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MINIMAXITY OF THE METHOD OF REGULARIZATION
ON STOCHASTIC PROCESSES*

By KERr-CHAU L1

Purdue University

The idea of smoothing-spline interpolation is generalized to propose an
estimator for the mean function of a stochastic process. A minimax property
of the proposed estimator is then demonstrated under the usual squared loss
function.

1. Introduction. Suppose we observe a stochastic process { Y (¢) : 0 < ¢ < 1} satisfying
Y(t) = f(¢) + &, where fis a smooth function and {:} is a stochastic process with mean 0
and covariance structure known up to a constant. The problem is to estimate the true
function f. Most literature on this subject assumes that f belongs to a finite dimensional
subspace of the reproducing kernel Hilbert space (RKHS) generated by the error process
(e}, and the least squares estimators are commonly used. See, for example, Parzen (1961)
for a Gauss-Markov type theorem.

In this paper, we consider the case where the finite dimensional model is contaminated
by some small smooth quantity. For example, if {e} is the first order autoregressive
(continuous parameter) Gaussian process (Paizen, 1961) and if H is the set of real functions
on [0, 1] with absolutely continuous first derivative and square integrable second derivative,
then we might assume that f € H and [§ f”(x)? dx < & for some known constant 8. This
becomes a “nearly-linear” model (Sacks and Ylvisaker, 1978) and a minimax linear
estimator can be thought of as a robust regression estimator. We find that given any
¢t € [0, 1] under the squared loss function, the unique minimax linear estimator for
estimating £(¢) is the solution function of the following minimization problem, evaluated at
the point ¢:

(1.1) minfe]{%J’ {(f"(x)}2dx + (f, f)x — 2(f, Y)x,
0

where (-, -)x is the inner product of the RKHS generated by {e}. Note that although
most often Y does not belong to the RKHS, (f, Y)x is a well-defined random variable
(Parzen, 1961).

The minimization problem (1.1) is similar to the following more famous minimization
problem which yields a smoothing spline f:

1 82
(1.2) minsen J' {(f"(x)}* dx + s Y Y- f(x)Y,
hl 0

where the Y, are the observations made at the x; € [a, b], assumed to be independent with
the same variance ¢2. A minimax justification for the use of smoothing splines for (1.2) is
given by Speckman (1979). An earlier similar result on periodic splines is given by P. J.
Laurent; see Micchelli and Wahba (1979). As indicated by Speckman, a minimax linear
estimator for any bounded linear functional can be derived by the method of regularization
(MOR), i.e., by operating the linear functional on the smoothing spline f Our method for
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getting the desired results follows a variation of Speckman’s approach. In Section 2, we
shall reformulate our problem in a generalized form to cover also the problem of Speckman.
While weakening a crucial assumption in Speckman (1979) and still retaining the results
given there, we find an important difference between the case (1.2) where the observation
is finite dimensional and the case (1.1) where the observation is infinite dimensional.
Although the MOR always works for finite dimensional observations, it does not work in
some infinite dimensional cases. The example given in the second paragraph of this section
is a case where the MOR works. But, if instead of assuming that {¢} is a first order
autoregressive process, we assume that {e;} is a second order autoregressive process, then
the MOR does not work. More precisely, although the minimax linear estimator for f(¢)
exists, (1.1) does not have a solution. Moreover, for some cases, there exist two different
error processes generating the same reproducing kernel such that the MOR works for one
error process but not for the other, although the usual theory about linear estimators
involves only the first and the second moments of the random errors. However, a theorem
is given to characterize the conditions under which the method of regularization works. It
is somehow surprising that although much work has been done on solving (1.2), there is
little statistical literature on (1.1). Specifically, it is not known how to apply the cross-
validation technique (Wahba and Wold, 1975) for estimating 62/02 in (1.2) to the problem
(1.1).

2. Main result. Let I be an index set, let H; and H; be Hilbert spaces with inner
products (-, -); and (-, - ), respectively, and suppose

(2.1) Tis a bounded linear mapping from H; onto H; with finite dimensional null
space.

