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H,-CONTIGUITY IN NONPARAMETRIC TESTING PROBLEMS AND
SAMPLE PITMAN EFFICIENCY

BY GEORG NEUHAUS

University of Hamburg

The concept of Hy-contiguity is studied for certain nonparametric testing
problems. Furthermore, it is shown that a meaningful sample definition of
Pitman efficiency is possible under Hy-contiguity, and this definition turns out
to coincide with the usual efficiency concept based on comparing asymptotic
distributions. :

1. Introduction. The aim of the present note is twofold. On the one hand, we
introduce the notion of “Hj-contiguity” of a sequence of alternatives to a compound null-
hypothesis H,. This concept is essentially the same as the notion of “contiguity to Hy”’
which was used by Hajek and Sidak (1967). We show that a consequent application of the
Hy-contiguity concept simplifies the derivation of the limiting distribution of linear and
other rank statistics under (not necessarily translation) alternatives.

On the other hand, we show that a meaningful sample definition of the asymptotic
relative Pitman efficiency of certain rank tests is possible under (nearly) arbitrary H,-
contiguous alternatives. For the sake of concreteness, we deal mainly with linear rank tests
for the two-sample problems of “randomness” versus “positive stochastic deviation of the
first sample.” In the last section some extensions are given to other tests and other testing

problems.

2. Hy-contiguity and linear rank statistics. Let Xj, ..., X,,, respectively Y3, ..,
Y., be i.i.d. real random variables having continuous distribution functions (df’s) F,, and
G., and denote by Ry, ---, Ri» and Ry, .-+, R, their ranks in the pooled sample
consisting of N = m + n observations. We want to consider the null-hypothesis of
randomness Hy: F,, = G, versus the alternative, K, that the first sample is stochastically
larger than the second sample, i.e. K: F,, < Gy, F,, # G,.

Let by; < - - - < byw be given scores such that the step functions bx: (0, 1) — R, defined
by by(u) = by; for (1 — 1)/ N<u<i/N,i=1, ..., N converge in L, space of Lebesgue
(A)-square integrable functions on (0, 1) to some nondecreasing function &: (0, 1) —» R with
(1, b) =0and | 6] =1:

(2.1) Limny_ ol by — & =0,

where (-, -) denotes the usual scalar product in L; and || - || the corresponding norm, 1

being the function with constant value 1.
It is a well known fact that under H, the two-sample linear rank statistics

1 Ry 1 Ry;
_ /2, m )y c
(2.2) Smn = (mn/N) {m— =1 bN<N T 1) n 2= bN<N ¥ 1)}

converge in distribution to the standard normal distribution .40, 1).

(2.3) Spn =0 A(0,1) for min(m, n) - ,
see e.g. Hdjek and Sidak (1967). The crucial step in the proof of (2.3) is the result that
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under Hy: F,, = G, = H,, , say, the statistics S,., can be approximated in probability by
1 1
(2.4) Skn= (mn/N)m{a Z1 b(Us) — ;ZS‘=1 b(Um+j)},

U= Hm,n(Xz), i=1...,m, Um+j = m,n(Y/)y ] =1, .-, 1 ie.
(2.5) Spn — Sk, —p: 0 under H, for min(m, n) — .

From (2.5) and Lindeberg’s Theorem applied to S#., (2.3) follows at once.

In order to judge the asymptotic power of the test with critical region Sy, = u,, u. being
the a-fractile of .#(0, 1), one often considers alternatives (F,, G,) which are contiguous to
the null hypothesis H, in the sense of Héajek and Sidak (1967, Chap. VI). Here we want to
consider a slightly different concept, called Ho-contiguity.

Before giving the exact definition of the notion “Ho-contiguity”, let us restrict the
sequence of sample numbers (m, n), by assuming that the total sample number N = m +
n determines m and n, i.e. m = m(N), n = n(N) and assume that the relative sample

number converges:
(2.6) limyo.m(N)/N=1v, say, for n€ (0,1).

Henceforth all limits are for N — o. The reason for such a restriction is that later on we
want to judge the efficiency of the test by the total sample number needed to raise the
power of the test above some given value, rather than to consider the amount of asymptotic
translation of S,.. under H, as in Hajek and Sidak (1967). To make such a sample efficiency

concept meaningful, the above restrictions are very natural, though they are not really
needed in the following definition.

