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RECURSIVE COMPUTATION OF M-ESTIMATES FOR THE
PARAMETERS OF A FINITE AUTOREGRESSIVE PROCESS

By KATHERINE CAMPBELL

Los Alamos National Laboratory

Stochastic approximation methods are used to generate a sequence of
“M-estimates” for the unknown parameters of an autoregressive process of
known, finite order which may have heavy-tailed innovations. Weak depen-
dence properties, which can be demonstrated for many autoregressive pro-
cesses, are used in the proof that the sequence converges almost surely to the
parameters. A brief Monte Carlo study verifies that bounded influence func-
tions provide protection for recursive procedures against heavy-tailed inno-
vations.

1. Introduction. The parameters @ of a finite autoregressive process,
(1.1) Xp+1 =01 Xp + + o+ + 0,Xp—g+1+ Urs1 = (0, 7Xp) + Up+y,

where 7X;, = (Xp, -+, Xr-q+1) denotes the g most recent observations of the process, are
usually fitted by least squares estimation, or else by solving the Yule-Walker equations
using the least squares estimates of the autocorrelations. These two procedures are
asymptotically equivalent, and are consistent even when the innovations U, are non-
Gaussian stable random variables with infinite variance. However, like least squares
procedures generally, the traditional methods lose efficiency in the presence of a heavy-
tailed innovation process.

This observation has led to the investigation of robust modifications of least squares,
paralleling robust regression methods explored by Andrews (1974), Denby and Larsen
(1977), and others. Instead of choosing 0 to minimize

Yrzh (xee1 — (B, 7))
an M-estimate for § minimizes
Y28 p(xher — (B, 7x2)),

where p(t) is a function increasing less rapidly for large | ¢| than does prs(t) = ¢2 It is
usually assumed that p has a derivative y, and the minimization problem thus becomes the
problem of solving the “normal equations”

YRk w(xe — (B, mxi))7xs = 0.

Denby and Martin (1979) further allow the possibility of “influencing” the process { X},
so that the equation for their “generalized M-estimate” becomes

(1.2) Y22 W — (0, mx1))y(7x2) = 0.

The effect of this type of modification on the asymptotic variance of the estimator is very
similar to the effect of robust M-estimation of location for ii.d. observations whose
common distribution F is that of the innovations U. In Beran’s (1976) interesting
modification of the M-estimator for the parameters of an autoregression, the data are used
to select an influence function y from a subspace of % (F').
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These procedures require one to have in hand all of the data to be used in estimating
the parameters before starting. In order to update the estimate when new data are
acquired, the entire calculation must be repeated. For many applications of time series
this is not a satisfactory state of affairs. In some industrial situations a current estimate of
the process is needed continuously as input to a control mechanism. In other situations
where there is a great deal of data coming in, it simply becomes impractical to preserve all
of the observations.

Recursive versions of least squares procedures take advantage of the fact that all of the
information about past observations which is needed can be summarized in an estimated
autocovariance matrix which is easily updated with each new observation. From the initial
formulation of recursive least squares—ascribed to Plackett (1950)—through more recent
work, these procedures rely implicitly on the linearity which has always made least squares
computationally attractive. Even procedures described by Gardner (1964) and Davis and
Koopmans (1973), which superficially resemble stochastic approximation, make use of the
convergence of the estimated autocovariance function. An algorithm proposed by Saridis
and Stein (1968) is a true stochastic approximation algorithm, but the proof of its
convergence still requires linearity.

Unfortunately, no convenient summary of the past is available for the non-linear, robust
analogs of least squares. For this reason we must use a stochastic approximation recursion
of the form

(1.3) Tn+1 = Tn + an d(Tn; Wxny Un+1)>

where a, — 0 so that later estimates give more weight to the cumulative experience
represented by T, than to the newest information contained in the second term. d is
chosen so that the function

(1.4) D(t) = E d(t; 7Xa, Un+1)

has a unique root at t = 6. (D(t) does not depend on n for a strictly stationary process.)
Traditional proofs of convergence of stochastic approximation algorithms rest on the
assumption that

(1.5) E{d(Ts; 7Xn, Un+1) | Xy, + -+, X} =D (Ty).

