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TRANSFORMATION THEORY: HOW NORMAL IS A FAMILY OF
DISTRIBUTIONS?!

BY BRADLEY EFRON

Stanford University

This paper concerns the following question: if X is a real-valued random
variate having a one-parameter family of distributions %, to what extent can
& be normalized by a monotone transformation? In other words, does there
exist a single transformation Y = g(X) such that Y has, nearly, a normal
distribution for every distribution of X in &#? The theory developed answers
the question without considering the form of g at all. In those cases where the
answer is positive, simple formulas for calculating g are given. The paper also
considers the relationship between normalization and variance stabilization.

1. Introduction. The classic example of a normalizing transformation concerns the
correlation coefficient. If @ is the correlation of a bivariate normal distribution, and X is the
sample correlation of n independently drawn points from this distribution, then

1 1+X
1. = X="Inl—=—
(1.1) Y = tanh™X 2 ln(1 — X)
has, approximately, a normal distribution
1
(1.2) Y ~ N(uo, ——),
n—3
where
(1.3) — tanh™0 + —0
) & 2n—1)°

Hotelling (1953) extensively discusses approximations (1.2), (1.3), and their higher-order
improvements. Transformation (1.1) was originally suggested by Fisher (1915).

Why was Fisher interested in transforming the family of correlation distributions?
Firstly, because quick calculations of significance levels are much easier on the Y scale.
For example, with n = 15, x = 0.70 is significantly different from 6 = 0.20, because
vn — 3 (y — w2) = 2.277, a significant normal deviate at level .011, one-sided. Secondly,
normal theory methods can be applied on the Y scale. Suppose X; = x;, Xo = x5, - -+, X
= x, are observed sample correlations calculated from independent data sets, and we are
interested in the possible relationship of these correlations to covariate vectors ci, c;, cs,
-++, ¢s. A standard regression analysis of the transformed values y, yz, - -« , ys versus ci,

cz, +++, cs is the natural way to proceed. Thirdly, appropriate confidence intervals are
easy to calculate on the Y scale. For example, the 90% central interval
vg Ey + 1.645/vn — 3

gives the usual interval for 6, by inverting function (1.3).
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In fact, there is a more basic reason for transformation theory’s hold upon the interest
of statisticians. The fundamental mathematical unit of statistical inference is a family of
probability distributions. Fisher’s transformation relates a complicated-looking family &
the correlation distributions, to a simpler family %, the normal translation family. The
appeal of (1.1)-(1.3) is similar to representing a symmetric matrix F as I'GI'’, where T" is
orthogonal and G is diagonal. We feel, correctly, that we have increased our understanding
of F by the representation in terms of G, and likewise in the case of #and ¥.

This paper concerns the following question: if X is a real-valued random variate having
a one-parameter family of distributions % to what degree can % be normalized? In
other words, does there exist a single monotone transformation Y = g(X) such that Y has,
nearly, a normal distribution for every distribution of X in & ?

It seems as if we have to examine all possible monotone transformations ¥ = g(X) in
order to answer the question. In fact it is not necessary to consider g at all. If a normalizing
g exists, then the cumulative distribution function Fy(x) of X must be of the form
(1.4) Fo(x) = @(m)

0Og
Here @ is the standard normal cdf, 4 is the real-valued parameter indexing % vy is the
median of g(X), and o, the standard deviation of g(X).
For two different values of 6, say 6; and 6., define

(1.5) zi(x) = 7 (Fy(x)) = {g(x) — 5.} /00,

i = 1, 2, the last equality following from (1.4). Eliminating g(x) from the two equations
(1.5) gives
(1.6) 2(x) = i} z1(x) + o " v

09, 09,
The quantities z; (x) can be calculated directly from the cdf’s Fy(x), without any knowledge
of g. Equation (1.6) shows that if # can be normalized, then z:(x) is a linear function of
z21(x).

Figure 1 plots zz(x) versus z:(x) for the normal correlation family originally considered
by Fisher, n = 15, §; = 0.5, > = 0.7. The plot is nearly, but not perfectly, linear. Moreover
the slope of the fitted straight line is nearly 1. From (1.6) we see that this implies 05,/ 05,
= 1, in close agreement with (1.2).

The diagnostic function D(z, ) introduced in Section 2 is a more convenient way of

FiG. 1. A plot of zx(x) versus zi(x) for the normal correlation family, n = 15, 6, = 05, 6, = 0.7. The
plot is nearly linear, indicating the existence of a nearly normalizing transformation.
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carrying out the same analysis, without having to consider all pairs of values #; and 8,. It
enables us to diagnose deviations from the ideal of perfect normalization. For example, the
normal correlation family, n = 15, is better represented as a monotone transformation of
a translation family in which the basic distribution is Student-¢ with 38 degrees of freedom,
rather than perfectly normal (Section 4).

Fisher’s transformation for the correlation coefficient is stabilizing as well as normal-
izing. The function “o,” is constant in (1.2). The tanh™ transformation produces nearly
stable variances as well as normality. For other families & there is tension between the
twin goals of stabilization and normalization. For example, in the Poisson family,
V(x + 3%) is an excellent variance stabilizer, while x*3 is an excellent normalizer; see

Anscombe (1948, 1953).
The second purpose of this paper is to examine the relationship between stabilization

and normalization. For instance we show that the ideal stabilizing transformation for the
Poisson family goes about 37% past the ideal normalizer, in a sense made precise in Section
7. In order to stabilize the Poisson family, we have to transform past normality. These
calculations are related to those in Tukey (1958). Simple formulas for the normalizing and
stabilizing transformations, for any family % are given in Section 5. Section 8 concludes
the paper with a brief discussion of the relative merits of stability versus normality.