DEFINITION 2.1. A sequence {(Fn, Gn)}, I\~/ =1, is called Hy-contiguous, abbreviated
{(Fy, Gn)} < H,, if there exists a sequence {(Hn, Hn)}, N = 1, in Ho such that

(®7™ Fy @ @™ Gy} < {®Y Hn)

in the usual one-sided contiguity sense, see e.g. Hajek and Sidak (1967) or Oosterhoff and
van Zwet (1979). We want to give some characterizations of Ho-contiguity. Note first that
Hy = gvFn + (1 — 9v)Gn, v = m(N)/N, dominates Fy and Gn. Then define a function
dy on (0, 1) by

2.7 dy = {mn/NYY*(fv — gn)oHR¥,

with fv = dFn/dHyn, gv = dGn/dHy and H ~' the left continuous pseudoinverse of Hy.
Since nnfx + (1 — nv)gn = 1[Hn], fv and gn are bounded:

0=fv=1/mn, 0=gn=1/(1—nn)[Hn].

The following lemma characterizes Hy-contiguity.

LEMMA 2.2. Under condition (2.6), the following four statements are equivalent.

(2.8) {(Fn, Gn)} < Ho,

(2.9) lim supy #? (Fn, Gn) < o,
(2.10) lim sup || dn|| < ,

(2.11) {®r™ Fy®®1™ Gy} < {®Y Hn}.

In (2.9) # denotes the Hellinger distance defned by

1/2
A, G) = { j (F - g2y du}
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for two probability measures (or df’s) F and G, with p-densities f and g, where p is any
o-finite measure dominating F and G; for p(F, G) = [ (fg)"/? du one has #*(F, G) =
2{1 - o(F, G)}.

The proof of the Lemma makes use of a result of Oosterhoff and van Zwet (1979) which
we cite in advance for easier reference: Let Py;, @n: be probability measures on arbitrary
o-finite measure spaces ( %ni, </ni, tn:) such that py; dominates Py; + @n: with pni =
dPy;/dpn; and qn; = d@Qni/duni(i =1, -+, N,N=1,2, --.). Then according to Oosterhoff
and van Zwet (1979), Theorem 1, the conditions

(A) lim sup ¥¥1 #*(Ppi, @ni) <,

and

B) lim Y, @ni{gni/pni= N} =0, cn— ,
are jointly equivalent to {®; @n:} < {®¥: Pni).

PROOF OF LEMMA: From #(Fy, Gn) < #(Fy, Hy) + #(Hy, Gv), (2.6) and condition
(A), it follows that (2.8) implies (2.9). The equivalence of (2.9) and (2.10) follows from
212) |ldnl®= (v — 7)) INA#A*(Fn, Gn) < {qnv(1 — )} Elan|?, VN=1.

The first inequality in (2.12) is a consequence of A
j heHn(fv — gn) dHN j hoHy (f¥* + gN*)(fN* — gN*?) dHn

(2.13) =< {av@ —w)}7" f |heHy| | fN* — gN?| dHn

< {an(1— )} | R || #(Fn, Gn), hE La;

for the first inequality in (2.13) note that (2 + g¥*) < {n~(1 — nw)}~", which follows
from the concavity of the square root and from nnfy + (1 — nv)gy = 1. Putting A =
(fv — gn)°H 3 in (2.13) yields the first half of (2.12), while the second one is entailed by
| % — g?| < |fv — gn/|. This is true since nv fx + (1 — nnv)gv = 1. Since (2.11) = (2.8) is
trivially fufilled, it remains to show that (2.9) implies (2.11). Omitting the index N, one
gets from the concavity of the square root function

p(H, F) = f {nf + (1 —m)g}"/*f”* dH = j (nf'”? + (L —n)g*}f* dH

=nfde+(l—n)jgl/zfde=n+(l—n)p(F,G),

and, similarly, o(H, G) = (1 — n) + no(F, G). Hence
H*H, F) = 2{1 — p(H, 1’;)} <2(1-71— 1 —npF G} =1-nHFG)
and #%(H, G) < n#*(F, G). Combining the last two inequalities yields
lim sup{m(N )#*(Fn, Hy) + n(N)#*(Gn, Hn)}
< 2.1im sup n(1 — ) N#2(Fn, Gn) < .
Therefore condition (A) is met for the sequences in (2.11). Since condition (B) is automat-

ically fulfilled for uniformly bounded densities, (2.11) follows. 0O

The interesting feature of Lemma 2.2 is that under (2.6) Ho-contiguity is expressible
completely by means of the Hellinger distance #(Fn, Gn).
Now assume that {(Fy, Gn)} is Ho-contiguous. Choosing Hy,,, = Hy in (2.5) and (2.6)
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and writing S§ = S%).nav), We obtain

