution on &;
(ii) @e is a non-decreasing function of e for each 6;
(iii) if 6; < 6, then 6:e < bz for all e € (0, 1);

® X, / X

v

FiG. 1. Generation of the cdf from the SFM:
(a) graph of x = e (b) graph of e = Fy(x).
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(iv) for every pair (e, x) with e € (0, 1) and x € %, there is just one §-value satisfying x
= fe.

Figure 1 then illustrates the generation of the cdf F, that now expresses Py. Also, given
X=x,0=60= E < Fy(x), while E < Fy(x) = O = 0. So I1.(0 = 0) = Fy(x), since E is
uniformly distributed.

If, additionally, x = fe is a strictly increasing function of e for each 8, the distribution
functions {Fy:0 € O} will be continuous, and conversely. The SFM will then be called
Fisherian, since it would need only the supposition of differentiability of F, with respect
to 6 to obtain a fiducial density —dFy(x)/08 for the observation X = x, thereby matching
the outcome of the original fiducial argument of Fisher (1930). A given one-parameter
family of distribution functions & = {F,;:0 € © C R'} may then be naturally labeled
Fisherian if and only if there is a Fisherian SFM for which, given © = 0, X ~ F, for all
€ 0.

We have not been able to establish necessary and sufficient conditions for a given &
to be Fisherian. A set of sufficient conditions is: (i) each Fy i§ continuous, (ii) for xo, o such
that 0 < Fy(x0) < 1, {Fy(x0): 0 € ©} D (0, 1), Fy(x) is strictly increasing in x at x = x, and
Fy(xo) is strictly decreasing in 6 at = 6,. An & satisfying these will be said to be regular.

ExampLE 2.2. Correlation coefficient. Suppose ¥ =0 = R', §= R* X R* X R and
fe = (fe; + e3)/es, with P such that the components E;, E,, E; of E are independently
distributed E: ~ Xn-1, E2 ~ Xn—2, E3 ~ N(0, 1). Defining R = X/(1 + X?"?* and @ =
6/(1 + 6% it may be verified (Dempster, 1969, Equation (14.2.10); see also Section 3
below) that, given © = 6, R has the distribution of a sample correlation coefficient from a
bivariate normal sample of size n with population correlation ¢ = /(1 + 6%)/%. For X = x,
the fiducial distribution for © is that of

sz - E3

E,
where E ~ P, and the corresponding fiducial distribution for ® is found to have the same
density —9F,(r)/d¢ as that produced, from a different logical standpoint, by Fisher (1930)

working directly with the cdfs F, for R given ¢. An explanation of this striking identity is
given in Section 4.2.

xE7l=

ExampPLE 2.3. Coefficient of variation. Suppose =0 =R', =R X R* = {(ey, es)}
and fe = (f + e1)/es, with P such that E; and E; are independently N (0, 1/n) and X»-1 =
Xn-1/(n — 1) respectively. It may be verified that, when © = 6, X = 0E is distributed as
the ratio of the sample mean to the sample standard deviation of a random sample of size
n from a normal distribution for which @ is the corresponding population ratio. The fiducial
distribution for O, given X = x, is that of xE., — E.

EXAMPLE 2.4. Normal mean and variance. Suppose ¥ =0 = §=R X R*, with x =
(%, s), 0 = (u, 0), e = (e1, e2) and x = fe given by

X=p+oe, S§=oey,

with P as in Example 2.3. It may be verified that, given © = (p, ¢), X and S are distributed
as the sample mean and standard deviation of a random sample of size n from an N (, ¢%)
distribution. The fiducial model for © = (M, X) is then

(2.2) M=X-SE,/E;, Z=S/E,,
giving the joint fiducial distribution of (M, X) first obtained by Fisher (1935).

ExaMPLE 2.5. Random bias. Suppose Z, 0, x, § and the distribution of E,, E, are as
in Example 2.4 but E = (Eo, E1, E2) now includes independent random N (0, 1) bias E, in
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X, so that x = fe is given by

X=p+e + oce, s=oce,.
The fiducial model is then
2.3) M=ZX-Ey— SE/Es, £ =S/E,,

in which M now has a conditional N(X, 1 + ¢%) distribution, given £ = ¢ in the joint
fiducial distribution.
There are two important special cases of SFMs:

1. Pivotal model. Suppose that, in a given SFM, for every (x, §) € 2 it is possible to
solve x = fe for e uniquely. We will write e = p(x, 8), call p: 2 — & the pivotal function
and say that we have a simple pivotal model (2, E = p(X, 8), E ~ P). Barnard (1977,
1981) takes such pivotal models as the starting point of his treatment of inference, although
he goes on to drop the requirement that © and E should together determine X. In our
development, the initial invertibility assumption of the SFM implies that, for every x €
Z as well as for every 6 € O, the range of values of p(x, 8) is &: the equation p(x, §) = e has
a unique solution for x € %y, namely x = fe, when e € & and § € O are given, and for § €
0., namely § = xe™', when e € £and x € & are given. The related simple functional and
fiducial models may be crudely expressed in the forms

(p(X, ©) ~ P independently of ©)

and
(p(X, ©) ~ P independently of X)

respectively.

The Fisherian SFM in Example 2.1 is a simple pivotal model with p(x, 8) = Fy(x) and,
in general, with 2 # % X ©. Example 2.4 is a simple pivotal model in which 2= Z'X © and
p(x, 0) = (X — p)/o, s/o). However, Examples 2.2, 2.3 and 2.5 are not simple pivotal models
since it is not possible to express their E’s as functions of X and ©.