2. A diagnostic function. We are given % a one-parameter family of distributions
for the real-valued continuous variate X. Let

Fy(x) = Proby{X = x}

be the cumulative distribution function of X for parameter value #, where § € O the
parameter space, a possibly infinite interval of the real line. The derivatives Fy(x) =
(8/860) Fe(x) and fo(x) = (8/0x) Fys(x) are assumed to exist in what follows. We wonder
whether & is a normal transformation family, abbreviated NTF, that is whether there
exists a strictly monotonic transformation g(x) such that

(2.1) gX) ~ N(v, 1)

for all 8 € O©. Here ;4 is the center of the normal distribution for g(X) under parameter

value 6.
To help answer this question, we construct a diagnostic function D (z, 8) in the following

way: let Fy(x) = (8/30)Fy(x), and, for 0 < a < 1, define
X002 Fo(Xa0) = a,

so that x,,4 is the 100 ath percentile point for X under Fy. In particular, x5 ¢ is the median
of X. Then the diagnostic function is defined as
Fy(xa(),0) ¢(0)
F(xs50) ¢(2)’
with ¢ (2) = (27)%exp(—2%/2) and ®(z) = [Z, $(2’) dz’ as usual. Notice that D(z, 6) is

defined in terms of the cdf’s Fy(x) above, so that it can be evaluated without knowledge

of g(x), or even the assumption that g(x) exists.
The definition of D (z, 8) is motivated in terms of the local transformation to normality,

say
(2.3) ty(x) = O 'Fy(x).

2.2) D(z 0) =

Under parameter value 0, ¢, (X) has a N (0, 1) distribution. Definition (2.2) can be rewritten
as
ia (xo (z)0)

(2.4) D(z,0) =— s
ty(x.5,6)

where & (x) = (3/30) t5(x).
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Without going into details, D(z, #) measures how quickly the local transformation to
normality is changing as @ varies. (In a NTF family (2.1), £(x) = g(x) — »; any local
transformation to normality globally normalizes & in this case; see Section 5.)

It turns out that D (z, §) = 1if # is a normal transformation family. More usefully, plots
of D(z, ) enables us to diagnose deviations of # from the ideal form (2.1). To this end,
consider a more general family & satisfying

2.5) &(X) ~ vs + 059 (Z)

for some strictly monotonic transformation g(x). Here and throughout, Z denotes a
standard normal deviate; g (Z) is a strictly increasing differentiable function satisfying

(2.6) q0 =0, qO=1

and v and 05 > 0 are differentiable functions of 6, not necessarily monotonic, though we
assume »y = dv/860 # 0 except at a finite number of 8 values.

For a normal transformation family (2.1), op = 1 and g (z) = 2. The form (2.5) allows the
scaling parameter o, to vary with 8, and also for g(X) to be a location-scale transformation
of a general variate Z = q(Z) rather than just a normal variate Z. We call a family &
satisfying (2.5) for some choice of g(x), ¢ (z), vs, and oy a general scaled transformation
family, abbreviated GSTF.

LEMMA 1. If Z is a general scaled transformation family, then the diagnostic function
equals

.7 D(z, 6) =1++(z)e".,
q'(2)
where
60 609/00
&g == N
vg dve/00

(Proof later in this section.)

If & is a normal transformation family then oy = 1, &, = 0, ¢(2) = 2, ¢’(z) = 1, and so
D(z, ) =1 as claimed.

Suppose q(z) = z but that o, is not a constant, a situation called a normal scaled
transformation family, NSTF, in Section 3. Then the lemma gives

(2.8) D(z,0) =1+ ze.

As an example, consider the continuous Poisson family of cdf’s defined by

jtﬂ%ﬂw
'’}

(2.9) Fy(x) E-————l-—, x> —
T -
(x + 2)
© = (0, ). This family relates to the usual discrete Poisson family as follows: if xo is a
nonnegative integer then

(2.10) Fo(xo + %) = Prob{Gys,+1 > 8} = Prob{Po(6) < x},

51

where G, 1 is a gamma variate with shape parameter x, + 1 and Po() is a standard
Poisson variate with parameter §. (The last equality in (2.10) is well-known from the
theory of Poisson processes.) In other words, the cdf of the continuous Poisson with
parameter 6 agrees with the cdf of the standard Poisson distribution, mean 6, at every half-
integer point. Our transformation theory applies to continuous variates, but we argue in
Section 7 that the main implications apply to the standard Poisson family. Blom (1954)
uses a similar device.
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D(z,6)
134

el

Fic. 2. The diagnostic function D(z, 8) for the continuous Poisson family. Insert shows ey = G/ Ve.

Figure 2 illustrates D(z, 8) for the continuous Poisson family. Good agreement with
(2.8) is evident, even for small values of 8. The function & = s/ declines from .15 at 8 =
1 to .04 at = 15. In other words, there is a monotonic mapping which nearly normalizes
the continuous Poisson, but the normalized family has standard deviation o, increasing
rather rapidly as a function of the median s, especially for small values of 8. These points
are discussed further in Sections 4 and 6. Section 7 gives a more complete discussion of the
Poisson family.

Lemma 1 enables us to calculate ¢ (z) from D(z, 8) after which we can also calculate
the functions g(x), »s, and oy; see Sections 4, 5, and 6. This means that the GSTF
representation (2.5) of a family & is unique, with one interesting exception discussed in
Section 4. The restrictions (2.6) on ¢ (z) are necessary to avoid trivial nonuniqueness.

Suppose we make a monotonic transformation Y = m:(X), and another monotonic
transformation ¢ = ms(#). It is easy to verify that the diagnostic function for the
transformed situation is D(z, m3'(¢)); which is to say that D(z, 8) is invariant under
separate monotone transformations of the statistic and the parameter.