However, this assumption fails when d has the form given in (1.3), because the conditional
expected value depends on the past explicitly through X,_;+1, - - -, X, as well as through
T». That (1.5) is not necessary was noted by Dvoretzky (1956), who replaced it with the
condition that

Z anE{(0 - Tn, d(Tn; Wxn, Un+1) -D (Tn)) I-le M Xﬂ}

be uniformly bounded and convergent. Close examination of Blum’s (1954) proof of almost
sure convergence shows that in fact

(1.6) Y anE{(0 — T,, d(T,; 7X,, Upr1) =D (Tn))} <
is sufficient. Therefore the problem is to find conditions weaker than (1.5) under which
(1.6) holds.

The required conditions make use of a type of “mixing” or weak dependence of the
process {X,} described Section 3. In Section 4 we prove a lemma required to carry out the
proof of almost sure convergence of T, to 8, which is completed in Section 5. In Section 6
some additional results are stated without proof, and the results of a simulation experiment
are described briefly. In the following section the algorithm, the necessary conditions and
the main result are set forth.

2. Statement of results. By analogy with (1.2), the function d in (1.3) is taken to be
d(Tn; '”Xn, Un+1) = Y(Wxn)\I/(Xn+1 - <Tn, WXn)),
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where 7X, = (X, -+, Xo—g+1) is the vector of the ¢ most recent observation and (x, y)
denotes the 4-inner product

(x,y) =YL %y
Explicitly, (1.3) becomes
(2.1) Thii = Trn + €@y (@X )Y (Xnt1 — (Tr, 7X5)).

Estimation begins at time zero, when there are ny = 0 observations already available. If no
< g, it is convenient to start things off by assuming that X_,4, = ... = X_, = EX,, = 0.
The initial estimate T, is a function of these ny observations.

Let X, = (X_n,+1, - - +, X») be the vector of no + n observations up to time n = 0, and let
#X (with some abuse of notation) denote a random vector with the distribution of ¢
consecutive variables of the stationary process.

Let ¥(a) = Ery(U + a) and ¥y(a) = Ery*(U + a), where F is again the common
distribution of the innovations Uy, in (1.1). Since U, is independent of X,, while T, and
7X, are functions of X,

E{y(aXu ¥ (Xnr1 — (Tn, 7X0)) | X} = y(7X2) E {Y(Uni1 + (0 — T, 7X5)) | X, }
(2.2)
=y(7X,)¥ ((0 — Tn, 7X4)).
Similarly
23)  E{|y(nX)¥Xns1 — (T, 7X0)) |?| Xn} = | 7(#Xs) |*¥2((0 — T, 7X50)).
where | x|? = (x, x).

If X is a random vector on (2, %, P) with values in 29, we will say that X € %, (2, 4,
P) if the random variable | X | belongs to %, (£, 4, P). In this case, define

nxnp=(f|xvdp)w.

| - |l defines a norm on %, provided that, as usual, we identify random vectors which are
almost surely equal [P]. If X € 4, and Y € £,, where 1/p + 1/r = 1, then

(2.4) EX, V)| =E(X|IY) =X Y]

The set of conditions given below could undoubtedly be weakened to accommodate a
variety of algorithms. In particular, some of the moment conditions might be weakened
by working, as Blum does, with a real-valued function defined on £? with continuous first
and second partial derivatives other than the function f(x) = |x — 8%

CONDITIONS.
A1l: The function y satisfies | (x) | = M, < o for all x.
A2: y(x) is of the form xg(x) for some non-negative function g of x.
A3: || y(#X) || = M, < o for some r > 2.
A4: For s = 2r/(r — 2), with r as in A3, (f |(7X, y(#X)) | dP)"/* = M, < oo.
A5: | To — 0|2 < .
A6: There exists a > 0 such that for all @ and Aq, | ¥(a + Aa) — ¥ (a) | < a|Aa].
A7:. a¥ (a) = 0 for all a.
A8: For any ¢ > 0, there exists L. > 0 such that infjg_¢|=. (6 — t, D (t)) = L..
A9 a,>0,Y a, = and Y ai < .
It is further assumed that there exists a function N mapping the non-negative integers
into themselves which satisfies the following conditions.
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Al10:0=N(n)<nforalln=0.