II. Simple group-structural model (Fraser, 1961). Suppose %, ® and & can all be
identified with a group G, and the operation fe is just group multiplication. This produces
a simple pivotal model with p = §~x. Example 2.4 is an illustration of this structure.

3. Marginalization consistency. Suppose that, for the SFM
M,=(X=0OE,E ~ P),

(i) we are interested only in a subparameter A = A(©); (ii) there is a function Z = z(X)
such that the relationship between Z, A and E itself constitutes an SFM

M,=(Z=AE,E ~ P).

We will call M, a reduction of M;. (Note that the superficially similar notations OF and
AE actually involve different parameter spaces and necessarily different binary operations.)

The marginal fiducial distribution of A for X = x in M; is that of A(xE ') where E ~ P.
The reduced fiducial distribution of A, given by M, is that of zE ™ where z = z(x). It is
natural to inquire what relationship exists between these two distributions of A. The
answer is an immediate and reassuring consequence of :

LEMMA 3.1. AMXE™) =2z2(X)E~L.
ProoOF. AMXE™)=AO)=A=ZE'=2(X)E".

Whether considered in the full or reduced model, A may be expressed as the same
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function of 2(X) and E, while E ~ P in both cases. A fortiori, the marginal and reduced
fiducial distributions coincide.

Wilkinson (1977) approaches fiducial inference from the standpoint of distribution
models. Such an approach leads to marginalization inconsistency, which Wilkinson em-
braces under the umbrella of his “Noncoherence Principle.” For example, if we start with
the SFM

(X;=0;+E;, E; ~ N, 1), { = 1, 2, independently)

and require inference for A = 67 + 032, the marginal fiducial distribution of A is non-
central Chi squared with non-centrality parameter Z = X { + X 3. Moreover, the sampling
distribution of Z depends only on A. Wilkinson applies his methods to the distribution of
Z to yield a fiducial distribution for A differing from that induced by the joint fiducial
distribution of (6, 6,). From the present point of view, there is no inconsistency, since
reduction to Z does not produce an SFM.

Example 2.4 provides an illustration of Lemma 3.1. We have

X _ (M/3) + E,

S E,
which implies the reduced SFM in which Z = (A + E,)/E; for Z = X/S and A = M/,
already considered with different notation in Example 2.3.

Example 2.2 can likewise be derived as a reduction, M,, of the simple group-structural

model (the zero-mean progression model) M, = (Y = I'E ), where

Y, 0 ' o E, 0
e N

the composition is provided by matrix multiplication, and the distribution of (E,, E., E3)
is as in Example 2.2. The reduction is obtained on putting X = Y;/Y,, © = I';/T%. As is
well-known (Mauldon, 1955; Fraser, 1964), the distribution model implied by M; yields
S ~ Wa(n:X), where S = YY’, & = I'T". Thus R = X/(1 + X*)'2 = S15/(Su1S12)2, ®
= 312/(Z11Z22)"? are interpretable as genuine sample and population correlation coeffi-
cients. It has previously been noted (Sprott, reported by Fraser, 1964, Fisher, 1973, page
179) that the marginal fiducial distribution of ® based on M, agrees with that obtained by
Fisher’s differentiation method. This is equivalent, by Lemma 3.1, to our assertion of this
same result for M,.

In the Appendix it is shown that every SFM can be considered as a reduction of a
simple group-structural model. The possibilities for further reduction are also analysed by
means of group-invariance arguments.

A reduction of a model involves (functional) contraction for X and 6, but may or may
not induce a contraction for E. No such contraction occurs in the reduction of Example 2.4
to 2.3 considered above. However, in the alternative reduction to Ms = (S = SE,, (E,, E>)
~ P), we may also contract (E1, E;) to E; yielding a now pivotal model M, = (S = SE,,
E; ~ Xn-1). Of course, both M; and M, yield the same sampling and fiducial distributions.
By a trivial extension we can call My a reduction of M.

The same reduction to M; and then M, is available in the non-pivotal model of Example
2.5.

In general, let F denote the maximal functional contraction of E available in a reduced
model M; = (Z = AE, E ~ P), and let M; be the corresponding model (Z = AF, F ~ P’).
We shall call M; the minimal representation of M,.

4. Confidence properties.

4.1. Pivotal confidence belts. For the case of a pivotal SFM it is well-known that a
confidence property can be found for fiducial probability. In the simple pivotal model
(9,E =pX,0),E~P),fix AC & with P(A) = 1 — a and write

A7 '={xe e €A} ={0€ O,:p(x, 0) € A).
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Then

MM.(xA™) =P({e:xe ' €xA™"}))=PA) =1—«a
while

Pyl XA™)=Py(p(X,0) €EA)=PA) =1— a.

The class of regions {xA™':x € %}, which may be called a pivotal confidence belt,
therefore has, simultaneously, fiducial probability 1 — « for every x and the confidence
property with confidence level 1 — a.

For the group-structural case of a pivotal model, the region xA™" corresponds to left-
multiplication of the fixed region A~ by the data group-element x.

ExaMpPLE 4.1. For the pivotal Example 2.4, take A = {(e1, €2) : e + ce; > k}, where &
is given and c is chosen to make P(4) = 1 — a. Then xA™" = {(y, 0) : u + ko < X + cs}, so
that the construction in effect provides the level 1 — « upper confidence or fiducial limit
X+ ¢S for the parameter M + kZ, as given by Fisher (1973, Section V.5).