This assumption, together with (2.4) below, is weaker than the Assumptions A2 and A3 in
Speckman (1979).

Assume that ¢ is a stochastic process on the index set I with mean 0 and the covariance
structure generating a reproducing kernel Hilbert space Hs with the kernel K. As usual we
use (-, -)x to denote the inner product of H;. Assume our observation Y is a stochastic
process on I such that

(2.2) Y=Af+o0-¢
where A is a bounded linear mapping from H; to Hs, o is a known positive constant, and
(2.3) fEH, and (Tf, Tf): < 6>

for some known constant §. Assume also that
(2.4) if Af=0 and Tf=0 thenf=0.
Suppose y is a realization of Y such that

(2.5) the linear functional on H; defined by mapping an element g in H; to the
corresponding realization of the random variable (Ag, Y)x is bounded.

We may write § € H; to denote the representation of the above linear functional in H;.
Thus we have

(2-6) (g) 5;)1 = (Ag) y)K-

LEmMA 2.1. Assume (2.1) and (2.4). Then (0%/8% T*T + A*A is one-to-one, onto,
and has a self-adjoint square root L which is invertible with the self-adjoint inverse L.

Proor. Let N be the null space of T. By (2.1), N is finite dimensional and thus is a
closed subspace of H;. Let N* be the orthogonal complement of N in H;. Let T; be the
restriction of T to N*. By (2.1) again, T, is one-to-one and onto, and thus T'#T} is one-to-
one and onto.
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Let A; and A; be the restrictions of A to N* and N, respectively. By (2.4), A, is 1-1 and
hence AfA;is 1-1 and onto (because N is of finite dimension). Therefore (0%/82)T# T, +
AZA; is a 1-to-1, onto, and self-adjoint linear mapping on H;. Since

(6%/8*)T*T + A*A = (6%/8*)TIT: + AfA: + ATA,,
the rest of the proof follows immediately.

THEOREM 2.1. Under (2.1) through (2.5), the minimization problem
2
2.7 minfen,{% (Tf, Tf )2 + (Af, Af)x — 2(Af, y)K}

has a unique solution f given by ((62/8%)T*T + A*A)™'5. Moreover, if (2.5) is not satisfied
then the solution does not exist (infimum = —©).

Proor. Itis clear that, by (2.6) and Lemma 2.1,
02 2 .
32 (Tf, Tf )2 + (Af, Af)x — 2(Af, Y)x =§-2- (T*Tf, fn + (A*Af, i — 2{(,
= (Lf,Lf)1 — 2(Lf,L™ %%}
=(Lf=L7'% Lf— L) — (L7, L)
=z - (L7, LY.
The equality is achieved when f= L™'.L7'j = ((6%/6)T*T + A*A)~'y. Hence the first

part of the proof is complete, while the second is obvious. [

Given /€ H;, under (2.1) through (2.4), we want to estimate (¢, f):. By Parzen (1961),
any linear estimator with finite variance can be represented as (e, Y)x for some e € H;.
The mean squared error is E {(£ f)1 — (e, Y)x}? which is equal to {(£ )1 — (e, Af)k}*
+ o%(e, e) . The following theorem characterizes the minimax linear estimator and suggests
the method of regularization for computing it.

THEOREM 2.2. Under (2.1) through (2.4), the minimax problem
(2.8) min,cy, maxgyr,<e {(4 /)1 — (€, A)x)’ + o”(e, e)x.

has a unique solution e, given by A((62/6*)T*T + A*A) ‘4. Moreover, if y is a realization
of Y satisfying (2.5), then

(0, )k = (4 )
where f is the solution provided by Theorem 2.1.

