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SEQUENTIAL ESTIMATION THROUGH ESTIMATING EQUATIONS
IN THE NUISANCE PARAMETER CASE

By PEDRO E. FERREIRA®

CIENES, Organization of American States

Let (Xi, X2, ---) be a sequence of random variables and let the p.d.f. of
X, = (Xi, -+, X,) be p(x,, 0), where 6 = (6,, 62). An estimating equation rule
for 4, is a sequence of functions g(xi, #.), g(x1, x2, 61), ---. If the random
sample size N = n, we estimate 6, through the estimating equation g(X,, 6:)
= 0. In this paper, optimum estimation rules are obtained and, in particular,
sufficient conditions for the optimality of the maximum conditional likelihood
estimation rule are given. In addition, Bhapkar’s concept of information in an
estimating equation is used to discuss stopping criteria.

.

1. Introduction. Let (X;, Xz, ---) be a sequence of random variables with an
associated sample space & = 21 X %2 X - .., where each %, is assumed to be a Euclidean
space. Let B, be the Borel sigma-field of subsets of £ = %1 X ... X %, generated by X,,
= (X, --+,X,), and let Py, § € O, be a family of probability measures on (%", B,). Further
let p.(X», §) be the probability density function of X,; i.e. the density of Pj.

A stopping rule for a sequential procedure will be defined as a sequence of sets R, € B,,
n=1,2, ..., and the sample size, N, is the least integer n such that X,, € R,,. The subset
of points in " corresponding to a stop at N = n is denoted by R, where
s R if n=1

" (%X ERy, -+, X1 ER1, X, ER,} if n=2

Let us assume that 6 = (6;, 6:), where 6, € O, is the parameter of interest and 6. € 6,
is the nuisance parameter. Further, we assume that 6, is a real open interval and that ©
= 0, X O,. Now, an estimating equation rule g, for 6, is given by a sequence of estimating
functions g(Xi, 1), g(Xz, 1), - - - such that for each 8, € 6., g(X,, 6:) is B,-measurable
for all n = 1, 2, .... If the (random) sample size N = n, we estimate 6; through the
estimating equation g(X,, 6;) = 0.

Let us write g, = g(X,, 61). Then we will say that the estimation rule g is unbiased if
Ey(gn) = 0for all § € ©. Of all such rules, g* is said to be optimum if it minimizes Eqs{ gn/
Ey(dgn/86:)} % for all @ € ©. The idea is to obtain equations with small variance E,(g%), so
that g(Xn, 6:) = 0, and with high sensitivity, | Es(dgn/06:)|, both conditions roughly
implying a small bias for the estimate. These definitions were given by Khan (1969) for the
case where the nuisance parameter is absent, that is, in our notation, when 6, = 6, a
specified value. In the same paper, extending results in Godambe (1960), the optimality of
the maximum likelihood estimation rule, given by g, = d log p./86:, was shown and a
generalization of Wolfowitz’s (1947) inequality was obtained.

In this paper optimal estimation rules are given in the nuisance parameter case. In
particular, the following situation is analyzed.

AssuMpTION 1.1. For each n and 6, fixed, a statistic T, = T,(X,) which does not
depend on @ and is sufficient for 6, exists; that is,

(1) pn(xrn 0) =an(xn, 01)hn(Tn, 0)’
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where fr (x,, 0;) denotes the conditional density for X, given T}, and h.(T,, 6) denotes
the marginal density for T’,.

Under this assumption, which is a sequential version of one discussed by Godambe
(1976), the optimality of the maximum conditional likelihood rule, g% = d log fr /96, is
investigated. In addition, the problem of choosing stopping procedures is discussed. Based
on Bhapkar’s (1972) concept of information in an estimating equation, criteria for stopping
are proposed and illustrated through several applications.