(2.14) Sy — S% —p: 0 under {(Fn, Gn)}.
Then
(2.15) Er,c,Sk = (mn/N)"? f beHn(fv —gv) dHy =< b, dv >

with dy as above. Since fy and gn are bounded, the expectation in (2.15) is always finite.
This is a technical advantage of H,-contiguity compared with the usual approach using
fixed elements (H, H) in Hy, because in the latter case the corresponding expectations are
in general finite only after a truncation of the score function b, see e.g. Behnen (1972).
Moreover, (2.12) gives an explicit bound for {< b, dyv >}, N=1:

(2.16) lim sup < b, dv >% < {n(1 — 5)} 'lim sup No#*(Fn, Gn) < .

Using (2.13) with & = b yields, after simple calculations, lim Vars, ¢, S% = 1, implying
that {S} — < b, dv >} obeys the Lindeberg condition. Therefore, using (2.14) one finally
gets

(217) Sy —< b, dyn > >y ./V(O, 1) under {(FN, GN)} < Ho,
which is the basis for judging the asymptotic power of the rank test with critical region Sy

= Uy

For our efficiency considerations in the next section, it will be useful to extend (2.17) a
little bit. Let {£(N)}, N = 1, be a subsequence of the sequence of total sample numbers
{N} with

(2.18) lim 2(N) = and liminf N/kR(N)>0.
Then
(2.19) Sk(N) - {IG(IV)/IV}I/2 < b, dn > —)9./‘/(0, 1) under {(FN, GN)} <l H,.

PrOOF OF (2.19). Without loss of generality‘,' assume k(I\Z )<kR(N+1)VN=1,; other.vyise
one may take a suitable subsequence. Define Fy) = Fn, Gravy = GNVN = 1 an~d let ), =
G be arbitrary df’s for £ &€ {k(N):N = 1}. Then (2.18) and (2.9) imply {(F%, Gr)} < Ho.

Using (2.17) for {(F%, G:)} instead of {(Fn, Gn)} and taking the subsequence {£(N)}, one
gets (2.19).

REMARK 2.3. It is easy to show that

t
2200 F.=G,e J dvdA=0Vte (0,1) and “<” forsome ¢€ (0,1).
%
0

Therefore, dy characterizes K. Using the fact that b is assumed to be nondecreasing, one
gets < b, dy > = 0 for (F,., G,) € K with strict inequality for strictly increasing b, implying
that the translation in (2.19) is positive in that case.

REMARK 2.4. Every fixed pair (F, G) of alternatives generates a corresponding family
of alternatives (Fa, G»),0 <A =<1, by

(2.21) fo=dFsy/dH =1+ A(1 —) d(F — G)/dH
and
(2.22) g.=dGy/dH=1—-And(F - G)/dH, 0=A=<1,

with n = lim m(N)/N, H = 9F + (1 — 9)G. Clearly, F1 = F, G, = G, Fo = Go = H and nFs
+ (1 — 7)Ga = HVA. Under condition (2.6) for A = Ay, the following equivalence holds
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true:

(2.23) {(Fs,, Ga)) <\ Hy = Ay = O(N ).

Proor oF (2.23). Using
| f¥?— gt?|<|fa—&a| = A| d(F — G)/dH| < A{n(1/7)} "
one gets
N#*(Fasy, Gay) < NAR{n(1 =)},

yielding together with Lemma 2.2 that Ay = O (N ~'/?) is sufficient for H,-contiguity. On
the other hand, using the well known inequality || Fa — Gal||1 = #(Fa, Ga) where | - |
denotes the total variation distance, one gets

N1/2AN"F - G"l = N1/2 " FAN - GAN"I = N1/2’-#(FAN5 GAN)'

An application of Lemma 2.2 to the last inequality yields (2.23). O

The quantity d(F — G)/dH represents in some sense the deviation of (F, G) from H,.
Multiplying d(F — G)/dH by a factor Ay — 0 maintains the character of deviation while
{(Fa,, Ga,)} approaches H,.