Proor. The first result follows by an algebraic computation similar to that carried out
in the proof of Theorem 1 of Speckman (1979). The second result follows from the following
computation, which uses (2.6) and Theorem 2.1,

2 2 -1
(€0, ¥)x = (A(‘-;E T*T + A*A) 14 y)K = <(§z T*T + A*A) ‘ y'>1

2 -1
= <¢; (gg T*T + A*A) V)= (4P
Note that in the model (2.2), if we take I = {1, --- ,n} and e = (ey, - -+ , &)’ With Eg;¢;

= 0 and Ee? = 1 for all { # j, then our model is reduced to the model in Speckman (1979).
Observe also that in this reduced case, (2.7) becomes

minyeg, {‘—;— (Tf, Tf)2 + (Af)'Af - 24D 'y},
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which is equivalent to the solution given in Speckman (1979):
. o’
MiNfey, {35 (Tf, Tf)2 + (Af — y) (Af - y)} .

As was demonstrated by Speckman, (1.2) is a special case of the above minimization
problem. It is therefore from this point of view that we consider (1.1) as being proposed by
using a generalized idea of smoothing spline interpolation. Note also that in (2.7) we cannot
replace (Af, Af)x — 2(Af, ¥)k by (Af — y, Af — y)x because in most cases (y, ¥)k is + oo.

ExaMPLE 1. Ridge regression on stochastic process. Take H; = R", H, = R™
(n = m), T to be any linear mapping from R” onto R™ and A to be any one-to-one linear
mapping from R" to the reproducing kernel Hilbert space Hs. It is easy to verify (2.1) and
(2.4), and that (2.5) holds with probability 1. An element in R" is usually called a vector of
unknown parameters and (2.3) restricts the parameters to lie in an ellipsoid with center at
the origin. Thus Theorem 2.2 provides a ridge estimator for any linear functional on the
parameter space and claims also that the method of regularization always works. For the
case where m = n and T is the identity mapping with § = +co, this reduces to the usual
least squares estimator for which a Gauss-Markov type theorem has been well known
(Parzen, 1961).

EXAMPLE 2. Robust regression on a stochastic process. Consider the example given
in the second paragraph of Section 1. Let I = [0, 1]. Take H; to be H and equip it with the
Sobolev norm obtained from the inner product { f, g)1 = Y3-0 [5 f*'g*(x) dx. Take H; to
be L7[0, 1] and define T by T(f) = f”. The RKHS Hj contains all differentiable functions
on [0, 1] (c.f. Parzen, 1961). The inner product of H; is given by

(f, 8)x = f (f + B)(& + Bg) dt + 2Bf(0)g(0),
[

where B is a constant.
Take A to be the identity map. Then (2.1) through (2.4) hold. To verify that (2.5) holds
with probability 1, we may write

(f,e)x = % {,32 f f(t)e(t) dt — f e(@)f" () dt + f(1)e(1) — f(O)S(O)}
[ [

1
+5 {f(0)e(0) + f(e(1)},
where f € H. By the Cauchy-Schwartz inequality, we have

1 1 1/2 1 1/2 1 1/2
ff(t)e(t) dts(f F2(t) dt) (f e2(t) dt) s(f,f)%”-(f e2(t) dt) ,
0 0 0 0

which shows that the linear functional on H; which maps f to 5 f(¢)e(¢) dt is bounded. A
similar argument applies to the linear functional on H, which maps f to [o f”(¢)e(¢) dt.
Finally, it is a well-known fact that f/(1), f(0) and f(1) are bounded functionals on H;.
Therefore (2.5) holds with probability 1. Thus Theorem 2.1 and 2.2 hold. The method of
regularization works in this case. Moreover, we have the following global optimality

min, ey Max j oz <o Maxeeoy E{f(t) — (e(t), Y)x)?
= malef”(x)"dxsaz max.cpon E { () — £(t))%,
where f is the solution provided by Theorem 2.1. This will be seen by changing the order

of the two maximizing operations on both sides of the equality and applying the minimax
result for point estimation.
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Similar results hold for the case where f belongs to an mth order Sobolev space and ¢
is a m’th order autoregressive process with m > m’.