2. Optimal rules. We make the following assumptions on the frequency functions:
(a) 8log p./86: and 9°log p./80% exist on X" for eachn =1,2, --- (6 € O);
(b) [7 pn dx, is differentiable under the integral sign w.r.t. §, foreachn=1,2, - .- and
f € 06;
(c) Y7=1 [, (81og pn/861)p. dx, converges uniformly on O;
(d) when Assumption 1.1 holds, conditions similar to (a), (b) and (c) are also valid for
the frequency function fr_and h,. )
On the estimation rules we introduce the following regularity conditions:
(i) (unbiasedness) Eq(gn) = 0 (0 € 6);
(i1) g. = g(x,, 6,) is differentiable w.r.t. 6, foreachn=1,2, --. (x, € Z", 6, € O);
(ili) [7, gnpn dX, is differentiable under the integral sign w.r.t. 6, for eachn=1,2, .-
(6 € O);
(iv) Yn=1 [, &n(0 log pn/861)p. dxX, and Y7-: [7, (38./801)p. dX. both converge
uniformly on ©;
(v) when Assumption 1.1 holds, conditions similar to (iii) and (iv) hold with p, replaced
by fr, or h, and 8 log p./36, replaced by d log fr,/86; or 3 log h./80,, respectively;
(vi) 0 < {Ey(dgn/861)}%, 0 € O. The class of all regular unbiased estimation rules will
be denoted by ¥;.

We are now in position to formalize the definition of optimality.

DEFINITION 2.1. An estimation rule g* € %, is said to be optimum if
(2) Eo{gn/E(3gn/36:)}" = Eo{ gt/ Eo(0gk/96:)}*
forallg € % and all € O.

2.1. Complete sequential procedures. We will restrict the attention to stopping rules
satisfying E4(IN) > o and such that the decision on whether or not to continue sampling
after n observations depends on T, (X,). In particular we need the following

AssumpTioN 2.1. R, depends on x, through 7, alone.

It follows (Blackwell, 1947) that (T, N), where N is the random sample size, is a
sufficient statistic for #,, for each fixed ;. Further, we assume that for each fixed 6;, the
sequential procedure satisfies the Lehmann and Stein’s (1950) definition of completeness;
i.e. we assume that for each fixed 6;, the family of distributions of (T, N) is complete.
Illustrations of this kind of sequential procedures will be presented in the case where the
dimension of the nuisance parameter in p,(X,, §) increases when the sample size increases;
see Section 3 and Appendix. Now, notice that, in general, Assumption 2.1 will not hold,
even for stopping rules based on the sequence {T,}. However, it will hold for such a rule
if the following condition is valid:

AssuMPTION 2.2. T, is a function of T, for m < n. For complete sequential procedures
satisfying Assumption 2.1 the following sequential version of Theorem 3.2 in Godambe
(1976), proving the optimality of the maximum conditional likelihood rule, holds.

THEOREM 2.1. Consider a complete sequential procedure such that the decision on
whether or not to continue sampling after n observations depends on T.(X,). Let
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Assumptions 1.1 and 2.1 hold and, in addition, assume that g* defined by

)] &*(Xn, 61) = dlog fr,/36:

belongs to %,. Then this rule is optimum in the sense of Definition 2.1 and further,
4) Eo{ gn/Eo(0gn/361)}* = 1/E(d log fr,/6:)°

for all g € 4, and 0 € O, the equality being attained when g, is given by (3) up to a non-
null multiplicative constant Z(6:) and up to sets of measure zero.

The proof proceeds as in the original paper by Godambe (1976) and is omitted. It is
important to notice that the conditional distribution of X, given N = n and Ty = ¢ has
density

i
fn,t(xny 01) = IITZ’,,(xn)an=t(xn, 01)/k(01))
where k(60,) = P(X, € ﬁn| T, = t, 6,), and reduces to fr —«(X,, 6:) if Assumption 2.1 holds

for x,, € R,.. This in particular implies that Ey, (4 log fr,/36: | N, Tn) = 0; hence g* defined
in (3) is unbiased.

2.2. Bounded sampling plans. Let us restrict our attention to bounded sampling
plans, i.e. those satisfying
Py(N =no) =1, g€ 0.

In addition, let us consider a set of statistics T, n =1, 2, - - -, o, satisfying Assumption 1.1
and, for simplicity, let us write 7'= T, . We will now replace the condition of completeness
of the sequential procedure by the following

AssumPTION 2.3. For each 6, fixed, the family of probability distributions induced by
T,
,@;’; = {PZ:02 € 0,, 6, ﬁxed}

is complete.