Al11: Y, a,B(N(n) — g + 1)"/7'" < 0, where B is the “strong regularity” coefficient which
will be defined in Section 3.

Al12: Y, an TRsh-nem ar < .

Conditions such as A7, A8 and A9 are part of every stochastic approximation algorithm.
Condition A11 implies that N(n) — « as n — o and that the process is strongly regular.
N (n) must increase sufficiently fast to guarantee All, yet slowly enough that A12 also
holds. A traditional choice for the a, is the harmonic series a, = 1/(n + 1). If N(n) =
[Vn], ie. the largest integer which is less than or equal to vn, then A12 holds. If 8 (n) =
O(n’c™), then for ¢ > 0,

a.B(N@n) —g+1) = o(n*d™")

for some )/, sufficiently large but finite, and the series of these terms also converges.

If r < 4, then 2r/(r — 2) = 4, and conversely, so A3 and A4 require the existence of
fairly high-order moments.

The principal result of this paper is the following theorem.

THEOREM. Under conditions A1-A12, the sequence of estimators defined by (2.1)
converges almost surely to 0.

3. Strong regularity. In this section only, {X,} is not necessarily an autoregressive
process as in (1.1), but strict stationarity will be assumed. Let - -+, X, Xp+1, - -+ be a
strictly stationary process of random variables defined on a probability space (£, 4, P),
and let #: be the sub-o-algebra of # determined by {X,, s<n =t}.

Various “mixing” conditions for stochastic processes, that is, conditions on the weak-
ening of the dependence between two variables of the process, X, and X, as |p — ¢| —
o, have been proposed in the literature. The condition called “strong regularity” below
appears to have been suggested by Kolmogorov, and is investigated in detail by Volkonski
and Rozanov (1959, 1961). It is stronger than “strong mixing”—introduced by Rosenblatt
(1956) and also called “complete regularity”—but considerably weaker than “uniform
mixing” (also called “¢-mixing”), which is not satisfied by many stochastic processes of
interest (see Ibragimov, 1962, or Gastwirth and Rubin, 1975). Somewhat like uniform
mixing, however, the coefficient 8 () defined below is a measure of the difference between
the probability of a set in %5+, and its probability conditioned on #”. Intuitively, weak
dependence should mean that this difference goes to zero in some sense as n — .

Strong regularity can be defined for non-stationary processes, but here only strictly
stationary processes are considered.

DEFINITION (Volkonski and Rozanov, 1959). A strictly stationary process {X,} is
strongly regular if lim ., B(n) = 0, where

3.1) B(n) = E[Varaca,.,{P(A|B%) — P(A)}]

The quantity in parentheses is the total variation of the signed measure P(- |#8%x) —
P(.) restricted to the sub-o-algebra #5.,. This is a #”.-measurable random variable,
and B (n) is its expected value. 8(n) is independent of m by stationarity.

Conditions for a process to be strongly regular are given by Ibragimov and Solev (1969)
and by Gastwirth and Rubin (1975). In particular, Gastwirth and Rubin show that first-
order autoregressive processes with normal or Laplace innovations are strongly regular
with 8(n) = O(c™), while those with Cauchy innovations satisfy 8(n) = O(nc™"). These
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results can be extended to autoregressions of any finite order, and by the remarks
following the conditions given in Section 2, A11 will be satisfied for such processes if N (n)

=[Vn].
Let 7m,» denote the direct product of P restricted to ™. with P restricted to B5+,.

PROPOSITION 3.1.  B(n) = Varge gn xge,. {P(C) = Tma(C)}.
ProOF. See Volkonski and Rosanov (1961, Section 4).