ExAMPLE 8. Assume that ¢ is a second order autoregressive Gaussian process and that
other conditions are the same as in Example 2. We see that the probability that (2.5) holds
is zero because of the facts that the RKHS H; contains all twice differentiable functions on
[0, 1], H, is homeomorphic to H;, and Y does not belong to Hs;. Hence the method of
regularization does not work in this case. To avoid computation, we look at another similar
model. Let H; and H; be equal to H; given above. Let T and A be the identity map.
Assume (2.2) and (2.3) hold. It is easy to verify that (2.1) and (2.4) hold. But the probability
that (2.5) holds is zero, because ¢, which is Gaussian, does not belong to Hs, i.e. (¢, &)x =
+o0; see Parzen (1961) for details. Hence the solution of (2.7) does not exist. However, the
minimax linear estimator for f(¢) provided by Theorem 2.2 is easily identified to be
8%/(8% + 0%)-Y(2).

Assume hereafter that H; and H; are separable. Assume also that

(2.9) the spectrum of A*A is discrete.

(See Rudin (1973) for all related statements hereafter.)

Now we characterize the conditions on A such that (2.5) holds with probability 1. By
(2.2) it is clear that we only have to consider the case where f = 0. Let P be the probability
that (2.5) holds. If H, or Hj is of finite dimension, then P = 1. Therefore, we assume that
both H; and H; are of infinite dimension. By (2.9), there exist orthonormal systems
{¢:}Z1 and {¢:}iZ; on H; and H; respectively, such that {y;}>, is complete and Ay; =
A;¢; for a sequence of numbers {A;}i=;. The orthonormal systems{y;}{; are the eigenvec-
tors of A*A with the corresponding eigenvalues {A?};. Note that (2.9) holds if A is a
compact linear operator. In particular, the operators in Examples 1 and 2 satisfy (2.9).

THEOREM 2.3. Under (2.2), P =1 iff
(2.10) Pr (371 M(¢i, )k < @) = L.
In particular, if
(2.11) LAl <o,
then P = 1. Moreover, if P = 1, and {(¢:, €)%)%: are independent and identically
distributed, then Y2 A? < oo,

Proor. It is clear that

P = Pr{sups,,=1(Ag, &)k < ©} = Pr{sups= q:=; (%1 a:kigpi, &) k < 00}
= Pr{supy= ,:<; (=1 @:di(s, ©)k)* < 0} = Pr{¥ 71 A} (s, &)k < ).

Thus the first result is proved. Since E (¢, &) % = (¢:, ¢:)x = 1, a simple application of
Fatou’s lemma (c.f. Royden, 1968) leads to the conclusion that (2.11) implies (2.10). Thus

the second result is proved.
Moreover, if P =1 and {(¢:, &) k)1 are independent, then by Kolmogorov’s “three
series theorem” (c.f. Chung, 1968) we have, for any a > 0,

(2.12) 21 Pr{iA¥(¢, 9k >a) <
and
(2.13) Yz E{A (i, ©%-1([0, a])} < oo,

where 1([0, a]) is the indicator of [0, a].
When {(¢:, €)x}iZ: are identically distributed, we have lim;_..A; = 0; otherwise, upon
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choosing @ = min{1, % lim sup;_,«A;}, we see that (2.12) does not hold. Now rewrite (2.13)

as
e, }\fE{(qbi, 8)%.1([0,% ])} < 0,

This implies (2.11) because E{ (s, s)%-l.(lio, % ])} - 1.

REMARK. One can easily construct dependent random variables {(¢;, €)x}i=1 such that
(2.10) holds but (2.11) does not. For example, let x be an absolutely continuous symmetric
random variable with infinite variance, and let (¢;, ¢)x be (x/A;) when i — 1 < |x| < i
and 0 otherwise, where A\; = [E {x*-1([i — 1, i))}]"/%. There also exist examples where
{(¢:, €)%} 21 are independent but non-identically distributed such that (2.10) holds but
(2.11) does not. These counter-examples illustrate the probabilistic nature of the method
of regularization, while the general theory of linear estimators usually does not depend on
more than the first and the second moments of the random error. More precisely, there
exist two different error processes e and e such that they yield the same reproducing
kernel, but in order to estimate the same linear functionals, it is legitimate to use the
method of regularization for &; but not for e; (e.g., &1 can be taken as the one generated by
the above counter-example and & can be the Gaussian one with the same reproducing
kernel).
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