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ON THE ASYMPTOTIC PROBABILITY OF ERROR IN
NONPARAMETRIC DISCRIMINATION

By Luc DEVROYE!

McGill University

Let (X, Y), (X1, Y1), - -+, (X, Y.) be independent identically distributed
random vectors from R x {0, 1}, and let ¥ be the k-nearest neighbor estimate
of Y from X and the (X,, Y,)’s. We show that for all distributions of (X, Y),
the limit of L, = P(¥ # Y) exists and satisfies

limpso Ln < (1 + ax)R*, ar= ), kodd, k=5,

avk 1 B
F—3m\' T hs

where R* is the Bayes probability of error and a = 0.3399 - - - and B8 = 0.9749
. are universal constants. This bound is shown to be best possible in a
certain sense.

0. Introduction. Consider a sequence (X, Y), (Xi, Yi), - - -, (X,, Y,) of independent
R x {0, 1} valued random variables with a common distribution. Let u be the probability
measure of X and let

n(x) =P(Y=1|X=1x), x € R

In discrimination problems, one considers estimates Y of Y where ¥ denotes a {0, 1}-
valued Borel measurable function of X and (X, Y1), ---, (X,, Y,). For example, the k-
nearest neighbor estimate Y is defined as follows (Fix and Hodges, 1951): find the % nearest
neighbors of X among X}, - .-, X,,; break ties by comparing indices; take a majority vote
among the Y/’s that correspond to selected X,’s; set ¥ equal to the chosen integer; in case
of a voting tie, set ¥ equal to Y, where i is the smallest index among the selected X,’s.
Cover and Hart (1965) have shown that under some conditions on p and 7, if L, =
P( Y Y) is the probability of error (error rate), then

(1) lim supp—« L, < cz R*,
where

R* =infy.pa 0,1y P(g(X) #Y)

is the Bayes probability of error, and c; is a sequence of numbers such that c2r+1 = c2s,
cx | 1as k— o and c¢; = 2. Stone (1977) has shown that if £ varies with n in such a way
that 2/n — 0, k — «, then L, —» R* as n —  for all distributions of (X, Y). Implicit in the
same paper is the following result (see also Devroye, 1981a): for £ = 1, and for all
distributions of (X, Y), ‘

@) limnw Ln = E[29(X){1 — 7(X)}].

For other properties of the k-nearest neighbor estimate, see Wagner (1971), Fritz (1975),
Gyorfi (1980) and Devroye (1981b, c). In this paper we will prove various results related to
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(1) and (2). For example, we will show that for £ = 5, £ odd, and for all distributions of (X,
Y), (1) is valid with

k 1+ A
k — 325 JE—3

We will also see that this result is the best possible in the sense that

(3) a=1+a ), some a, 8> 0.

. k .
4) limg,co — SUPal gistributions of (X, ¥) with #* >0 (liMy e L, /R* — 1) = 1.
a

In other words, the best sequence ¢, in (1) must necessarily be of the form 1 + (a/ VE)-
{1+ 0(1)} as £ — . The exact values of the best possible constants are only known for a
couple of integers k&, e.g. ¢; = 2, ¢z = (7¥7 +17)/27 = 1.3155. They can be obtained by
numerical solution of high degree polynomial equations for & greater than 3. The numbers
¢ have a considerable impact on the asymptotical error rate for other estimates Y as well,
and a couple of examples will be given in Section 3.

1. Definitions and lemmas. We will define a class of estimates ¥ that are based on
a mayjority voting scheme. These estimates are completely determined by functions g, that
map R4V to the subsets of {1, - - -, n} (there are 2" elements in the range of g,), and we
require that all g,’s be Borel measurable. To save space, we will denote g.(x, X1, « -+, X,,)
by G.. In general, the cardinality N, of G, is a random variable. For the k-nearest neighbor
estimate, N, = k and G is the collection of those indices that correspond to the % nearest
neighbors of x among Xj, ---, X,,. We say that ¥ is an m.v. estimate when Y is determined
by taking a majority vote among the Y/’s, i € G.. In case of a voting tie, let Y = Y, where
i is the smallest index in G.. If N; = 0, then ¥ = 0. We will write Y. to make the
dependence upon x explicit whenever necessary.