Now let Y € 2% and W € %7 be two vectors of random variables defined on (2, 4, P),
where Y is #™.-measurable and W is 5 ...-measurable. Let P denote the joint distribu-
tion of (Y, W) on 2* X #’ = #**, and let Py and Pw be the marginal distributions of Y
and W on 2* and #’, respectively. Then S = P — Py x Py is a finite signed measure on
the Borel sets o7** in #**/. Let E* U E~ = #"*‘ be a Hahn,_decomposition for S. If G €
2% then

G, = {w: (y,w) € G} € «*.

Write

(3:2) S(G) = f Q(G, y) dPy(y),
where |

(3.3) Q(G,y) = P(G| Y =y) - Pw(G,).

P | Y = y) is a regular conditional probability of G given Y = y, so @ is a signed measure
on (#**, o/**’) for fixed y, and a measurable function of y for fixed G. Define @*(G, y)
=Q(GNE"y)and @ (G,y) = Q(GNE",y), and set

IQI(G>3') = Q+(G>}’) - Q_(G,y)-
The total variation of the signed measure S is given by

(3.4) [S1(G) = f | Q(G,y) dPy(y).

ProrosITION 3.2. | S|(2**) = B(n).

PROOF. |S|(2***) is the supremum over all Borel sets G of 2** of
|S(G) | =|P(G) - Py x Pw(G) |.
By definition,
P(G) = P{w EQ: (Y(w), W(w)) € G}.
It is also easily verified that
(Py X Pw)(G) = mnn{w € R (Y(w), W(w)) € G).
As sets of the form {w: (Y(w), W(w)) € G} are a subcollection of the sets in 7. X

Brm+n,
| S| (#**") = supcear.xz..| P(C) = Tma(C) | < Varcegr.xaz..{ P(C) — mma(C)} = B(n).

In the proof of the lemma of Section 4, we will need a bound on || H ||z, where H and h
are g-vector valued functions related by

(3.5) H(y) = Es{h(Y, W) | Y =y} — E5, {h(y, W)} =f h(y, w) dQ.
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PROPOSITION 3.3 Let H(y) be defined as in (3.5), where h belongs to #,(R**", o4**",
| S|) for some r = 2. Then H belongs to X»(R*, s/*, Py) and

[Hl:<|h "r{ﬁ(n)}l/271/r‘

Proor. Using Jensen’s inequality,

(3.6) | H(y) |25J'|h(y,w)|2d|Q| as. [Py].
Therefore
3.7 IIHII%SJ'JIh(y,w)IZdIQIdPY=JIh(y,w)IZdISI=IIhII%-

The right-hand side of (3.7) is finite, as | h |} < | h|? < . So H € #3(%+, #, Py), and
(3.7) completes the proof of the theorem for r = 2. If r = o, then from (3.6),

I =< IR J d| Q| dPy=|h[EB(n),

using (3.4) and Proposition 3.2. If 2 <r < o, set 1/t =1 — 2/r >0, so that 1/r + 1/2t =
1, and apply Holder’s inequality to (3.6) to get

2/r 1/t
(3.8) IH(y)I25<JIh(y,Z)I’dIQI> (JdIQI> :

Apply Holder’s inequality again to the integral of the product on the right-hand side of
(3.8) with respect to Py to get

2/r 1/t
(3.9) IIHII§S<JJIh(y,w)l’dIQIdﬁy> (JJ'dIQIdﬁY> = [h[7{B(n)}"".

As 1/2t = 1/2 — 1/r, taking square roots in (3.9) completes the proof.

4.Lemma. The lemma of this section verifies that Conditions A1-A12 (together with
one additional condition which will be independently established at the beginning of the
proof of the theorem in Section 5) are sufficient to guarantee (1.6) when T, is computed
using the recursive formulas (2.1). The procedure is to rewrite the sum in (1.6) as

Se a0 E (0= Tronem, ATruenvm; 7Xn, Uns1) = D (Tanm)) +20=1 @n SiZa-nw aEZ,.