Therefore, the strictly nonparametric family .(Fa, Ga), 0 < A < 1, seems to be a natural
one for applying local asymptotic power results to finite N. Moreover, technical advantages
also exist for generating a Ho-contiguous sequence by starting from elements of the
alternative in contrast to the usual way of generating contiguous sequences by starting
from elements of H, (translation alternatives, Lehmann alternatives). E.g., it is very easy
to prove consistency of the linear rank tests by noting that Fx < F, G, = GVA € [0, 1] and
that N /?Ax may be chosen to converge to arbitrary large values; see (3.2).

3. A sample definition of Pitman efficiency under Hy-contiguity. Let {¢~} and
{Yn} be two sequences of level « tests for the two-sample testing problem of Section 2 and
{(Fn, Gn)} be any sequence of alternatives. Denote by £(IN) the smallest 2 = 1 with

Er,c9r = Er,c¥n = Bn,

say, and k(N') = o otherwise and define the asymptotic relative efficiency (ARE) of {gn}
with respect to {{~} on {(Fn, Gn)} by

(3.1) ARE(¢:y) = lim inf N/E(N).

We want to compute the ARE of linear (and other) rank tests for the two sample testing
problem of Section 2 under H-contiguous alternatives {(Fn, Gn)}. Therefore, let gn be
the one-sided level « test rejecting for large values of Sy, where Sy is taken from Section
2.

Then under Ho-contigudus alternatives {(Fv, Gn)}, (2.17) yields for subsequences
{k(N)} of {N} with (2.18) the following asymptotic formula for the power of qn:

k(N)?
(3.2) Ex, cypun) = M({—(N—)} T(dN)> + (1)
with M(z) = 1 — ®(u, — 2), D denoting the df of #(0, 1), and T(x) = < b, x >, for x € L,.

THEOREM 3.1. Let {@n} resp. {yn} be level a tests fulfilling (3.2.) resp.
(3.3) 0<a<liminf By <limsup Bn <1, Bwn=Er,c, ¥n.
Then
(3.4) lim inf N/R(N) = 0 iff 0 is an accumulation point of {T(dn):N = 1},
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and

(3.5) lim inf N/R(N) >0 implies N/k(N) = {T(dn)/M'(Bn)}* + o(1),
and, consequently,

(3.6) ARE(p:y) = lim inf({T(dn) /M ~}(Bn)}*

ProoF. We show the “only if ” part of (3.4): Fix a number p > 0 and define 2(N) to be
the integer part of N-p”. Then 2(N ) — o and k(N )/ N —p>. Now, let {N’} be a subsequence
of {N} with N’/k(N’) — 0 and T(dny’) — a(= 0), the last assumption being possible
because of the boundedness of {T(dn)}. Clearly, k(N’) < E(N’)VN’ = N, for some Nj.
Hence from the definition of {£(N)} and (3.2)

By = Ery.ayPravy = M({R(N")/N "} T(dn)) + o(1)
= M(pa) + o()VN’ = N,,

implying lim sup By = M(pa)Vp > 0. Because of (3.3), this is only possible for a = 0, i.e. 0
is an accumulation point of {T(dx)}.

In order to show the “if”’ part of (3.4), note first that Hy-contiguity of {(Fv, Gn)} implies
[ | fv — gn| dHy — 0 and therefore imy .o Er,,¢,9r = Exp-r = a. Hence a < lim inf By
forces {£(IN)} to converge to «. Now assume that lim inf N/E(N) > 0. Then {k£(N)} fulfills
(2.18), especially £(N) < o for N = N,, say. Therefore,

3.7) B < Eroyprn) = MUE(N)/N }T(dy)) + o(1).

The last inequality shows that 0 cannot be an accumulation point of {T(dx)}, since T'(dn)
— 0 would imply {£(N’)/N’}?T(dn-) — 0 and consequently 8y- — a, contradicting (3.3);
(3.4) follows. Moreover, for lim inf N/kE(N) > 0

(3.8) By = Er, ¢, @rav-1 = M({(R(N) — 1)/N }'/*T(dn)) + o(1).
(3.7) and (3.8) and the boundedness of {T(dx)} entail
(3.9) Bn = M({k(N)/N}"*T(dn)) + o(1).