AssuMPTION 2.4. The conditional distributions of X, given T and given T, satisfy
(5) fr(Xn, 01) = fr,(Xs, 1), n=ne.

Under these assumptions we now prove again the optimality of the maximum condi-
tional likelihood rule. Notice that this theorem is a useful tool in the sense that the
stopping procedure is only restricted by the condition of boundedness.

THEOREM 2.2. Let Assumptions 1.1, 2.3 and 2.4 hold and assume that g* in (3)
belongs to %,. Then g* is optimum according to Definition 2.1 and inequality (4) holds
for all g € %, and 0 € O, the equality being attained when g, is given by (3) up to a non-
null multiplicative constant Z(6:) and up to sets of measure zero.

Proor. Let us define a class of %, of estimation rules, adding to the conditions in
%, the following requirement
(vi)T: Ey,(gn|T)=0 a.e., 6, € 6,.

Notice that the expectation in (vi)r depends only on 6; because of Assumption 1.1. Now,
for every g € % r, condition (vi)r may be written as

(6) Eo{Xnx1 I17,)(Xa)g(Xn, 61)| T} = 0.

Differentiating (6) with respect to 8; (condition (v)) and taking into account (5), we obtain
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Eo {31 Iz, (X,)(08:/00: + g, l0g fr,/361)| T} = 0.
Taking expectation on 7', we have that
(7) Ey(3gn/36:) + Eo(gngH) =0

and then, applying the Cauchy-Schwartz inequality and taking into account (vi), (4) is
obtained. The equality is attained only if gnv = Z(6:)g4% a.e., where Z(6,) # 0 for all 6, €
O,. Further, if g* € 9,7, we can replace gy by g% in (7), obtaining

8 E,(3g%/36:) + Eo(g#*) = 0.

The optimality of g* follows from (8) and (4).

Now, for every g € %, condition (i) may be written as E¢{E, (gv|T)} =0, § € O.
Then, the completeness of T implies (vi)r. Hence %; C % r, and since obviously %17 D
%1, the proof is complete.

Notice that from (5) and (6) we can write generally,

) Eo(gn|T) = 302 J' Iz (%0)8(%n, 01) fr,(Xn, 01) dXn.

Then it follows that g* will be unbiased since (8/361)E, (1| T') coincides with Ey (gk|T)
according to (9).

We now present an example that shows the non-completeness in general of a sequential
procedure satisfying the assumptions in Theorem 2.2.

ExaMpPLE 2.1. Let X; = (X;1, Xi2), i = 1, 2, the random variables X,;, i, j = 1, 2, being
independent and such that X;; ~ N(8;, 61). Let Ry = {x1:x11 < x12} and Ry = {Xo:x11 =
x12}, so that no = 2. Consider the statistic T} defined by T} = X1; + X2 and T = (X1 +
Xi2, Xo1 + X2). Let us define a function of (T, N) as follows: u(T1, 1) = 1 and u(T%, 2)
= —1. Then Es{u(Tn, N)} = 0 for all § € © and therefore (T, N) is not complete.

2.3. Further results. We will now extend to the sequential setting three additional
results in Godambe (1976). The proofs and the regularity conditions required are obvious
sequential versions of those given by Godambe and are omitted.

THEOREM 2.3. If the estimating equation rules g¥ € %, and g5 € %, are optimum
according to Definition 2.1, then up to sets of measure zero,
8in/Eq(3gin/361) = gin/Eo(9g3n/861), fe 6.
REMARK 2.1. The conclusion of Theorem 2.3 may be equivalently expressed as follows:
for some function S(6;),

gh=8(0,)gs, forall x,€R, n=12 ..., §€0O.

THEOREM 2.4. If a rule g* such that
grx =A(0)dlog p.(X,, 0)/06: + r.(X,, 6)
satisfies (a) g* € 9, and (b) E¢(rvgn) = 0 for all 6 € © and g € Y1, then it is optimum
according to Definition 2.1.
REMARK 2.2. Notice that the choice
rn = C(6){(3 log pn/062)® + (3*log p,/863)}  for x,E R,

ensures that (b) holds and also that g} is unbiased. This result is a generalization of a
theorem in Godambe and Thompson (1974).
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AssumPTION 2.5. There exists a real function «a(6;, #;) such that A, in (1) depends on
8 only through « and such that 8 log A./da, da/86; and da/d6; exist and da/86; # 0, 0 €
O.

