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A COMPARISON OF THE EFRON-HINKLEY ANCILLARY AND THE
LIKELIHOOD RATIO ANCILLARY IN A PARTICULAR EXAMPLE

By Bo V. PEDERSEN

Aarhus University

Two approximate ancillaries, the Efron-Hinkley ancillary and the (signed)
likelihood ratio, are compared in a specific example by means of their level
curves, their marginal densities and the conditional and unconditional like-
lihood functions. It is shown that in the present model the latter of the two
ancillaries is the better. It is almost exactly distribution constant and has more
stable conditional likelihood functions.

1. Introduction. In an example with a single observation from a model having a one-
dimensional parameter, Barndorff-Nielsen (1980, Figure 1) indicates that remarkably
different conclusions might be drawn depending on whether the inference is based on one
or the other of the two main, approximate, ancillaries of that paper, namely the Efron-
Hinkley (1978) ancillary, a, and a signed version of the log likelihood ratio, +r. For a
comparison of the two it is natural to look at a and +2r, as these are asymptotically
equivalent for n, the number of observations, tending to infinity.

In some work connected with the former paper, it was seen that the conditional
distributions given the two ancillaries would be alike for observations yielding positive or
negative but numerically small values of a and ++/2r, while the difference would become
more and more striking for observations corresponding to decreasing negative values of a
and ++v2r. This is a consequence of the different shapes of the level curves for the two
ancillaries, cf. Figure 1 below.

In this note it will be shown that for the cited example, with n = 1, +v2r is the better
of the two ancillaries. It is almost exactly distribution constant and leads to more
reasonably behaved conditional likelihoods. This conclusion seems also to be true for
moderate n, as illustrated for n = 5 by comparing conditional maximum likelihood
estimates with unconditional maximum likelihood estimates. As n tends to infinity the
difference between the two ancillaries becomes negligible—but so does the effect on
conditioning.

2. The model. Let u and v — 1 be independent and exponentially distributed with
parameters x and y, i.e. with density
@ plu, v x, ¥) = xpeve XV, u>0,v>1

Consider the submodel, a curved exponential family, determined by x(y)ye* = 1. This
gives

@) plu, v;¢) =XV,
with mean value curve Ty = {7(y)) :y > 0}, where
() = Ey(u, v) = (Ye¥, 1 +¢7).
The maximum likelihood estimator \[Az in the submodel is the unique solution of

V== X’(‘P)uy
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so it is seen that the level curves of \[: in the (u, v)-plane are straight lines through (0, 0)
with slopes

~x'@) =@ +§ )WV >0,

The Efron-Hinkley ancillary, also termed the affine ancillary, is given by a =
(j/t = 1)/¥, where j, i and y denote respectively the observed and expected information
and the curvature of the model, all evaluated at Y = . The log likelihood ratio for testing
(2) versus (1) is given by r = ¢ — ¢, where ¢ and / denote the maxima of the log likelihood
function under (1) and (2), respectively. Defining

V.= {1+ (1+y)=2)2

one obtains

a={v—-1-¢ ¥
Further an expression of r as a function of (\[:, a) is given by
r=¥_ +{,}a-In{1 +¥_a}) —In{1 +¥,a}.

It is seen that a and r are both zero for an observation on the mean curve T,. Further, a
is positive for an observation above Ty, see Figure 1, and negative in the opposite case.
The sign of +r and ++/2r is defined so as to coincide with the sign of a. With this choice
of sign, + V2r and a are equivalent near T in the sense that the ratio +/2r /a tends to one
as a or r tends to zero, i.e., as (i, v) tends to a point on T,. The difference between the two

approximate ancillaries a and +v2r isillustrated in Figure 1 which shows their level curves
in the (u, v)-plane.