If EZ, is bounded uniformly in %, then the second sum converges by A12. In the first sum,
we will form the expectation of the nth term conditioned on the past up to the n — N(n)th
observation to get

4.1) Y31 anE(0 — Tr-ne, E{A(Ta—nm; 7Xn, Un+1) | Xn-nim } — D (Tronim))-
Because X, is only weakly dependent on the distant past, up to the n — N(n)th observation,
E{d(Tn—N(m; WXn, Un+1) | anzv(m} - D (Tr-nw)

sufficiently rapidly that the sum (4.1) converges, even though ¥ a, diverges.

This type of solution was proposed in some rather obscure work of Sakrison (1962, 1964,
1967), but in order to implement it he was obliged to assume that the function ¢ increases
linearly (or faster) with its argument, whereas we wish to consider bounded functions.
Sakrison’s mixing condition will here be replaced by strong regularity, specifically by A11.

For this section only, it will be convenient to introduce some further abbreviations. Let

hn,j(anj, ﬂxn) = ‘Y(ﬂxn)\lf(<0 - Tn—j; 77Xn>) = E{’Y(Wxn)\p(xn+l - <Tn—jy WXn)) | xn}

for j = 0. If @, is the signed conditional measure developed in Section 3, where ¥ = X,,_;
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and W = 7X,,, then let
H, (y) = f h, ;j(y,w) d@n; = E{h,,;(Xn—j, 7X,) | Xn-j =y} — Eh, j(y, 7X,)
4.2)

= E{y(#Xp)y(Xn+1 — (Tr—;, X)) — D (Tn—j) I X, =y}.

The random vectors Y = X,_; and W = 7X,, are separated by j — ¢ + 1 indices in the
process {X,}. If | h, ;(2) | possesses an rth moment || h,, ;|- with respect to | S,,;| for some
r > 2, where | S, ;| is the total variation of P — Py x Py for the above choices of Y and W,
then

(4-3) " Hn,j"Z = "hn,j",.{ﬂ(]— q + 1)}1/2—1/r
by Proposition 3.3. Under Conditions A1-A12
“ VB < M, M,.

Iterating (2.1) gives
(4.5) Tn = To-m + XiZn-m ary (@Xe)Y Xps1 — (Ts, 7X2)).

LemMA 4.1.  If Conditions A1-A12 hold and if | T, — 8|2 is uniformly bounded in n,
then the series (1.6) converges absolutely, where T, is computed by the algorithm (2.1).

Proor. We begin by expanding the nth term in the series (1.6):
E{an(Tr — 0, y(7Xo )Y (Xns1 — (T, X)) — D(T2))}
= E{an(To-nem — 0, Y(#X )V (Xn+1 — (Tn, 7X,)) — D (T2))}
(4.6) + E{an 2iZn-Now @Y Xesr = (Tr, 7X0)) (v (1K), ¥ (@Ko W (Xns1 — (T, 7X0 )
= D(T.))}
= Wi+ Wy,

where (4.5) has been used to iterate back to n — N(n).
The second term W; can be evaluated by taking the conditional expected value given
X... As everything in that sum is a function of X,,, this merely allows us to use (4.2) to write