The Fisherian SFM of Example 2.1 is pivotal and generates standard pivotal confidence
bands. For the choice A = (a, 1), the set xA™" is {# € O, : a < Fy(x) < 1}, since the pivotal
function p(x, 0) is just Fy(x). The confidence belt may be expressed as {{# < 6.} N O,:x
€ %'} where 0, = sup{0: Fy(x) > a}. A Fisherian family & inherits the confidence-belt
generating power of its associated (pivotal) Fisherian SFM.

ExaMPLE 4.2. The model of Example 2.5 is non-pivotal, but possesses the pivotal
reduction (S = ZE,). Both the sampling distributions of S and the fiducial distributions
of 2 are the same in the full as in the reduced model. Thus sets of the form {o:0 < ks},
which have fiducial probability 1 — « for = under II, (where a = Pr(X,—1 < £™')), also form
a (1 — a)-level confidence-belt for = with respect to {Py}.

4.2. Monotone SFMs. When an SFM is not pivotal, a confidence property for fiducial
probability is sometimes obtainable by an entirely different construction.

Suppose there are real functions z(x) (from % onto % C R') and A() (from © onto
% C R") such that, for each e € &, A(6,) = A(f:) © z(0:e) < z(6:e). Then it may be seen
that (a) z(fe) is a function of A(f) (and e), (b) A(xe™) is a function of z(x) (and e); that is,
(Z=AE, E ~ P) is a reduced SFM with, however, the additional monotonicity property

(4.1) Ve € &, A=A e Ae = e

(Note the special meaning of Ae even when A is real!) An SFM with property (4.1) will be
called monotone whether or not it has been obtained by reduction. By Section 3, we know
that fiducial inference for A(O) from the observation X = x in the full model coincides with
that for A from.the observation Z = z(x) in the reduced model. Therefore, we may confine
our interest to the reduced model as far as A is concerned and state the following lemma:

LEMMA 4.1.
I[I(A=A) = P\(Z = 2).
Proor.
I.(A<A) =PzE'<)\), by definition,
= P(z<AE), by (4.1),
=P\(z=2Z), by definition.
CoroLLARY 4.1. The fiducial distributions for a monotone functional model depend

only on the sampling distributions of the data and not further on the transformation
structure of the model.
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Examples 2.2 and 2.3 are monotone functional models (without reduction). So is
Example 2.1, (i) through (iv), a special case of which is the Fisherian SFM corresponding
to the regular Fisherian family of cdfs {F,: —1 < ¢ <1} of Example 2.2. Corollary 4.1 then
establishes the identity asserted at the end of Example 2.2. It also explains (in conjunction
with Lemma 3.1) the identity exhibited by Dempster (1963) between the marginal fiducial
distribution of M/= obtained from Example 2.4, and that obtained by differentiation of
the distribution function of X/S.

COROLLARY 4.2. If ). is a given strictly-increasing function of z with values in %,

ILA < A.) = Py (A. < Az).

To establish the confidence property of a monotone SFM, we introduce a regularity
condition:

DEFINITION. The monotone SFM (Z = AE, E ~ P) is regular if
(i) % and % are open intervals;
(ii) for each z € %, P(z = AE) is a continuous, strictly increasing function of A, taking all
values in (0, 1);
(iii) for each A € &%, P(z < A E) is a continuous, strictly decreasing function of z, taking all
values in (0, 1).

THEOREM 4.1. Let (Z = AE, E ~ P) be a regular, monotone SFM. Then, for any
fixed o € (0, 1), there exists a function, z ~» \, say, with values in ¥, such that

(a) ILA=A)=1-« (all z € 2), and
(b) PA=sA)=1—-a (all A € 2).

ProoF. Define A, by P(z = A,E) = 1 — q; this is unique, by regularity. Lemma 4.1
then shows that, for the observation Z = z, the interval A < A, has fiducial probability
1 — a. Moreover, with regularity, A, is strictly increasing in z and {\,:z € 2} = %. So, by
Corollary 4.2, P\(A = Az) =1 — afor all A € ¥ and we conclude that {A =A;:z € Z}.is
also a confidence belt with confidence level 1 — a.

In fact, it is not necessary to use the full force of Lemma 4.1 to derive this result. The
assumption of regularity for a monotone SFM M = (Z = AE, E ~ P) implies regularity,
as defined in Section 2, of the family of cdfs, % associated with its sampling distributions
{P»:\ € £}. This then implies that & is Fisherian and hence that there is a (monotone,
pivotal) Fisherian SFM, M* say, having the same sampling distributions as M and
consequently, by Corollary 4.1, the same fiducial distributions. The confidence property
now follows from Section 4.1.

Hora and Buehler (1966, Theorem 6.1) proved a result similar to our Theorem 4.1, in a
group-invariant setting. However, they conjectured, wrongly, that it only applied to cases
which already had the pivotal confidence property. Pierce and Bogdanoff (1971) showed
the result to hold for a special non-pivotal case, essentially identical with our Example 2.3.

5. Partitionable functional models and associated fiducial inference. We now
relax the assumption &, = &, characteristic of an SFM. Conditions supporting inference in
the resulting general functional models have been considered by Fraser (1971), Brenner
and Fraser (1979), H. Bunke (1975) and O. Bunke (1976), to which we refer the reader for
further motivation.

A partitionable functional model is defined as one for which {&:x € &'} constitutes
a partition of &. It is easily seen that partitionability holds when the condition that x and
e be compatible is expressible in the form a(x) = u(e) for some functions a on Z and u on
&. Conversely, assuming partitionability, we may label the sets in this partition and let
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a(x) and u(e) denote the values of the label attached to &, and to the set of the partition
that contains e, respectively. Then a(X) = u(E).