Now for the proof of Lemma 1. The cdf of Z=q2)is

(2.11) B(25) = d(g7'(2)).
If z, is the 100ath normal percentile,
®(z4) = a,

then Z, = q(z.) is the corresponding percentile of Z~.~In particular, Z has median ¢ (z5) =
q(0) = 0, by (2.6). The density function of Z, ¢ (£) = ¢’(Z), satisfies

(2.12) 6(2) = ¢(2)/q' (),
SO 1
2.13 5(0) = ¢(0) =—=
(2.13) ¢(0) = ¢(0) T
by (2.6).

From (2.5) we get Fy(x) = 5(5(—3637;”—), implying that
6

Fy(x) = _‘£<g(x) - 1/0){2 + gx) —w é_”}.

Oy Og 09 Og
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But, again using (2.5) and the fact that percentiles map in the obvious way under a
monotone transformation, that is
3 = g(xa,ﬂ) -V

o —_—,

Og

we have

9 {@

6o
7z Lo T 1) Fa}

Fﬁ(xa,a) = —(g(éa)(E + ga 2) =
09 [/}
by (2.12). In particular Fy(xs¢) = —¢(0)(i/0s). Substituting these expressions into (2.4)

gives (2.7).0

General Interpretation of D(z, 8). The function D(z, ) completely determines how
the percentiles of the different distributions in # relate to one another. In other words,
D(z, §) determines % modulo an arbitrary monotone transformation on the x scale. These
statements hold true for all families #having D(z, ) defined, not just for families of the
GSTF form (2.5).

The proof of these statements is based on (2.4). First of all, we can assume that
(2.14) to(x5,0) = —1.
If not, then a change of parameters makes it so£ define the new parameter ¢ by

dt  folp)
(2.15) 20 #(0) Mo,

where g = x5, and fp(x) = (3/dx)F,(x). For convenience we assume fi, > 0. It is easy to
verify that (3/9£)¢(x)|x=u, = —1. Then (2.14) holds with # parameterized by ¢ instead of
6. Reparameterizations have no effect on the D function, as commented earlier, nor on the
interpretations of D based on Lemma 1. The £ parameterization (2.16) is unique (up to an
additive constant) for any family & Here we assume 8 = ¢, for ease of notation.

Choose any set of x values, say xi, X2, +++, Xk, and define zy = (£p(x1), to(x2), + -+,
ts(xx)). From (2.4) and (2.14) it follows that the derivative of z, with respect to @ is

(216) iﬂ = _(D(zﬂl; 0); D(202) 0); ) D(ZBK) 0))’

zor = ty(x1). As 6 moves through O, the vector z, traces out a curve in 2% completely
describing how the values of Fy(x:), # =1, ..., K relate to one another. This curve is
determined by the differential equation (2.16), which depends on the function D (z, ).

Suppose that D(z, ) = 1 + ze as at (2.9). It now follows that % must be an NSTF,
without first assuming as we previously did that & is a GSTF. If D(z, 8) is “nearly” of the
form 1 + zep then & must “nearly” be an NSTF, in a sense made precise by numerically
solving (2.16) in any particular case. The same statements hold for the other family types
discussed in the next section.

3. Types of transformation family. We want to understand how well, or how
poorly, a given family & agrees with the normal transformation form (2.1). To this end it
is useful to define more general types of transformation family representing various
departures from (2.1). Two such generalizations have already been introduced: the general
scaled transformation family (2.5), and the normal scaled transformation family referred
to at (2.8).

Table 1 describes the six types of transformation family used in this paper. The most
general case, GSTF, represents a given family # = {X ~ Fj, § € O} in terms of a standard
normal variate Z as follows: Z is transformed to Z = ¢(Z) by a strictly increasing mapping
q(z); Y=vw+ 0027 is a scaled and translated version of Z ; finally X = g7'(Y), where g ()
is strictly monotonic. (It is slightly more convenient here to work with g, rather than
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TABLE 1
Six transformation types, described in terms of a standard normal variate Z and the four functions
g7, vs, 04, and q. Arrows in the right diagram indicate increasing generality. Constraints: q (0) = 0,
q’(0) = 1, and vg,= 0, 0g,= 1 for some selected 6.

Description Name and Abbreviation Relationship
1L.X=g"'"(m+2) Normal transformation family NTF
(NTF)
2. X=g"(m+q(2)), Symmetric transformation fam- NSTF
q(=2) =—q(2) ily (STF)
3. X=g""m+q2) General transformation family STF
(GTF)
4. X =g '(vo + 00Z) Normal scaled transformation SSTF
family (NSTF)
5. X =g '(vs + 0sq(2)), Symmetric scaled transforma- GTF
q(=2) = —q(2) tion family (SSTF) .
6. X =g '(vs + 0sq(Z)) General scaled transformation GSTF

family (GSTF)

with g as in Section 2.) In addition to restrictions (2.6) on ¢ (z), we set
(3~1) Vo, = O, g, = 1

for an arbitrary value 6, € ©. Sections 4, 5, and 6 show that then the representation X =
& '(vo + 04q(Z)) is unique, with the exception discussed in Section 4.

Family types 2 through 5 in Table 1 represent intermediates between the simple NTF
case (2.1) and the GSTF case (2.5). In type 5, for example, SSTF, Z = ¢(Z) is restricted to
be symmetrically distributed about 0. Section 5 shows that some calculations are easier in
the SSTF case than in a GSTF.

Figure 3 shows the diagnostic function D(z, 8) for the case of the normal correlation
coefficient. The parameter 6 = p, and the statistic X = p, the sample correlation coefficient.
Cramér (1946, Section 29.7) describes the distribution of X as a function of § € (-1, 1).

The upper set of curves applies to n = 15 bivariate normal points. We shall see (Section
4) that this is quite nearly a symmetric transformation family, STF, with Z = ¢(Z) a
Student’s ¢ variate with 38 degrees of freedom. This is as close as we come in this paper to
a genuine example of a normal transformation family.