We = E{an Yi=n-Nem ¥ Xis1 — (Tr, 7Xe)) (Y (7Xe), Ha0(X,))}.
Then
| We| = Myan $izn-nve arE| (y(nXs), Hoo(X,)) |, by Al
4.7) = Mya, Yizn-Ne ally(@Xe) 2] haoll2s by (2.4) and (4.3),
= MiM;a, Yi=h N Qr, by (4.4) and A3.
Rewrite W, as
Wi = E[an(To-new — 0, E{y(7Xo ¥ (Xn+1 — (Tn, 7X0)) | Xa} — D (T2))]
= E(@n(To-ne — 0, Dy + Dy + Dy)),
where
D; = y(@X,) {(¥((0 — T,, 7X,)) — ¥ ((0 — To-nim, 7Xa))},
4.8 D: = y(#X,) ¥ ((0 — To-nim, 7Xn)) — D (Tr-nw),
D; = y(Ta-~nw) — D (Ta).
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Since
| D] = a|y(#Xo) || {Tn — Ta-Nw, 7Xn)|, by A6,
= a|y(@X,) | | 7Xa| | Tr = To-new |
< oMy Yin-ne G| (7Xn, Y(@Xa)) | | Y (#X0) |
by (4.5), Al and A2, we have
I8 = M Tk [ 11060 e, a0} [ a)
where P, is the distribution of X,. As 2/r + 2/s = 1, Holder’s inequality applied to the
integral above leads to
D1z < aM M, M, Y720 N G, .
by A3 and A4. Thus
4.9) | E{an(Tn-ne — 0, D1)} | < an| Tu-ne — 0|2 ]| D12
< aM,M,M,an $3=5-Nw k|| To-n — 0]2.
Similarly
|Ds| < E[|y(7X) {¥ ({8 — Ta-nm, 7X)) — ¥((§ — T,, 7X))}|]
=< E{a|y(@X) | [ {Ta-nw — Tn, 7X) |} < aMyM, Yiz0-Nem ar| v(7Xe) |,
so that the right-hand side of (4.9) bounds | E(a,(Tr-nw — 0, D3)) | as well. Finally
E(an(Ta-new — 0,D2)) = E{an(To-~new — 0, ED2| Xo-vew))}
= E{ax(Ta-nem — 0, Hy v Xn-nim ) ) }
by (4.2), and
4.10) |E(@n(Tu-new = 6, D2)) | < aul| Ta-ne — 8]l2 | Bunven [-8(N(n) — g + 1)V
< || Tr-ne — 0|2 My M,B(N(n) — q + 1)1/271/"

by (2.4), (4.3) and (4.4).

Combining (4.7), (4.9) and (4.10) and using the hypothesis that | T, — 8||: is uniformly
bounded, we get a bound on the absolute value of the nth term in the series (1.6) of the
form

a, {CIB(N(n) —-q+ 1)1/2—1/r + C, ZZ;IIL—N(IL) ak}.
Thus, by All and A12, the series is absolutely summable.

5. Almost sure convergence. The proof of almost sure convergence of T, to 8
follows that of Blum (1954), whose work appears to have been the first on stochastic
approximation procedures to make use of the martingale-like properties of sequences of
stochastic approximation estimators. These properties were formalized by Robbins and
Siegmund (1971).

LeMMA 5.1. Let (R, 8, P) be a probability space, and let #, C B, C --. be an
increasing sequence of sub-o-algebras of #B. For eachn=1,2, --. let Z,, a,, {» and &, be
non-negative, #,-measurable random variables such that

E(Zui1| 8,) =Z,(1 + an) + & — §n-
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Then lim,_... Z, exists and is finite,and }, {r < o as.on C={Y ap, < ®, ¥ £, < 0},

The sequence Z, is “almost” a super-martingale on the set C. Note also that the
increasing series ¥, a, and Y &, converge a.s. [P]if Y Ea, < and ¥ E§, < oo,

THEOREM. Under Conditions A1-Al2, the sequence of estimators defined by (2.1)
converges almost surely to 6.
Proor. From (2.1) we get
(5.1) | Tos1 = 0]° = | Tn = 0|* + 2a,(T» — 0, y(7X0)¥(Xns1 = (T, 7X,)))
+ an| y(7Xa) | (Xns1 — (Ta, 7Xa)).
Take the conditional expected value of each side, given X, and use (2.2) and (2.3) to get
E(|Toe1 — 017 |Xs) =|Tn — 0|2 + 20, (T, — 0, y(#X,)¥ ({8 — T, 7X,.)))
(5.2) + ai| y(7X,) |*¥2 ((0 — T, 7X,))
=|Ta=0" -G+ &
in the notation of Lemma 4.1. Here
6 =2a,(0 — Tn, y(@X,)) ¥ ((0 — T,, 7X,))
is non-negative by A2 and A7, while
¢ = an] y(7X,) |*¥2((0 — Tn, 7X5))

is bounded in expected value by a2 M3M?2, by Al and A3, so ¥ E¢, < » by A9. By Lemma
4.1 and the remark which follows it,