THEOREM 2.5. Let Assumptions 1.1 and 2.5 hold. Then, if g* defined by g} = 8 log
fr (X,, 01)/06: belongs to %, it gives the optimum estimating rule according to Definition
2.1, unique up to a constant multiple Z(0:) and up to sets of measure zero.

Generalizations of this theorem are easily obtained. For example, suppose that, on
taking new parameters (6:, «), the density factorizes as p, = a(x,, 6:)b(x,, a), where,
locally, 6, and « are not functionally related. Then (8/86,)log a(X,, 6,) gives the optimum
rule. Another generalization to the case where 4, depends on 6 only through real functions
a;(6y, 6),i =1, ---, n, was given by Ferreira (1980).

3. Information, stopping rules and examples. Up to now we have considered the
problem of finding an optimum estimation rule for a given stopping procedure. We will
now briefly consider the problem of choosing an optimum stopping rule. Firstly, following
Bhapkar (1972), we define the amount of information J,(6| R) in the estimation rule g,
given the stopping procedure R,, n =1, 2, ..., as the inverse of the left hand side of (2).
The quotient Jg(8| R)/Jg+ (0| R) will be called the efficiency of the estimation rule g.

Based on the above concept of information, we now introduce criteria of optimality for
stopping procedures: ,

(i) Subject to the condition J,+(6| R) = Jo > 0, § € O, minimize the expected sample
size E4(N);

(ii) subject to the condition E4(N) < m, maximize the information in the optimum
estimation rule;

(ili) minimize F(R, ) = AJ;*(6|R) + Eo(N) where A > 0 is fixed.

In the particular case where 6, = 5, a specific value, i.e. 8 is a single parameter, Khan
(1969, Theorem 5.1) proved that g = d log p./d6, is optimum. Further, if (X;, X5, ---) are
independently and identically distributed, we have that Jg+(8| R) = E4(N)E4(dlog p/36:)>.
Then applying criterion (i), we must minimize E,(N) subject to

(10) E4(N) = Jo/E(3 log p/ab1)*.

If the right hand side of (10) does not depend on 8, then a fixed sample size procedure is
optimum. However, if it does depend on 6, we will not be able to determine the size of the
sample. In this situation, an approximate criterion for stopping may be suggested through
the fixed sample size information J ¥ (§) = E»(—d*log p./363). For example, we may stop
when an estimate of JJ{* (6) is greater than a given constant <J,. Similar considerations are
valid in the nuisance parameter case, but no general formula like (10) is available.

ExampLE 3.1. Let (X1, Xz, - --) beiid. N(6i, 62). If 6, = 62, known, then (Khan, 1969,
Theorem 5.1) the optimum estimation rule is

g% = dlog pn/8b = n03;' (X, — 6,).

Further, J,-(§|R) = E,(N)#z' and hence, applying criterion (i), a fixed sample size
procedure with n = /o6, is obtained. This procedure is also obtained when sampling till
the variance of §; = X reaches a given level J5'. On the other hand, if 6, is unknown we
may apply Theorem 2.4 with A(#) = 6; and r,, = 0, obtaining the optimum rule g} = n(X
— 6,). Further, J* () = nfz' may be estimated by ns~2 where s> = Y7 (X, — X)*/(n —
1), and hence we obtain the well known rule n = Jys? (Kendall and Stuart, 1979, page 650).

ExamMpPLE 3.2. LetX,;= (X1, X2:),i=1,2, ..., be independently distributed, such that
X1 given Xo; = X3 is N(01x2;, 1) and Xz; is N (62, 1). That is, we have a regression through
the origin where the regression variable is subject to error, and where inference about the
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slope is of prime interest. Let us take T, = (Xz1, - - -, X2,,). Then Assumption 1.1 holds and,
further, if we restrict the attention to complete sequential procedures, then g* in (3) is
optimum and

J(0) = —Ey(9%log fr, /863) = Eo(X7 X3).