D(z,0)
F €9=—.()|O7

—== ——-‘;|<Q—_ z
ez.ga‘— | ‘~‘~~\~ e:o
. S

- 2
+— 2z

f=-9~
9:0 9=0
‘=9

F1c. 3. The diagnostic function D (z, 6) for the normal correlation coefficient, = p, X = p. The upper
curves are for sample size n = 15, the lower for n = 5.
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The lower set of curves applies to n = 5. This turns out to be close to an SSTF situation,
with Z = ¢(Z) a Student’s ¢ variate with 10 degrees of freedom. The scale function ¢, has
its maximum at § = p = 0, and decreases as 6 goes to +1: at § = .5, &y = 65/ equals —.041;
at 8 = .9 it equals —.060.

If we assume that the normal correlation family % is a GSTF, then it must be a SSTF.
This follows from the symmetry of & about 0, i.e. the fact that the mapping (¢, X) —
(—6, —X) takes # into itself, and the uniqueness of the GSTF representation. The proof
will not be given here. The same considerations apply to the binomial family, Section 7.

The three types NTF, STF, GTF are the most useful for statistical applications. In
these cases there exists an obvious 1 — 2« central confidence interval for # based on
observing Y = g(X),

(3-2) vy € [y - 51—41, y - éa])

where 2, is the 100 ath percentile of Z = ¢(Z). This transforms back into a confidence
interval for 6§, assuming we know the mapping from »; back to 6. The usual approximate
intervals for the normal correlation coefficient are based on this device.

In a GTF, and therefore also in an NTF or STF, oy = 1, so ¢y = 65/9y = 0 and Lemma
1 gives

1
q'(2)
not depending upon 6. It will turn out (Section 4) that D(z, ) not depending upon 6 is a
sufficient as well as necessary condition for the simple types NTF, STF, GTF.

D(z,0) =

4.Finding q(Z). The representation X = g~ (v; + 0sq (Z)) involves four functions: g,
vg, 09, and q. We will give simple methods for calculating these functions directly from the
cdf’s Fy(x). This section concerns the calculation of g(z) which can be done in terms of
the diagnostic function (2.2). For convenient discussion, henceforth “GSTF” includes any
of the six family types in Table 1, and “GTF” includes the three types NTF, STF, GTF.
In other words, any type name refers to its description in Table 1, and also to all more
restrictive types in that table.

THEOREM 1. Suppose the family Fis a GSTF, X = g7 '(vy + 05q(Z)), and that there
exist two values 6, and 0; such that D(z, 6,) is not identically equal to D(z, 6;). Then
D’(0,6;) — D'(0,6,) 1

d
(4.1) EIOg{Q(Z)/Z} = D(z, 62) —D(z 6) —;,

where D’(0, §) = /82D (2, 0)|.=o. If D(z, ) does not depend on 6, then Fis a GTF, X =
g7'w+ q(2)), and

, _ 1
(4.2) q'(2) = D)
Proor. From Lemma 1 and (2.7) we get
(4.3) D(z, 6;) — D(z, 61) = (es, — €3,) ﬂ
q'(2)
for any 6,, 6, € 6. Also, using (2.6),
(4.4) D0, 0) =2 [1Fa@el a4,
9z q'(2)

2=0

Notice that D(z, 6;) not being identically equal to D(z, 6) is equivalent to &, #* &5,
Assuming this is the case, (4.3) and (4.4) give

D'(0,6;) —D'(0,6,) 1 q'(2) 1 d q(2)

Dz 0) —Dz0) =z qz) =z dz B 2

which is (4.1).
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Next suppose that D(z, #) does not depend on 6. From (4.3) we see that this is possible
only if & = ds /v = (do/dv)e is a constant, i.e. if

os=1+cry

for some constant c. (The intercept equals 1 because of (3.1).) In this case we can rewrite
the GSTF representation g(X) = vy + 0¢Z as

(4.5) 1+ cg(X) = (1+ cvg) + (1 + cvo)eZ = (1 + cvg)(1 + c2).
Letting go(x) = ¢ log{1 + cg(x)}, »§ = ¢ log(1 + cvp), and Z° = ¢™* log(1 + cZ) gives
(4.6) go(X) =vs + 2Z°,

a GTF representation. (Notice that ¢°(Z) = ¢ 'log(1 + ¢Z) = ¢ 'log{l + cq(Z)} satisfies
(2.6). The difficulty with 1 + ¢Z possibly being negative is discussed below.) But in a GTF
we have 0y = 150 &g =0, and D(z, §) = 1/q’(z) by (2.7), giving (4.2). O

In the GSTF case, the theorem allows us to calculate d log{¢(z)/z}/ dz from D(z, 6,),
D(z, 6,). This gives g(z)/z up to a multiplicative constant, whose value is then determined
by the condition lim,_o ¢(z)/z = 1, derived from (2.6). The main point is that g(z) is
determined directly from D(z, #) and therefore must be a unique function of the family of
cdf’s Fy(x). Having obtained ¢(z), the functions g, v, and o, are also uniquely determined
by the cdf’s of X; see Sections 5 and 6. '

Uniqueness breaks down in the GTF case. The GTF representation g(X) = v + 7=
vp + q(Z) can be rewritten as

4.7 g°(X) =vi+ (1+cvi)g°(2),

where c is any constant and g°(x) = [exp{cg(x)} — 1]/c, v§ = {exp(crs) — 1}/c, and g°(2)
= [exp{cq(z)} — 1]/c. Representation (4.7) is a GSTF with & = &5/ = c. In other words,
corresponding to any GTF is a one-parameter family of GSTF representations, with the
free parameter being the constant value of e;. The GTF representation, having & = 0, is
obtained from (4.2). There is only one such representation for a given GTF family % and
so the uniqueness of the representation theory continues to hold if we agree to always
represent GTF’s as such.