The quantity a(X), being a function of E alone, is distributed independently of © and
will be called the functional ancillary: it is always uniquely determined (up to equivalence),
unlike ancillary statistics for distribution models. The observation X = x yields direct
information about E of the form u(E) = a(x) = a, say, making it appropriate to analyze
the conditional SFM (X = OF, E ~ P,) where P, is the distribution of E conditional on
uw(E) = a, yielding the fiducial model (6 = xE™', E ~ P,).

EXAMPLE 5.1. Location-scale model. Suppose ¥ = § = R" (n=2) and ® = R X
R*. Forx= (x1, +++, Xn), e = (€1, +++, €,), 8 = (y, 6), suppose x = fe is given by x; = u +
oe; (i =1, -+, n). The distribution P of E is arbitrary. We may take u(e) = ((e; — €)/se,
.+, (en — €)/s.) where s, is the sample standard deviation of ey, - - -, e,, and hence a(x)
= ((x; — X)/Sx, +++, (xn — %)/s:). For compatible x and e, § = xe™' may be expressed
as, for example, (X — &s,/S., Sz/S.) and the resulting fiducial model is (6 = (¥ — s.E/sg,
sx/se), E ~ Py,).

ExaMPLE 5.2. Suppose ¢& is as in Example 5.1, but £ = {x ER":s, =1} and ® = R".
Suppose x = fe is given by x; = (6 + €;)/s. (i = 1, - - -, n). We may take u(e) as in Example
5.1, whence @ = (x; — X, - -, X, — %). Then 6 = xe™! may be expressed as Xs. — € and the
fiducial model is (O = Xsz — E, E ~ P,).

Clearly Examples 5.1 and 5.2 generalize Examples 2.4 and 2.3, respectively, to which
they effectively reduce when, under P, the components of E are independent standard
normal, so that (£, sz), being independent of u(E), has the same distribution whether
under P or P,.

A simple example of a functional model that is not partitionable is given by & = & =
R, ® = R* and fe = @ + e. In this case &, = {e:e < x}. A more interesting case is the
variance component model, in which & is the space of real I X J matrices (I, J = 2), &
=R'X %, ® = R*> X R™, and where, with x = (x;), § = (, 0, 7), e = (&), (f;)), x = fe is
given by x; = u + oe; + 7f;;. It turns out that this model is partitionable for I = 2, but not
otherwise.

Fraser’s general group-structural models (Fraser, 1961, 1968) are partitionable, as are
their reductions of the type of Example 5.2. However, a general necessary and sufficient
criterion for partitionability does not appear to be currently available.

6. Conditional consistency. Suppose that, for the set-up of Section 3, the value A
of A becomes known and we are interested in “fiducial” inference about 6, conditional on
this information and the observation X = x.

Two distinct ways of taking account of the information are:

(I) to condition the overall fiducial distribution, IT,, of © on A = A in the usual manner
to give the conditional fiducial distribution I1.(- | A);

(IT) to use the fact that the restriction of possible values of © to @* = {#:A(6) = A} yields,
for the set-up considered, a partitionable functional model with a(X) = Z and u(E)
= AE. (This is because x = e for some 6 € ©” if and only if z(x) = Ae.) The method
of Section 5 then gives a restricted fiducial distribution on ®*, I1} say, for © based on
X = x from the fiducial model (6 = xE™', E ~ P,), where P, is P conditional on A E
=z (= z(x)).

Dempster (1963) has investigated these two ways for our Example 2.4 with A = M/Z,
Z = X/S and has shown that they yield different answers. This breakdown in the self-
consistency which has so far characterized our development of the functional-model
approach to fiducial inference stems from different conditionings of the distribution of E:
in method (I), on the value A for the function zE ™ [= zE; — E; in Example 2.4] but, in
method (II), on the value z for the function A E [= (A + E;)/E: in Example 2.4]. Note that
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the logical restriction on E expressed by either condition is the same, but it is embedded
in different partitions of & in the two cases, leading to different conditional distributions.

The same inconsistency may lead to discrepancy between (a) the fiducial distribution
for © for the SFM (X = OF, E ~ P) and (b) the “step-by-step” distribution for © obtained
by compounding the distribution for A from the reduced SFM (Z = AE, E ~ P) and the
restricted fiducial distribution IT for © given A = A and X = «x.

As Pedersen (1978) has pointed out, Example 5.1 shows that discrepancy may likewise
occur between two alternative step-by-step decompositions: the one above and the other
in which A = X and Z = S define the reduced SFM.

The fact that the latter decomposition happens to be consistent with the overall fiducial
distribution is an illustration of consistency due to pivotality of (Z = AF, F ~ P’), the
minimal representation of the reduced model. In this case, Z = A F can be re-expressed in
the form ¢q(Z, A) = F. For given A, the equations z = Af, f = q(z, A) set up a one-one
correspondence between z and f. Consequently, conditioning on AF = z, as in (II), is
equivalent to conditioning on F = ¢(z, A). Similarly, conditioning on zF~! = ), as in (D), is
also equivalent to conditioning on F' = ¢(z, A), and we get a unique conditional inference.

If we start with a partitionable functional model having functional ancillary 5(X) =
w(E) say, and such that its induced conditional SFM’s all admit a pivotal reduction as
above, then we similarly obtain identical results from routes (I) and (II). (In (II), further
conditioning on w(E) = b(x) is needed throughout.)

Although it seems plausible that (I) and (II) will yield identical answers only when the
reduced model used for conditioning is pivotal, we do not have a proof of this.