3.0

-

Fic. 1 Level curves for \i/, a and +V2r. The three straight lines represent, from left to right, \l:
= .5, .8, 1.0. The mean curve T, corresponds to a = +v2r = 0. Further level curves from above
correspond to a = .5, —.5, —1.0, —1.1, —1.25, solid curves, and +V2r = 5, —.5, —1.5, —2.0, broken
curves. The arrow heads indicate the points where the level curves for a smaller than —1 hit the u-

axis, giving \fz = v,. Here Y, is the upper bound of the possible values of \lAz for the particular a, i.e.
Yo=(a’?—1)7""* =1,
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The level curves for a and ++v2r are nearly identical for numerically small values of the
two ancillaries. Moreover, the level curves are similar in shape for all positive values. In
contrast, the level curves deviate considerably for a slightly smaller than —1. The effect of
this on the conditional inference given a or ++2r is that for observations yielding positive
or negative but numerically small values of the two ancillaries, similar conclusions will be
drawn, whereas observations below T, yielding negative values of a and +/2r, may result
in quite different conclusions. For instance, for (u, v) = (0.049, 1.199), giving a = —1.25 and
++2r = —2.48, the conditional distribution of JJ given a is concentrated on (0, ¥,,) = (0, .33)
while if Y = 1.0 most of the mass of the conditional distribution of ¥ given +2r is
concentrated beyond .33.

3. Marginal densities of the ancillaries. Using the general expression for the
probability density function of (¢, a) given in Barndorff-Nielsen (1980), one obtains in the
present example

3) P, a; ) = i@)?{1 + ¥ a)efe xWDiriia 4 uri+i_a)

The probability density function for (\@, +v2r) is found by noting that for a fixed value of
Y, the numerical value of the partial derivative of +/2r with respect to a is

woarlel| ¥
’ Vor i1+ ¥.a 1+¥_al’

here | a|/ Vor is defined, by contir}uity, to be 1 for (i, v) € Toi.e. for a = =v2r = 0. (Notice
that for (u, v) € Ty one has c(y, a) = 1, in accordance with the equivalence of a and
++/2r for numerically small values.) This gives

P(\py i-‘/2_ry 4") = C(J;y ér)'p(\i;» én \l/)’

where d, is the unique solution to +r({, a) = .

The marginal densities of a and +v2r are found by numerical integration. For ¢ = .1
and ¢ = 2.5 these densities are shown in Figure 2. The two values of y selected correspond
to rather extreme mean vectors 7(y), namely (0.1, 11) respectively (30.5, 1.4). For y varying
in between, the marginal densities vary gradually from the former to the latter form.

It is seen that the densities for +v2r are almost identical and normal shaped, though
not standard normal as the mode varies from —.6 to —.52. On the other hand the densities
for a vary quite a lot and they are not at all normal shaped.

4. Conditional likelihoods. To further illustrate the difference between the two
approximate ancillaries the conditional log likelihoods will be considered. Great differences
are expected for observations yielding values of a < — 1. Let us consider observations
corresponding to a value of a in this area but not too extreme, say a = —1.1. Indexing the
observation by ylAJ =< Y, = 1.18 and comparing with the maxima of the two conditional
likelihoods, we get Table 1.

TABLE 1 Likelihood estimates compared with the condi-
tional maximum likelihood estimates for observations on the

curve a = —1.1. The quantities \fqa and \[Aq, are the maxima of
the conditional likelihood functions given a and +V2r, re-
spectively.

¥ 1 3 5 8 1.0

Yla 090 26 48 7.1 38.3

br 098 30 51 84 1.1
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Fic. 2 The marginal probability densities of a and +V2r for ¢ = .1 and 2.5; a solid curves,
+V2r broken curves.

As can be seen from the table, the difference between J/and ‘ﬁla becomes drastic as xﬁ
approaches ¥, (for a = —1.1, y, = 1.18) whereas x/A/and J/w are close over the whole range
considered. As a further illustration we present in Figure 3 the two conditional log
likelihood functions corresponding to (J/, a) = (1.0, — 1.1), together with the unconditional
log likelihood function. Note that the functions are drawn as functions of log y rather than
J.