We can work backwards and ask how a certain form of g(z) affects the D(z, §) function.
Suppose that we know we are in an SSTF situation so that g(—z) = —¢q(2). Writing

3
(4.8) q(z)=z+§-6z—-+~--,
(2.7) gives
B ,
(4.9) D(Z,0)=1+802—§Z

Stopping the series after the quadratic term gives a reasonable approximation to D(z, )
for the normal correlation coefficient, Figure 3. For n = 5, B = .146; for n = 15, B = .039.
The Cornish-Fisher expansion for a Student-t variate with d degrees of freedom,
rescaled to have the same density as a N(0, 1) at z = 0, begins ¢g(2) = z + 23/(4d + 2); see
Johnson and Kotz (1970, page 102). Comparing this with (4.8) gives the approximation

L 1(6

This gives d = 10 for n = 5 and d = 38 for n = 15 in the case of the normal correlation
coefficient.

We interpreted Figure 2, for the continuous Poisson case, as if D(z, §) were linear in 2.
In fact, D(z, §) displays a small amount of curvature, which is particularly evident for ¢
= 1. Just how small this curvature is can be seen by comparison with (4.8), (4.9). The
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maximum possible value of B in Figure 2 is about .025, giving d = 60. For almost any
purpose, a te variate is an excellent approximation to a N(0, 1) variate, so the interpretation
of the continuous Poisson family as an NSTF seems quite reasonable.

In an SSTF, we have the simple relationship

(4.11) & = D’(0, 0),

so that g can be read directly from the graph of D(z, #). This follows from (2.7), which

gives

q'(0)%s — {1 + &q(0)}q"(0) _
q'(0)*

In an SSTF, ¢”(0) = 0 by symmetry, giving (4.11).

In going from (4.5) to (4.6) we ignored the possibility 1 + ¢Z < 0. The following special
case illustrates what happens in this situation. Let % be the family

(4.12) X ~ N, (1 + 0)?), 0> —1/e.

D'(0,6) = o — q"(0).

Here ¢ is a positive constant. This family is an NSTF q(z) = z, with g the identity mapping,
vo=20,00=1+ 6. By (2.8), D(z, 8) =1 + ez. We can also write (4.12) as

1+eX)=(1+e0)1+e2),
Z ~ N(0, 1). The two sign cases can be separately transformed, -

1
og(1+aX)=log(1+£0)+log(1+£Z) for 1+ eX>0

(4.13) € ¢ ¢
log — (1 + &X) _ log(1 + ¢6) + log — (1' + eZ) for 1+ eX<0.
€ € €

In other words, (4.12) is a GTF “on two real lines,” one real line corresponding to each
sign of 1 + eX. The parameter »§ = (1/¢)log(1l + &f) translates the distribution of X° =
(1/¢)log | 1 + €X | in the usual way, except that there is always total probability ®(—1/¢) on
the line corresponding to 1 + ¢X < 0, and total probability ®(1/¢) on the line corresponding
to 1 + eX > 0. Probability cannot move from one line to the other, no matter how »§
varies. Formula (4.2),

7@ = 1+ ez
in this case, gives both transformations of Z in (4.13).

To summarize, if D(z, #) does not depend on @ then % is a GTF, though possibly defined
on two lines. Formulas (4.1) and (4.2) give the complete solution of ¢(z).

Formula (4.1) has been written in a form convenient for numerical computation. Other
expressions are possible, for example

., % D0, 0)
(4.14) P log|gq(2)| = .
P D(z, 9)
In a GSTF (4.1), or (4.14), does not depend on the choice of § values. If this is markedly
untrue then % does not have a good GSTF approximation.

It is easy to see when a GSTF family % is actually SSTF. The function D.(z, §) =
D(z, ) + D(-z, ) equals

2 . q(2) + q(=2)
’ 0 ’
q'(2) q’(2)
in a GSTF. Assuming that ¢, is not constant, i.e. that .% is not a GTF family, then D.(z, 8)

Di(z,0) =
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not depending on 6 is necessary and sufficient for & to be SSTF, since both conditions are
equivalent to q(z) + g(—2) = 0. If # is a GTF then (4.2) gives D(z) = D(—z) as necessary
and sufficient for & to be STF.

5. Finding g(X). We wish to compute the function g in the GSTF representation
8(X) = vy + 04q(Z). Two formulas will be given, one for the general GSTF case and a
simpler one applying to the GTF case. Let x; < x; be any two values of X, and define 6,
as that value of § making Fy(x;) = 1 — Fy(xz), say

(5.1) a = Fp,(x1) =1 — Fp,(x2).
Also define 6, = u~'(x) as that value of 4 such that x is the median of X,
Fo(x) = .5,
fo(x) = Fiy(x),

be the density function of X. (The prime always indicates differentiation with respect to
the argument in parentheses.)

and let

THEOREM 2. In a GSTF family, under definition (5.1),

g'(x2) _ fo(x2) q'(21-0)

2 = .
(5 ) g,(xl) fﬂlz(xl) (I'(Za)

The simpler formula

() = [:%)
(5.3) &'(x) (0)

gives g'(x) in a GTF family.

PROOF. Since Fy(x) =® g—(x)o—_ﬁ> where ®(3) = ®(g~1(2)) as at (2.11), differentiation
0
~<g<x> - Ve) g'(x)

yields fy(x) = ¢ ) Substituting x = x,,¢ gives
(] [

g/(xa,e) - ¢(za )g/(xa,ﬂ)
Oy . q'(24) 00

(5.4) fi(%e0) = $(22)

the last equality following from (2.12). But for § = 6,2, by (5.1), we have x; = Xq,9, X2 =
X1-a,0, and ¢(24) = ¢p(21-a), 50 (5.4) follows from (5.2) by division.