Since M ! is continuous on [«, 1) and {£(N)/N }2T(dy), N = 1, is bounded, (3.9) may be
inverted yielding
(3.10) M~ (Bn) = {k(N)/N}">T(dn) + o(1).

From a < lim inf By it follows that {M ~(8x)}, N = 1, is bounded away from O,
consequently, 1/M ~'(8n) = {N/k(N)}*/T(dx) + o(1), implying (3.5), since {T(dn)}, N
=1, is bounded. 0O

ExaMpLE 3.2. Let us compare two linear rank tests {pn} and {yn} with asymptotic
score functions b; and b,, respectively. Then
(3.11) ARE(p:¢) = lim inf < by, dy >%/< b, dn >%,
if lim inf < b, dy >%> 0.

PRrROOF. (3.2) applied to {yn} with 2(N) = N yields By = Er,cfn = M(< bs, dnv>) +
0(1). Using (3.6) with T(x) = < b, x > yields (3.10). O

The right side coincides (apart from the explicit form of the asymptotic translations
< b;, dn >, 1 = 1, 2) with the definition of asymptotic relative Pitman efficiency based on
asymptotic translations of the Ho-distribution, see e.g. Behnen (1972), thus yielding a
sample efficiency interpretation of all results based on that ARE definition.

4. Complements. Similar results as in Theorem 3.1 are also possible for non-linear
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rank tests. Let us consider, for example, the one-sided two-sample Kolmogorov-Smirnov
(KS) test based on the KS statistic

(4.1) Kn = supser(mn/N)*{G (x) — Fn(x)},

where F,, resp. G, denotes the empirical df based on the X’s resp. Y’s. It is well known
that the KS test with rejection region Ky = (— % log «)"/? has the asymptotic level a.
Moreover, one can show that under Hy-contiguous alternatives {(Fn, Gn)}, formula (3.2)
holds with

t

(4.2) T:L,— C[0,1], T(x)(t) = — J xd\, 0=t=<1l,

(V]
and

(43) M:C[0,1]> R,  M(2) = Pr[suposi=i{ Wo(t) + 2(t)} > (— % log a)/?],

where W; denotes the Brownian Bridge on [0, 1].

For fixed z € C[0, 1] with z(¢) = 0V¢, z # 0, the mapping M.:[0, ©) — [a, 1) defined by
M.(p) = M(pz) is continuous, strictly increasing and bijective.

Note that for (Fn, Gn) € K, (2.20) implies T(dn)(t) = OV¢, T(dn) # 0, and that the
boundedness of {||dwn||} implies relative compactness of {T(dx)} in C[0, 1]. Using these
facts, one can show that Theorem 3.1 holds in the KS setting with (3.5) replaced by

(3.5) lim inf N/k(N) >0 implies N/k(N) ={M7iay (Bn)}* + o(1)
and (3.6) replaced by
(3.6) ARE(p:y) = lim inf{M 74, (8N)}?

where ¢ represents the KS test.

Formula (3.6") can serve as a basis for efficiency comparisons of linear rank tests with
the two sample KS test similarly, as was done by Yu (1971) for translation alternatives.

As mentioned in the introduction, the concept of Hoy-contiguity also makes sense for
other testing problems. Especially simple is the 1-dimensional one-sample problem of
testing “symmetry” versus “positive asymmetry”: For a sequence Xj, - - -, Xn of i.i.d. real
random variables having continuous df’s Fy, one considers the null-hypothesis of sym-
metry Hy: Fy(x) = 1 — Fn(—x)Vx € R versus the alternative of positive asymmetry K: Fy(x)
=1 — Fn(—x) = Fn(x), Vx € R, and “<” for some x. Defining H,-contiguity of {Fn}
in the same manner as in Definition 2.1, and noting that the symmetrization Fn,
= (Fy + F%)/2 of Fy dominates Fu, one gets with dy = NY*(dFn/dFn, — 1)c Fy., an
analogue of the characterization of Ho-contiguity in Lemma 2.2, namely the following.

LEMmMA 2.2. The following four statements are equivalent

2.8) {Fn} < H,,

(2.9) lim sup No#*(Fn, Fn,) < o,
(2.10") lim sup || dn || < o,
(2.17) {®Y Fn} <{®Y Fu,}.

Notice that conditions like (2.6) are not needed here. All other results of Section 2 and 3
can be carried over to the present testing problem without any difficulty.
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