Hence, we may stop sampling when Y7 X3; > JJy. In the Appendix we show that this
sequential procedure is complete and therefore, applying Theorem 2.1, we obtain the
optimum rule g = ¥ (X1; — ,X,,) X»;. Notice that g gives the usual slope estimate and
that the stopping rule is determined by the size of its (conditional) variance.

The use of criterion (ii) being J} (8| R) = c(8) E4(N), where c(6) does not depend on R,
entails the maximization of Ey(N) and hence a fixed sample size procedure constitutes an
optimum rule.

ExampLE 3.3. Let X; = (Xu, Xa1), Xo = (X2, Xs2), -+ be independent random
variables such that X;; and X,; have independent Poisson distributions with means 8, and
0 + 0, respectively, being 6; > 0 and 6, > 0. Taking T, = (Xa1, Xa2, -+, Xs,,) and a = 6,
+ 65, Theorem 2.5 applies and

(11) g*(Xn, 01) =—n + Z;L=1 X11/01.

Further, J+ (0| R) = Eo(N)/6; for all possible R and hence a fixed sample size procedure
is optimum accordmg to (ii). On the other hand, if we estimate 6; through (11) and proceed
to sampling till J$*(6) = n/6, = Jy, the rule R, = {3 1 X1, < cn?} is reached. This is the
same rule obtained when estimating the mean of a Poisson distribution with a given
precision (Kendall and Stuart, 1979, page 651).

Notice that, according to criterion (iii), when J,+ (6| R) is of the form cEy(N), ¢ being
a positive constant, then a fixed sample size procedure will be optimum. Otherwise we may
proceed as in Robbins (1959), first finding the value of n minimizing

12 Fi = AT@0) +n,

say no = ¢(6), and then continuing sampling till n > ¢(én).

ExaMPLE 34. Let (X1, X5, - - ) be independent random variables such that X, = (X1;,
X5:) has two independent components each N(6,;, 6,). Take T, = (Xi1 + Xo1, -+ -, Xin +
Xo,). Then Assumption 2.1 follows from Theorem 7.3 of Lehmann and Scheffé (1955).
Hence, if the sequential procedure is bounded, Theorem 2.2 applies and

S R T R Y
(13) 8n 201 + 40%21 (Xll XZz) .
Minimizing F{§) = A20in™" + n (see (12)) as a function of n, we obtain n =v2A46,. Hence,
if 6, is estimated:through (13) and the condltlon {N =no}is nnposed we arrive at the
following procedure: stop when either n*> =vA/2 Y7 (X1 — X2,)? or n = ny.
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APPENDIX

Let (X1, X3, - - -) be independent random variables, X; having a distribution in a family
parameterized by (6, 6:;). Further, let the sequential procedure be such that Assumptions
2.1 and 2.2 hold and, in addition, the followmg conditions are satisfied:

(A1) 9’,,1 = {h(Th, 01, 021) : 0, fixed} is complete;
(Ail) Given m < n, hr, -(T,, 6) does not depend on 6;,, and constitutes a complete
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family when the parameters 6; and 6-;, i < m, are held fixed, i.e. the family of conditional
distributions of T, given T, is strongly complete (see Lehmann and Stein, 1950).

We will show that this sequential procedure is complete, i.e. the family of distributions
of (T,, N), 6, fixed, is complete. In fact, using Assumption 2.1 we write

Eo{u(Tn, N)} = Y51 J u(Tn, n)h(T,, 0) dT,
R,

(14)
= f vi(Th, 01, 052, O23, -+ -)W(T1, 61, 021) AT, =0,

where

(15)  vi(¢, b1, B2, bas, -+ +) = Iz (H)u(t, 1) + Y72 J' Itz (To)u(T,, n)hr,= (T, 6) dT,.

.

Assumption (Aii) implies that k7 (T, 6) in (15) does not depend on 6;; and the same
holds for v;. Hence, from (Ai) and (14) we conclude that v; = 0 for all possible ¢. Further,
ifte R, , then the summation in the r.h.s. of (15) vanishes and hence u(¢, 1) = 0. The proof
follows, repeating the same reasoning, arguing by induction and using Assumption 2.2 to
show that the conditional distribution of T, given T, - --, T, coincides with that of T,
given T, for m < n.
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