(5.3) limp_,»| T, — @|® exists and is finite a.s.
Taking the expected value of each side in (5.2) gives
(5.4) [ Tos1 = 013 =T — 0]3 — 2a,E(8 — Tn, y(#X,) ¥ ((@ — T, 7X,.)))
+ arE|y(7X,) |*¥2((0 — T,, 7X,)).

This is bounded above by || T, — 8|5 + a2M?M?, since the second term is non-positive.
Iterating back to n = 0 gives

(5.5) [ Tsr — O3 = To — 013 + Y0 aZMEM? < w0

by A5 and A9, so || T, — 8|3 is bounded uniformly in # and Lemma 3.3 holds.
Next subtract and add the term (2a,E (6 — T,, D(T,))) to the right-hand side of (5.4)
and iterate back to n = 0 to get

0<|Tor1—0)3=|To— 03— 2 Y70 arE(0 — T, D(Ts))
— 2 Yk-0 arE(0 — Ty, y(7Xp) ¥ ((§ — Ty, 7Xs)) — D (T))
+ Tk-0 aRE|y(7Xs) |*¥2((0 — Tr, 7Xx)).
Rearrange this to get
k-0 arE(0 — Ty, D(T:)) =% | To - 0|3
(5.6) — Xk=0 arE(0 — Th, v(7Xx) ¥ ((6 — T, 7Xx)) — D (Ts))
+ % Yi-0 aiE| y(7Xs) |*¥2((0 — Ty, 7Xz)).

The second sum on the right-hand side of (5.6) converges by Lemma 4.1 (taking the
expected value of the k2th term conditioned on X inside the overall expected value does
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not affect this result), while the third term is bounded above for all n as in the first part of
the proof. Therefore the series on the left-hand-side, whose terms are non-negative by A8,
must converge. Because Y a, diverges, this implies that

lim inf E (§ — T,, D(T,)) =0.
Let {n:} be a subsequence such that
lim E(@ — T,,, D(T,,)) =0.

As (8 —T,,, D(T,,)) = 0, this implies that
(0 —T,, D(T,,)) —,0,

and so there is a further subsequence {n;} such that

(-T,,D(T,)) > 0as.

N

By A8, this is possible only if |# — T,,| — 0 a.s. But | # — T,, | must converge a.s. to the
finite limit whose existence was established in (5.3) and, consequently, this limit is almost
surely zero. Thus the full sequence | @ — T, | converges a.s. to zero and T, — 6 a.s. This
completes the proof.

6. Additional results and simulation. One way to weaken the strong moment
conditions (in particular, Al and A4) is to take advantage of a priori bounds on | 8|. For
example, stationarity in (1.1) implies that | | < 1. When the algorithm (2.1) produces T+,
such that | T»+1| exceeds the prior bound, we can truncate T, . before continuing. With
this modification, almost sure convergence can be shown under weaker conditions.

Campbell (1979) also considers the convergence of T, to 6 in mean square. This requires
one additional condition,

A13: For any M > 0, there exists a number Ky > 0 such that (t — 8, D (t)) = K| 0 — t|*
for all t satisfying0 < |0 —t| < M.

The simulation study reported in Campbell (1979) considered several algorithms:

(1) OLS: Ordinary least squares, a linear, non-recursive computation.

(2) RYW: Recursive solution of the Yule-Walker equations, in which the estimate of the
covariance matrix is updated recursively after each observation (see Method II of
Gardner, 1964.) The estimate was truncated, as discussed above.