7. Fiducial-confidence. Yates (1939) stated, and Fisher (1945) reiterated, essentially
the following “coverage probability” property of the probability-(1 — a) fiducial interval
(=, X + st,—1(a)/ Vn) for a normal mean. Fixing s at the observed value, give ¢ its fiducial
distribution; given the resulting o and the true value p, assign to & its conditional sampling
distribution given s. The probability of coverage, that is, of p < & +st,_i(a)/ Vn, in the
resulting distribution (indexed by (u, s)) of X equals the fiducial probability 1 — a.

The validity of this interpretation of a fiducial probability, which may be called the
fiducial-confidence property, does not depend on normality but holds for a general
location-scale distribution model conditioned on the (ancillary) maximal invariant statistic.

Note that the Neyman confidence property holds for any value (or distribution) of
(p, 0) but does not condition on s. Note also the double conditionality on s in the statement
of the fiducial-confidence property. Given the observed s, attention is confined to a
population of o-values plausibly representative of the true o-value, rather than being
extended to all possible values of 6. Then, given that population, attention is confined to
the reference set of samples with the observed value of s.

A general treatment of fiducial-confidence may be given in terms of
(a) an SFM M = (X = OF, E ~ P) (which may have been derived as a conditional SFM

in a partitionable functional model),
(b) a reduction of M yielding a pivotal SFM (Z = AF, F ~ P’) with F = g(Z, A) as in
Section 6.

Let the belt ./ C 2 X © be such that the condition “(X, ©) € .«&#” is re-expressible as

a condition “(E, Z) € #” for some 4 C & X %. Then

II.((x, ©) € &) = J II.((x, ©) € | A = )) dIL(N)
= f Ii((x, ©) € &) dILA) (2 = z(x)),

by Sections 3 and 6,
= J P((E,z) € #|F = q(z,\)) dII.(M).
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Now, for any 8 such that A(6) = A,
Py((X,0) € A|Z=2)=P((E, 2) € B|F = q(z,N).

So we can write
(7.1) I.((x, ©) € &) = f Py((X, 0) € | Z = 2) dIL.(A),

where the integrand is the coverage probability, conditional on z, of the fiducial confidence
belt s/, which probability depends on # only through A = A(f). Thus we see that the
unconditional fiducial probability of the belt depends only on z, and is realized as the
expectation, with respect to the fiducial distribution for A given Z = z, of its sampling
coverage probability conditional on Z = 2z (dependent on A).

The above argument fails if the reduction used is nonpivotal. In that case we cannot
generally expect the fiducial-confidence property for <. .

For the normal-mean application (using the notation of Example 2.4), we merely have
to take Z =S, A = =, F = E, and the belt « defined by: X — k1 (S) < M < X + ka(S),
equivalent to —k2(S) < S(Ey/E;) < ki(S). The conditional coverage probability, the
integrand of (7.1), is ®(k2(s)vVn/o) — ®(— ki(s) ﬁ/ o), whose fiducial expectation, for 3 ~
$/%n-1, is the overall fiducial probability Pr(—k:(s)Vn/s < ts—1 <ka(s)¥n/s). The usual
choice ki(S) = k:S/ Vn, with k; a percentage point of the ¢.-; distribution, gives a constant
prespecifiable value of the fiducial probability. However, it is of interest that the choice
ki(S) = w yields symmetric intervals of fixed width 2w, but with fiducial probability
Pr(|te-1] < w+n/s), a function of the observed value s of S.

If we start with a partitionable functional model, with functional ancillary a(X) = u(E),
we can still attach a fiducial-confidence interpretation to belts of the form of .« In this
case the integrand in (7.1) becomes

Py((X,0) € H|Z =z, a(X) = a(x)),

for 6 such that A(f) = A; this is the coverage probability, conditional on z, in the frame of
reference which fixes a(X) at its observed value. The appropriateness of such conditioning
on a(X) has been argued by Fisher (1934), Barnard (1976). For Example 5.1, we can thus
justify belts of the form X — %, (a(X), S) <M < X + ks(a(X), S). It is then always possible
(but by no means necessary) to choose the functions k; and k; to give a fixed fiducial
probability, irrespective of the data.

The fiducial-confidence property was used by Yates (1939) and Fisher (1939) in defense
of the Behrens ‘confidence interval’ for the difference of two normal means. This applica-
tion of our general treatment is a special case of:

Xi=Mi+EiEi, S, =3 U,', 1= 12,
relating data X = (X1, S1; Xz, Sz), parameter © = (M1, 31; M;, 2;) and error E = (Ey, Uy;
E,, U;) with E ~ P (unspecialized), for which we take Z = S./S:, A = 32/2:, F = U/ Uy,
and a belt of the form
(X1 — X5) — S1-k1(S2/S1) < My — M, < (X1 — X3) + S1-ka(S2/S1),

equivalent to —kx(Z) < (E1/U1) — Z(E2/U:) < ki(Z). Suitable choices for k; and k. will

ensure constant fiducial probability.
A variation on the Yates-Fisher analysis of Behrens’s problem is obtained on taking Z

=(S1, S2), A = (21, 2), F = (U1, Us), and a belt of the form
X1 —X2) — b1(S1, S2) < My — M, < (X; — X3) + 5:2(S1, Sz)

equivalent to —b2(S1, Sz) < S1(E1/U1) — S2(E2/ Uz) < b1(S1, S:). This allows the possibility
of fixed-length intervals.
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In these nearly standard examples, the basic SFM (X = OF, E ~ P) is itself pivotal.
For Example 2.5 this is not the case: only E>, and no other function of E, is a function of
X = (X, S) and © = (M, X). However, we may apply our general treatment of fiducial-
confidence with Z = S, A = and F = E», and a belt & of the form X — k1 (S) <M < X
+ k2(S), equivalent to —k2(S) < Eo + S(E1/E:) < ki(S). We are thus assured that the
fiducial probability that £ — ki(s) < M < i + k2(s), namely

Pr(=ki(s) < N0, 1) - (1 + (s*/xa-1))""* < kz(s))

where N(0, 1) and x,.—: are independent, is the expectation of the conditional (given s, o)
sampling coverage probability

D(ka(s)/(1 + 02)Y2) — ®(—=ki(s)/(1 + 6)?)
with respect to the fiducial distribution of .