The GTF formula (5.8) follows from the last equality in (5.4). We take § = u™'(x) =
0., a =.5,80 x = X, and z, = 0. Since 6y = 1 in a GTF, and ¢’(0) = 1 by (2.6), (5.4) gives
&'(x) = fy(x)/$(0) as claimed. O

Formula (5.2) simplifies in the SSTF situation to

&' (%) _ fou(x2)
g ) fon(x)’

since q’(z1-«) = q’(2,) by symmetry. Like (5.3), formula (5.5) has the advantage of not
requiring knowledge of q(z).

Formula (5.2), and (5.5) in the SSTF case, are convenient for numerical computation,
as demonstrated in Section 7 where we consider the Poisson and binomial cases. From a
starting value x;, and with « fixed, we calculate x, x3, x4, - - - and 012, 23, 034, - - - satisfying
a=Fy_ (xi-1) = 1— Fy_, (x:). Successive use of (5.2) gives g(x1), g'(x2), &'(x3), - - - up to
a multiplicative constant. This leaves two degrees of freedom in the determination of g(x),
a multiplicative and an additive constant, which are determined by (3.1), as shown in

Section 6, expression (6.3).

(5.5)




334 BRADLEY EFRON

Letting « — .5 in (5.2) gives a “single x” version,

d d
I log g'(x) = I log fo(x) |9=0. + @ " (0) fo.(x)/$ (0).
The last term vanishes in an SSTF, since ¢”(0) = 0.

Formula (5.3) has a simple intuitive interpretation in terms of the local transformation
to normality ts(x) = ® 'Fy(x), (2.3). In an NTF, X = g7'(» + Z), we have ty(x) =
D'D(g(x) — ve,) = g(x) — vg,, SO

(5.6) tu(x) = g'(x).

This means that it doesn’t matter which value of 6o we choose: 5 (x) always agrees with
g’(x) in an NTF. In other words, any local transformation to normality globally normalizes
an NTF.

If % is not an NTF then (5.6) doesn’t hold. However, we can try to choose among the
different ¢y(x) transformations by selecting that # most appropriate to each x. An obvious
choice is 8 = 8. = u~'(x), with #,(x) having x derivative ¢t4(x) equaling

£6,(x) = fo.(x)/$(0),

which is formula (5.3). In words, g(x) is the transformation everywhere having the same
x derivative as t;(x), evaluated at that @ for which x is the median of X.

In an important sense g(x) deserves to be called a variance stabilizing transformation.
In a GTF, where perfect stabilization is possible, (x) achieves this exactly: ¥ = g(X) =
ve + Z, a translation family, with constant variance.

The following corollary shows that g(x) tries to stabilize variances in the more general
context of a GTF.

COROLLARY 1. If % is a GSTF, X ~ g X(vy + 04Z), then
(5.7) &'(x) = g'(x)/0y,.
Proor. Taking a = .5 in (5.4) gives
g'(x)

0¢,

(5.8) fo.(x) =

$(0),
and the corollary follows immediately from definition (5.3). O

Here is the interpretation of (5.7): first make the transformation Y = g(X), which
produces a location scale family Y = »y = 00Z. Now apply (5.3) to this family. Since Y has

density ol &((y — vs)/05), (5.3) gives the transformation of Y, call it 4(y), with derivative
" O
at y = g(x) equal to
h'(y) = 1/0q,.

(Here we have used (2.13), and the fact that if Prob,{X < x} = .5, i.e. if § = p”'(x), then
Proby{Y < y} = .5, i.e,, 8 = »~'(y).) According to (5.7), the transformation £(x) is the
composition Ag(x).

In the case of an NSTF, X = g7 '(»; + 0oZ), the transformed variable ¥ = g(X) is
perfectly normal, Y ~ N(, oj), but with nonconstant variance. Then (5.3) makes the
further transformation W = A(Y), where h’(y) = 1/0,, which spoils the normality but
tends to produce more constant variance. Section 7 discusses the tradeoff between
normality and constant variance for the Poisson family. Section 8 concerns the relative
merits of stabilization versus normalization.

Notice that (5.7) can be rewritten as

g(xz) — g(x1)

g_(xZ) _g_(xl) =, x1<Xp
’ 012
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where

1 1 "
(5.9) —= J —g'(x) dy/J g’ (x) dx.
012 x 09, X

In an NSTF, g(X) ~ N(vs, 63), this has the following interpretation: £(x2) — g(x:) is the
number of standard deviations between g(x;) and g(x:), using the intermediate value o1,
as the unit of measurement. (Since g’(x) > 0, definition (5.9) necessarily makes o12
intermediate between the extreme possible values of 05 , x € [x1, x2].) This is handy for
the quick calculation of approximate significance levels, which is often the main point of
making the transformation.

6. Finding », and 6y. Having found g and q in the GSTF representation X = g~'(»,
+ 03q(Z)), it is easy to compute the location and scale functions vy, 65. Define 4 to be the
median of X for parameter value 0, .

po: Fo(pe) = .5.

Notice that the function ps can be computed directly from the cdf’s F, comprising %,
without any knowledge of the GSTF representation. This does not mean that it is easy to
find a formula for pe. In our examples the computations were done numerically.

Because g(X) is a monotonic mapping, and because vy is the median of g(X) = vy +
0sq(Z), by (2.6), we have '

(6.1) ve = g(Hg).

This is an obvious formula, of course, but it is often overlooked in the literature, where
there is a tendency to automatically take g(8) as the center for the distribution of g(X).
The scale function g, is computed from (5.8),

¢(0)g"(10)
6.2 =
(6.2) 09 fo (.Uo)
Notice that (3.1) can now be rewritten as
' — ’ — f90(lu‘90)
(6.3) 8(pe) =0, &' (pg,) —W-

These two constraints complete the determination of the function g from formula (5.2).
Comparing (6.3) with (5.3) shows that g'(ug,) = &'(q,).
For two values 61, 6;, let x; = ug, and x; = pg,. Then (5.2) and (6.2) together give
%=f012(x2) fol(xl) q'(21-4)
0g, folz(xl) fﬂz(xZ) (I'(Za)

In an SSTF family, where ¢’(—z) = ¢’(z), this reduces to
% _ fﬂlz(xZ) fﬂl(xl)
0g, fﬂlz(xl) fﬂz(xZ) ’

which is convenient for computation, especially in conjunction with (5.5).