For an exact ancillary, the likelihood function, and in particular the maximum likelihood
estimate, would be unaffected by conditioning. This is almost true when conditioning on
numerically small or positive values of a and +v2r. The similarity of the two stems from
the equal shaped level curves in this region, cf. Figure 1. Table 1 and Figure 3 illustrate
that the effect on the likelihood by conditioning on a small negative value of a may be
very considerable.
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F16.3 The conditional log likelihood functions for log  given a, solid curve, and +~2r, broken
curve, together with the unconditional log likelihooAd function, dotted curve (natural logarithms).
The observation (u, v) = (1.38, 1.02) corresponds to y = 1.0, a = —1.1, +v2r = —2.58.

5. Replicated observations. As the choice of a is based on asymptotic theory, let
us consider what happens when n independent replicates of (u, v) are available. It is clear
that the two ancillaries are functions of (Z, 0) =(n"' = u;, n™" 2 v;) only. Further it is easily
seen that the Efron-Hinkley ancillary and the likelihood ratio statistic satisfy

@) anlE, ) = Vn ai(@, 7)
and
(5) ra(@,0) =nnr(0),

so that the level curves of  and the two ancillaries in Figure 1 are left unchanged when
(u, v) is replaced by (&, v). The level curve given by a, = @’ (a’ constant) is identical to the
level curve a, = vn @', and similarly for +v2r, .

The distributions of (\Zz, a,) and (\[A/, i\/2_r;),4the marginal distributions of the ancillaries,
and the conditional likelihoods are found from the distribution of (Zu;, Z(v, — 1)) by
transformation and by numerical integration exactly as before. The probability density
function of the latter distribution is the product of two independent gamma density
functions.

Now, as n tends to infinity, the probability of observing (iz, 0) far from T, tends to zero,
and so numerically small values of a:(&, 0) and (&, 0) will generally be observed, giving
almost equivalent conditioning results.

As an illustration take n = 5. For moderate numerical values of a, and +V2r, nice
results are obtained — for example for (\[A/, a,) = (1.0, — 1.1), corresponding to a; = —.49, the
two conditional log likelihoods cannot be distinguished from the unconditional log like-
lihood, on the scale of Figure 3. Even for (\[A/, a,) = (1.0, — 1.96) the three curves are almost
identical, though the log likelihood conditional on a is slightly more dispersed. However,
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TABLE 2 Maximum likelihood estimates compared with
the conditional maximum likelihood estimates for observa-

tions (@, 0) on the curve a, = —2.46, with n = 5; or, equiva-
lently, with (a, U) on the curve of Table 1, where a, = —1.1.
The quantities \P |a and \Iq, are defined as before.
" 1 3 5 8 1.0
Yla 11 40 97 7.9 39.8
- 099 30 51 83 1.0

the troubles start again as a, becomes smaller than —b =—2240ra; <—1. Taking again
a; = —1.1 or a, = —2.46, which, thinking of a, as a standard normal variate, is not that
extreme, we obtain Table 2 as an analogue of Table 1.

The same picture as that of Table 1 emerges. The difference between \[/ |a and 1[/ grows
for \p approaching y, = 1.18, while \p and \lz |- are close over the whole range considered.
Further it appears that conditioning on a small value of a, yields a more dispersed
likelihood function, especially for \,@large; this implies a loss of information.

6. Discussion. In the case of a single observation (u, v) from the model considered,
the signed log likelihood ratio statistic is very near to being exactly ancillary whereas the
Efron-Hinkley statistic a is not. The shape of the marginal probability density function of
a varies substantially in its dependence on {, especially for negative values of a indicating
loss of information in this region, cf. Figure 2. This is in accordance with the fact that for
small values of a (a < —1) the conditional likelihood function given a in many cases takes
its maximum far away from the unconditional maximum likelihood estimate and is,
moreover, considerably more dispersed than the unconditional likelihood function.

For sample sizes n > 1 similar problems are encountered with observations (&, U')
yielding small values of a, (a, < —+n ). The import of this non-ancillarity of a, disappears
quickly because the probability of such observations tends to zero as n increases and is
small already for n = 5.

In conclusion, it can be said that except for very small n, one is likely to obtain
observations in the region where the two different ancillaries yield equivalent conditional
inferences. However, drawing the inference conditional on a, when observing a(i, ) for
which a;(iZ, 0) < —1 one will generally be misled with respect to the value and precision of
the maximum likelihood estimate.
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