8. Discussion. Our intention in this work has been, notso much to advocate the use
of fiducial inference, as to investigate how far a theory of fiducial inference can be
developed in a self-consistent way. In a functional model setting, this is further, perhaps,
than might be expected. However, some signs of breakdown have appeared in Sections 6
and 7, in relation to non-pivotal reductions. The theory as presented here becomes
completely self-consistent, but much more restricted, if non-pivotal functional models are
excluded.

We have not considered problems related to the combination of functional models, for
example for independent experiments. Generally this does not yield a partitionable
functional model overall. It may well be that criteria of self-consistency at this level would
effectively exclude all but group-structural models (Fraser, 1962; Brenner and Fraser,
1979). A related unexplored topic is fiducial prediction.

Marginal sufficiency. In Section 3, we considered the case where we are interested
only in a subparameter A, and we have a reduced model relating A to a function Z of the
data. This is a problem of inference in the presence of nuisance parameters, and the
decision to work only with the reduced model, thus discarding some (possibly relevant)
data, requires justification. Our analysis has provided such a justification when inference
is to be made in fiducial terms. From a broader viewpoint, Barnard’s criterion of G-
sufficiency (Barnard, 1963a; Barndorff-Nielsen, 1978) allows use of the reduced model for
any kind of inference about A, when the full model is group-structural and (as is guaranteed
by our Appendix, Section A2), A and Z are maximal invariants under a subgroup. For an
arbitrary SFM, we may use the construction of the Appendix to represent the full and the
reduced model as successive reductions from a group-structural model; two applications of
the criterion of G-sufficiency now validate inference about A in the reduced model, as
exemplified in Dawid (1975).

Bayesian connections. The marginalization consistency established in Section 3 shows
that fiducial inference for functional models satisfies the Reduction Principle of Dawid
(1977). In contrast, the marginalization paradox of Dawid, Stone and Zidek (1973) deals
with violations of this Principle in problems with exactly the same structure considered
here. However, the central inconsistency of that paradox related only to attempted
interpretations of the fiducial distributions as formal posteriors, derived from an improper
prior distribution by the formal application of Bayes’ theorem. And, with the exception of
group-structural models (for which a right-invariant prior will serve) fiducial distributions
are usually not formal posteriors (Lindley, 1958).

Nevertheless, it follows from Section 3 and the Appendix that a fiducial distribution for
an SFM can always be regarded as produced by a suitable marginalization from the full
fiducial distribution in a structural model, based on an induced transformation group G. If
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G is amenable (Bondar and Milnes, 1981), this fiducial distribution, being formal Bayes
for a right invariant prior, is also interpretable as a true Bayes posterior for a suitable
finitely additive prior; and this property extends, through marginalization, to the required
fiducial distribution of the SFM (Heath and Sudderth, 1978; Sudderth, 1980). (In this case,
the fiducial distributions possess a certain weak coherence property.) For finitely additive
priors, posteriors need not look “Bayesian” nor are they uniquely determined (Stone,
1980), but the above considerations do lend a little Bayesian support to our general fiducial

argument.

Problems of the Nile. In applications of the confidence theory of Section 4.1, it is of
interest to solve problems of the type “Find the maximal function of E which is expressible
as a function of X and A,” where A is a given function of ©. In general the solution to this
problem governs the possibility of making pivotal confidence statements about A. The
case A = O corresponds to a maximal pivotal reduction, while A trivial yields the functional
ancillary. .

Likewise, in Section 7, we should wish to find a maximal function of E and Z expressible
as a function of X and A. Such problems have been partially investigated by Barnard and
Sprott (1982), under the name “generalized problems of the Nile”. Some abstract theory
is given by Plante (1979b).

The fiducial-confidence justification of fiducial probability of Section 7 is only convinc-
ing to the extent that one is prepared to accept, unjustified, the fiducial distribution of A
used to average out sampling probabilities. Now if A; and A, are the parameters of two
pivotal reductions, with A; a contraction of A;, then any fiducial-confidence property
holding with respect to A; also holds with respect to Az. So (if there are degrees of
acceptability) one would presumably prefer, in interpreting fiducial probabilities about a
parameter A in these terms, to use the maximal contraction A of © which will allow a
fiducial-confidence property. (The case A absent returns us to the full confidence interpre-
tation of Section 4.1.)

On the other hand, use of the larger reduction, with parameter A, will allow a greater
richness to the admissible fiducial-confidence belts, as seen in the Student’s ¢ and Behrens-
Fisher examples. In the limit, with A = ©, any belt is allowable, but there can no longer be
any confidence in the fiducial-confidence justification.