Note. Formulas (6.1), (6.2) for vs, 64 involve g but not g. This can be reversed. It is
fairly obvious that once g(z) is known, we can determine oy,/0s, and (vs, — vs,)/ 05, for any
two parameter values 61, 0, simply by comparing Fy, (x) with Fy,(x) at different values of
x, as in (1.6). Combined with (3.1), this gives oy and vy.

7. The continuous Poisson family. Figure 2 shows that the continuous Poisson
family % is nearly an NSTF X = g~'(vp + 0sZ). Now we use the formulas of Sections 5 and
6 to calculate the functions g, vy, and oy, and also the variance stabilizing transformation
&, for #. The results are shown in Table 2. :
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TABLE 2
Continuous Poisson family (2.9). The functions g, ve, and 5 are calculated for the representation X
= g '(vo + 0sZ), under the constraints viiso = 0, 01.180 = 1; also calculated is the variance stabilizing
transformation g'. Figures in parentheses relate to the traditional normalizing and variance
stabilizing transformations. The constants co = .93, ¢; = 1.07, c2 = 1.09 are included to make the
derivatives equal 93 at x = 1.

x 125 .250 5 1 2 4 8
0=p""(x) 334 450 691 1.180 2.164 4.161 8.159
/) .85 .88 93 1 1.09 1.19 1.29
Vo —1.00 —.85 —.53 0 .85 2.14 4.15
g'(x) 1.45 1.29 112 93 .75 .58 .46
(cox '3 (1.86) (1.47) (1.17) (.93) (.74) (.59) (.47)
g'(x) 1.58 1.40 1.18 .93 .69 49 .35
(c1(x + .33)7'7%) (1.59) (1.41) (1.18) (.93) (.70) (.62) (.37)
(c2x + .375)73) (1.54) (1.38) (1.17) (.93) . (1) (.62) (.38)

In Table 2, constraint (3.1) was applied with 6, = p~'(1) = 1.180; (6.3) then gives g'(1)
= .93. The function g’(x) was obtained from (5.5). (The stepwise algorithm described in
the paragraph following (5.5) was applied with a = .45.) The functions » and ¢, were
obtained from (6.1) and (6.2), respectively. Formula (5.3) gave g’(x), also constrained to
have g’(1) = .93. Note that these calculations are valid assuming that & is an SSTF, not
necessarily an NSTF. ‘

Anscombe (1953) suggested x** as a normalizing transformation for the Poisson family,
on the grounds that this transformation makes the skewness approximately zero. The
derivative x /%, suitably rescaled, is seen to agree well with g’(x) for x = 1, but, perhaps
unsurprisingly, not for x < 1.

The variance stabilizing transformation v(x + .375) derived by Anscombe (1948), has
its derivative agreeing well with @'(x) over the entire range of x. The best agreement with
£'(x) among functions of the form v(x + b) is obtained for & = .33. As a matter of fact
V(x + .33) stabilizes variances within the genuine Poisson family just as well as does
V(x + .375). Both transformations are superior to the naive transformation JVx in this
regard. In this case, formula (5.3) has produced an excellent variance stabilizer.

Looking at Table 2, we see that g(x) is a more extreme transformation than g(x), since
its derivative is everywhere more quickly varying. A natural measure of this increased
“strength of transformation,” cf. Tukey (1957), is

d

Ix log g'(x)
(7.1) -
o log g'(x)

Quantity (7.1) equals approximately 1.37 over the entire range of x in Table 2. We can
state the situation for the continuous Poisson family as follows: There is a transformation
g(x) which nearly normalizes %, but in order to stabilize variances, we must everywhere
increase the strength of this transformation by about 37%.

The Genuine Poisson Family. One might worry that our description of the continuous
Poisson family was irrelevant to the genuine Poisson family. It is easy to allay such fears.
One can show that any family % of continuous distributions which agrees with the Poisson
family at the half-integer points, as at (2.10), must give almost the same results. Details
appear in Section 7 of Efron (1981).

The story for the binomial family Bi(n, 6), n fixed, is similar to that for the Poisson.
Figure 4 shows the diagnostic function D(z, ) for the continuous Binomial family

I'(n+1)

, —%<x<n+t+%,
Tar BT — st 5’ x<n+®

1
Fy(x) = f A1 =)t dt
[]
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D(z,8)
137 6-1
.21 e=3
6:-5
6=15
t + z
- | 2
6=15 €o
9:5 2.0
8:=3 |.0\
6+ 1 b5

FiG. 4. D(z, ) for the continuous Binomial family, n = 20.

9 € (0, 1), n = 20. The cdf Fy(x) equals that for the genuine binomial at the half-integer
points 1/2, 3/2, -+, (n — 1)/2. Again we have nearly an NSTF family, with ¢, large for ¢
near 0 or 1. The equivalent of Table 2 will not be presented here.

8. Normalization versus stabilized variance. Suppose that there exists a mono-
tonic transformation g(x) such that g(X) is (nearly) normally distributed for every value
of the parameter §. That is, suppose that & is (nearly) an NSTF, as is the continuous
Poisson family. The point of this section is that under certain circumstances we might still
prefer to work with the variance stabilizing transformation £(X), (5.3). These calculations
are far from conclusive. They are intended only as a cautionary note against uncritical use
of normality as the criterion for a successful transformation.