(3) SA1: An algorithm meeting the conditions of the preceding sections,

_ {Wxn /Xn+l - (Tn; Wxn)
Tn+1 = Tn + anY\SXO ‘I/\ SR() ’

where

1 X
an = 0<r_z)’ v =xg(lxD), @ =1omes

NE |x] < 2.5,
Y = {2.5 sgn(x)  |x| =25,

and SX, and SR, are scale estimates.

(4) SA2: Similar to SA1 except that ¥ and g are interchanged. This choice of v fails to
meet Condition A4 when the innovations are Cauchy, but nevertheless the algorithm
performs well there, again suggesting that the given moment conditions are too strong.

(5) LSA: A linearized version of the stochastic approximation algorithm (y and ¢ are
identity functions), truncated.

Initial estimates of # and of scale are based on twenty observations.

These algorithms were applied to time series generated from the model

Xt =.5 Xt—l + U¢,
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TABLE 1.
Comparison of Algorithms
N algorithm bias variance rela'tlve
efficiency

Normal 125 OLS —.0032 0058 1.00
RYW —-.0231 .0845 .69
LSA —-.0171 .0053 1.10
SA1l -.0078 .0063 93
SA2 -.0119 .0064 91
500 OLS —.0035 .0016 1.00
RYW —.0084 .0025 .63
LSA —.0089 .0016 1.01
SA1l —.0062 .0020 .79
SA2 —-.0079 .0018 .88
Contaminated 125 OLS —.0130 .0055 1.00
Normal RYW -.0162 .0055 1.00
LSA —.0319 .0061 91
SA1 -.0127 .0044 1.26
SA2 —-.0125 .0033 1.64
500 OLS —.0062 .0013 1.00
RYW —.0070 .0014 .92
LSA —.0093 .0023 .57
SA1l —.0056 .0013 1.04
SA2 —.0033 .0009 1.47
Cauchy 125 OLS —.0008 .0031 1.00

RYW —.2027 .4898 .006
LSA —.0307 .0351 .09
SA1l —.0078 .0028 1.11
SA2 —.0014 0011 2.70
500 OLS —.0015 .0006 1.00

RYW —.2734 .5387 .001
LSA —.0182 .0145 .04
SA1 —.0007 .0006 .98
SA2 —.0004 .0002 3.13

TABLE 2.

Median Computation Times Compared to Least Squares

N =125 N =500
OLS 1.00 1.00
RYW 3.40 3.47
LSA 3.48 3.54
SA 6.36 6.48

and it was assumed that the true order (p = 1) was known. The entries in Table 1 are
averages over 300 blocks of data. The estimators T\ are computed for series of lengths N
= 125 and 500 (with an additional twenty observations at the beginning on which initial
estimates are based.) The innovations U, have the following symmetric distributions:
Normal N(0, 1); Contaminated Normal, .9 N(0, 1) + .1 N(0, 25); Cauchy, density
1/{=(1 + x%)}.

The least squares estimate is known to converge even when the variance is infinite, and
in fact is seen to perform creditably in all cases, as well as at low cost (Table 2). When
there is no obstacle to storing all of the data and repeating the calculation each time an



RECURSIVE COMPUTATION OF M-ESTIMATES 453

estimate is required, there may well be no reason to look further. The recursive Yule-
Walker algorithm appears to be a reasonable recursive alternative for the contaminated
normal case, but converges much more slowly in the normal case and not at all when the
innovations are Cauchy. On the other hand, the truncated linear stochastic approximation
algorithm (LSA) converges slowly for contaminated normals and is very inefficient in the

Cauchy case.

The second robust stochastic approximation algorithm handles all of the heavy-tailed
cases, including the Cauchy innovations, very efficiently, although with rather large bias
in some cases, and is adequate when the innovations are normal. SA1 is generally an
improvement over the non-robust recursive procedures in the non-normal cases, but less
spectacularly efficient than SA2, and frequently more biased as well. Its behavior might be
improved by a different choice of the scaling constant (here 2.5). Unfortunately these two
procedures are almost twice as expensive as the other two recursive procedures (Table 2),
but in cases where protection against heavy-tailed innovations is desirable this may not be

too high a price to pay.
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