APPENDIX

Al. Coset models. Let H be a subgroup of a group G. Then any A € H can be
identified with the one-one transformation g ~ hg on G, and the orbit of any g € G under
this transformation group is the right coset Hg = {hg:h € H}. Thus a maximal invariant
function of G under the action of H is the projection g ~ Hg of G onto the quotient set
G/H = {Hg:g € G}. Moreover, identifying any g € G with the (well-defined) transfor-
mation on G/H given by Hk ~> (Hk)g = H(kg) exhibits G as a group of transformations
(written on the right) acting on G/H. This action is transitive, but not generally exact,
since (Hk)g = Hk whenever kgk™ € H.

Now consider an SFM (X = OF, E ~ P) having © = % = G/H, &= G, with the above
action. We call this a simple coset model [G, H; P]. It arises from a simple group-structural
model in which G serves as parameter-, data- and error-space, by reduction of the
parameter- and data-spaces, as in Section 3, to the maximal invariants under the action of
H. A number of our examples clearly illustrate this structure, for instance Example 2.3
with G the location-scale group of Example 2.4 and H its scale-subgroup.

In fact, any SFM (X = OF, E ~ P) may be regarded as a simple coset model. For fix
e € &. As e, determines a one-one correspondence between @ and %, we can, without any
essential change, work with the recoded data X° = Xeq’, taking values in %° = ©. This
recoding induces an action of any e € & as a one-one transformation from © onto Z°=
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©. Changing notation so that fe now denotes the result of this transformation on 8, we
have an equivalent SFM (X° = OF, E ~ P). Note that & now determines a set &° of
invertible transformations of ® onto itself, with e, € & acting as the identity. Let G be the
group of transformations generated by &°. Then the distribution P can be regarded as
defined over &°, and thus as a distribution over G, confined to &°. Thus, in our SFM, we
may, without loss of generality, regard E as taking values in a group G of transformations
of ©.

Suppose first that G is transitive on ©. Fix 6, € O, and let H be the subgroup
{g € G:6og = 6y}. Then {g:00g = 0} = HE for any k such that ok = §. We thus obtain an
isomorphism between ® and G/H: note that, if § and Hk correspond, then so do fe and
(HkE)e for e € G. Consequently, we may identify ® with G/H, and the action of e € G with
the standard action of G on the right of G/H, so obtaining, finally, a simple coset model
equivalent to the original SFM.

If G is not transitive on ©, the above construction applies to each orbit of ® under G,
with H possibly dependent on the orbit. However, the observation X° = x° tells us that ©
belongs to the same orbit as x° and the whole problem may be confined to this orbit, again

yielding a simple coset model.

A2. Reduction. Let [G, H; P] be a simple coset model, and K a subgroup of G
containing H. Define the projection 7: G/H — G/K by w(Hg) = Kg. This is well-defined,
since Hg, = Hg, = gig:' € H = gi1g:' € K = Kg: = Kg,. Moreover, 7((Hg.)g) =
7(H(g18)) = K(g18) = (Kg1)g, so that 7 effects a reduction in the sense of Section 3, with
a playing the role of both z(-) and A(-).

Conversely, suppose (Z = AE, E ~ P) is a reduction of an SFM (X = OF, E ~ P).
Representing the latter as a simple coset model [G, H; P], with & C G (as in Al), relabel
Z so that z(Hg) = A(Hg) = f(g) say. (There is a one-one correspondence between 2 and
£ by the invertibility of z(Hg) = A(Hg)i, where i is the identity in G which is also in &.)
Now, for e € &, \(Hg1) = A(Hg.) & z(Hge) = z(Hg:e), by reduction, so that f( g1) = f( &)
< f(gie) = f(g:e)(e € &). Since & generates G, it follows that f(g1) = f(g2) © f(gi1g3")
= f(i). Defining K = {k € G: f(k) = f(i)}, we see that K is a subgroup of G (containing H)
and that z(Hg;) = 2(Hg:) (and A(Hg,) = A(Hg)) iff g18:'€ K i.e. Kg; = Kg.. That is, 2
is a projection from G/H to G/K, as is the associated A, i.e. any reduction is such a
projection.

If K happens to be a normal subgroup of G, then G/K is itself a group, and the minimal
representation of the reduced model is a simple group-structural model and therefore
pivotal. This, then, is a sufficient condition for conditional consistency as defined in Section

5.

REFERENCES

BARNARD, G. A, (1963a). Some logical aspects of the fiducial argument. J. Roy. Statist. Soc., B 25
111-114.

BARNARD, G. A. (1963b). Logical aspects of the fiducial argument. Bull. Int. Statist. Inst. 40 870-883.

BARNARD, G. A. (1976). Conditional inference is not inefficient. Scand. J. Statist. 3 132-134.

BARNARD, G. A. (1977). Pivotal inference and the Bayesian controversy. Bull. Int. Statist. Inst. 47
(1) 543-551.

BARNARD, G. A. (1981). A coherent view of statistical inference for public science. Paper presented at
Symposium on Statistical Inference and Applications, University of Waterloo, August
1981.

BARNARD, G. A. and SPROTT, D. A. (1983). The generalized problem of the Nile: robust confidence
sets for parametric functions. Ann. Statist. 11 to appear.

BARNDORFF-NIELSEN, O. (1978). Information and Exponential Families in Statistical Theory.
Wiley, New York.

BONDAR, J. V. and MILNES, P. (1981). Amenability: a survey for statistical applications of Hunt-Stein
and related conditions on groups. Z. Wahrsch. verw. Gebiete 57 103-128.

BRENNER, D. and FRASER, D. A. S. (1979). On foundations for conditional probability with statistical
models—when is a class of functions a function? Statist. Hefte (N.F.) 20 148-159.