For the rest of this section we consider the family (4.12), X ~ N(4, (1 + &6)?) for § >
—1/¢, € a known constant. We have in mind values of ¢ in the range [0, 0.20]. Here % is
already normal so g(x) = x. The variance stabilizing transformation (5.3) is

F(x) = log(1 + ex) .

The transformed variate W = g(X) has a translation family of distributions
(8.1) W=0+72
where 6=g0), Z=g2),

Z ~ N(0, 1). Here we are ignoring the possibility 1 + eZ < 0, discussed in Section 4, an
event with probability ®(-1/¢), negligible for ¢ < 0.2.
Suppose that we want a central 1 — 2« confidence interval for 6 based on observing X
= x. The obvious 1 — 2« central interval for § based on observing W = w in (8.1), is
0 [w—g(z1-0), w — &(24)].

This maps back to the 1 — 2« central interval for § = g (8)

(8.2) 0e[x+6 Za x4 i—2 ]

1-— €2y 1- €21-«
where ¢ = 1 + ex. For reasonable values of a, say a > .001, interval (8.2) corresponds to
inverting the locally most powerful tests in family (4.12), and is close to being globally
optimal, though it is not exactly so since this family does not enjoy monotone likelihood
ratio. We refer to (8.2) as the true interval for 6 in what follows.
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An easy approximate interval for 6, using normality but ignoring heteroscedasity, is
(8.3) 0 E [x + 624, x + 621-4]
This is obtained by pretending that o, = 1 + €6 is a constant in (4.12), and then estimating
the constant by 6 = 1 + ex.

Another approximate interval is obtained by ignoring the nonnormality of Z in (8.1).
We suppose that

(8.4) Z ~ N(0, B).

Here we might take 8 = 1, since the transformation g is supposed to give unit variance, or
we might use the actual variance of {log(1 + €Z)} /e, some values of which are

e= 0 .05 1 2
=1 1.0063 1.0261 1.1231

(8.5)

In either case, assumptions (8.1) and (8.4) lead to the interval )
¢ exp(efz,) — 1 x4+ exp(efzi-a) — 1] .

€ €

(8.6) ge [x +

Table 3 compares the true interval (8.2) with (8.3) and with (8.6). The second approxi-
mation is seen to be better, more so if the correct value of B is used. In this highly
simplified situation it is better to transform to homoscedasity and ignore nonnormality
than vice-versa. Of course one could always do a complete analysis and recover the true
interval (8.2), working either with X or with W. However, the practical motivation of
transformation theory is to avoid complicated analysis, especially in already complicated
situations. One such situation is discussed next.

Suppose now that we observe independent variates X; ~ N(6;, (1 + €)Y, i=1,2,
..+, n. Corresponding to each observation is a 1 X % vector of observed covariates m,. We
intend to fit a linear model on either the X scale or the W scale (8.2). That is we will either
fit the model

|

8.7) 6 = Mo

0=, ---,0,),M' = (mi,ms, ---, ms),or the model

(8.8) 0 =Ma

d= (G, ---,0,), 0, = 5(6;) = (1/e)log(1 + 6,). The fitting will be done by ordinary least

squares (OLS) in either case, to X = x in (8.7) or to W = w in (8.8). The question is, which
of these analyses will be asymptotically most efficient for estimating the unknown £ X 1
vector a, compared to maximum likelihood estimation? (Notice that there are two different
maximum likelihood estimates, depending on whether we assume model (8.7) or (8.8). The
efficiency comparisons are between OLS and the corresponding MLE for each of the two
models.)

TABLE 3
Comparison of the true intervals (8.2) with approximations (8.3) and (8.6), fora=.05,x=0,6=1.
Parenthetical numbers are one half the interval lengths.

e=.05 e=.10 e=.20
True Interval (8.6) [—1.520, 1.792] [—1.413, 1.969] [—1.238, 2.452]
(1.656) (1.691) (1.845)
Approximate (8.7) [—1.645, 1.645] [—1.645, 1.645] [—1.645, 1.645]
(1.645) (1.645) (1.645)
Approximate (8.10), 3 =1 [-1.579, 1.715] [—1.517, 1.788] [—1.402, 1.948]
(1.647) (1.653) (1.675)
Approximate (8.10), true [—1.589, 1.726] [—1.553, 1.839] [—1.545, 2.235]

(1.657) (1.696) (1.890)
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TABLE 4
Comparison of the asymptotic efficiency of ordinary least squares on the variance stabilized scale,
(8.9), with the lower bound for efficiency on the normalized scale, (8.10).

£

0 05 1 20
Effw 1 9944 9775 9080
Lower 1 1 9975 9901 9623
Bound RATIO 15 9798 9774 9701 9428
on 2 9428 9405 9335 9072
Effx 3 8660 8638 8575 8333

Consider situation (8.8). The OLS estimate & and the MLE & both have asymptotic
covariance matrix of the form ¢(M’M)'/2 The ratio cs/cz, which measures the asymptotic
relative efficiency of & to &, say Effw, turns out to be :

(8.9) Effw = 1/V(1 + 2698,

B as given in (8.5); see Cox and Hinkley (1968).

Situation (8.7) is less neat, since in this case the OLS estimate & does not have a
covariance matrix of form ¢(M’M)'2. As a measure of efficiency comparable to (8.9), we
take

Effe = | 3o/ | Bl ™,

where ¥; and Iz are the asymptotic covariance matrices. Using results of Bloomfield and
Watson (1975), one can show that

2vRATIO
1+ RATIO’

The lower bound (8.10) on Effy is achieved if the design matrix M has a special relationship
to the covariance matrix of X.

Table 4 compares Effy with the lower bound for Effy. If RATIO = 1 then efficiency is
always better on the X scale, but for larger values of RATIO, which are probably more
realistic, the W scale seems preferable. For moderate values of ¢, | ¢| < .1, efficiency on the
W scale cannot be much worse than 98%, which is quite safe indeed.
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