FIDUCIAL INFERENCE 1067

BUEHLER, R. J. (1982). Fiducial inference 1. Entry in Encyclopedia of Statistical Sciences, ed. by S.
Kotz and N. L. Johnson. Wiley, New York.

BuNKE, H. (1975). Statistical inference: Fiducial and structural vs. likelihood. Math. Operationsforsch.
u. Statist. 6 667-676.

BUNKE, O. (1976). Conditional probability in incompletely specified stochastic equations and statistical *
inference. Math. Operationsforsch. u. Statist. 7 673-678.

Dawip, A. P. (1975). On the concepts of sufficiency and ancillarity in the presence of nuisance
parameters. J. Roy. Statist. Soc. B 37 248-258.

Dawip, A. P. (1977). Conformity of inference patterns. In Recent Developments in Statistics, eds. J.
R. Barra, B. van Cutsen, F. Brodeau and G. Romier. North Holland, Amsterdam. 245-256.

Dawip, A. P, SToNE, M,, and ZIDEK, J. V. (1973). Marginalization paradoxes in Bayesian and
structural inference (with Discussion). J. Roy. Statist. Soc. B 35 189-233.

DEMPSTER, A. P. (1963). Further examples of inconsistencies in the fiducial argument. Ann. Math.
Statist. 34 884-891.

DEMPSTER, A. P. (1969). Elements of Continuous Multivariate Analysis. Addison-Wesley, Reading,
Mass.

EpwaRrDps, A. W. F. (1982). Fiducial Inference I1. Entry in Encyclopedia of Statistical Sciences, eds.
S. Kotz and N. L. Johnson, Wiley, New York. .

FISHER, R. A. (1930). Inverse probability. Proc. Camb. Phil. Soc. 26 528-535.

FISHER, R. A. (1934). Two new properties of mathematical likelihood. Proc. Roy. Soc. Ser. A 144 285-
307.

FiSHER, R. A. (1935). The fiducial argument in statistical inference. Ann. Eugenics 6 391-398.

FisHER, R. A. (1939). The comparison of samples with possibly unequal variances. Ann. Eugenics 9
174-180.

FIsHER, R. A. (1945). The logical inversion of the notion of the random variable. Sankhya 7 129-132.

FIsHER, R. A. (1973). Statistical Methods and Scientific Inference. (Third Edition.) Hafner, New
York.

FRASER, D. A. S. (1961). The fiducial method and invariance. Biometrika 48 261-280.

FRASER, D. A. S. (1962). On the consistency of the fiducial method. J. Roy. Statist. Soc. B 24 425-434.

FRASER, D. A. S. (1964). On the definition of fiducial probability. Bull. Int. Statist. Inst. 40 842-856.

FRASER, D. A. S. (1968). The Structure of Inference. Wiley, New York.

FRrASER, D. A, S. (1971). Events, information processing, and the structural model. In Foundations of
Statistical Inference, ed. by V. P. Godambe and D. A. Sprott. (Proceedings of the
Symposium on the Foundations of Statistical Inference, University of Waterloo, 1976),
Holt, Rinehart & Winston, Toronto.

HEeaTtH, D. and SuDDERTH, W. (1978). On finitely additive priors, coherence and extended admissi-
bility. Ann. Statist. 6 333-345.

Hora, R. B. and BUEHLER, R. J. (1966). Fiducial theory and invariant estimation. Ann. Math. Statist.
37 643-656.

LINDLEY, D. V. (1958). Fiducial distributions and Bayes’ theorem. J. Roy. Statist. Soc. B 20 102-107.

MauLboN, J. G. (1955). Pivotal quantities for Wishart’s and related distributions, and a paradox in
fiducial theory. J. Roy. Statist. Soc. B 17 79-85.

PEDERSEN, J. G. (1978). Fiducial inference. Int. Statist. Review 46 147-170.

PiERCE, D. A. and BoGpANOFF, D. A. (1971). Note on Bayes-Fiducial intervals for problems of
location and scale. Ann. Math. Statist. 42 833-836.

PLANTE, A. (1979a). On the validation of fiducial techniques. Can. J. Statist. 7 217-226.

PLANTE, A. (1979b). Structured probability statements. Can. J. Statist. 7 227-232.

SEIDENFELD, T. (1979). Philosophical Problems of Statistical Inference. Reidel, Boston.

SToNE, M. (1980). Review and analysis of some inconsistencies related to improper priors and finite
additivity. Logic, Methodology and Philosophy of Science VI, ed. by L. J. Cohen, J. Lgs,
H. Pfeiffer and K.-P. Podewski. (Proc. 6th Int. Congress). North-Holland, Amsterdam.

STONE, M. (1982). Fiducial probability. Entry in the Encyclopedia of Statistical Sciences, ed. by S.
Kotz and N. L. Johnson, Wiley, New York.

SupbpERTH, W. (1980). Finitely additive priors, coherence and the marginalization paradox. J. Roy.
Statist. Soc. B 42 339-341.

WIiLKINSON, G. N. (1977). On resolving the controversy in statistical inference (with Discussion). oJ.
Roy. Statist. Soc. B 39 119-171.

YAaTes, F. (1939). An apparent inconsistency arising from tests of significance based on fiducial
distributions of unknown parameters. Proc. Camb. Phil. Soc. 35 579-591.

DEPARTMENT OF STATISTICAL SCIENCE
UNIVERSITY COLLEGE LONDON
GOWER STREET

LonpoN WCIE 6BT, ENGLAND