Let us define further

ra(x) =n(x)P(Y=0|Xy, -+, X)) + (1 =)} P(Ye=1|X, -+, Xp),

te(x) = 9(x) Yozichs2 (lf) 7' (x) {1 — n(x)}*

+ {1 = n(x)} Yrje<izk (I;) 7'(x) {1 — n(x)}*, k=1, kodd,

and to(x) = n(x), tar(x) = top-1(x), all k= 1.
LEmma 1. If By, ---, B,, Bi, ---, B, are independent Bernoulli random variables

with probabilities p1, + -+, pr, q1, *++, Qn, then
SUPall subsets C of (0,1, . - - ,n} | P(Z:Ll Bl € C) - P(Z:;l B; € C)I = 7=I |Pz - q: | .

PrRoOOF. One can use the following embedding argument. Let Uj, - - -, U, be indepen-
dent uniform [0, 1] random variables, and let A; =I;y=p; and A] =Iy<4) Where I is the
indicator function. Then A;, ..., A, is distributed as B;, ---, B, and A}, ---, A, is
distributed as B1, - - -, B}. Thus, for any set C,

|[PE A EC) - PR AEC) = |P(TiAi# Y A))| = Y P(A, % A)
=3P —ql.
LEMMA 2. For any m.v. estimate,

[72(x) — tnv (x)] = % Yieq, [0(X.) —n(x)|  as., allx € R°
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Proor. N = N, is a Borel measurable function of x, X;, -+, X,,. If Y1, .-+, Y} are
independent Bernoulli random variables with probabilities all equal to 7(x), then, on
[N > 0],

tn(x) = n(x) P( ht Y{<§|N) + {1—n(x)}P< i Y£>g| N)
1 N

Given Xj, - --,X,, the random variables Y3, - - -, Y, are independent Bernoulli with means
7(X1), -+, n(X,). Also, on [N > 0],

N 1 N
ra(x) = n(x) P(Zie(},r Yi<§lX1, "',Xn) +§P<ZLEGX Yi=—2‘ | X1, "')Xn)

+ {1 —n(x)} P(Eiea,r Yi>g|X1, ---,X,,).

On [N = 0], we have r,(x) = to(x) = n(x). Lemma 2 now follows by a triple application
of Lemma 1.

LeEMMA 3. For any m.v. estimate,
| Ln — E{tn(X)}| = | E{ra(X)}— E {tn(X)}| = E{| 1 (X) — tn (X)) |}
S E (% Licoy [ (X)) — n(X)]}.
Proor. Note that L, = Er,(X), and apply Lemma 2.

LEMMA 4. Consider m.v. estimates with the following properties:

(5) 1=N.,=<kallx € R alln,
(6) supieg, || Xi — x|| = 0 in probability as n — , almost all x (),
(7 there exists a constant c such that for all [ 0, 1] valued Borel

measurable functions g on R®,

E{Jicc, 8(X:)} = cEg(X).
Then
®) L.— Ety(X) >0 asn— o,

This conclusion remains valid if (7) is replaced by the condition that 7 is continuous almost
everywhere (p). Furthermore, whenever (8) holds and there is a random variable N such
that N, - N = 1, almost all x(ux), we have

) Lo — Y2 P(N = )Et;(X) asn— .
Proor. By Lemma 3, (8) follows if we can show thatE {}icq, | n(X.) — n(X)|} — 0.
Let x be a point of continuity of 9, and let D, =sup;e¢, || X, — x| — 0 in probability. Then,
E{Y.co, (X)) = n(2)]} = k{supyy—x=r [1(y) — n(x)| + P(D: > 1)},

and this can be made arbitrarily small by choosing r small enough and then letting
n — oo, By the Lebesgue dominated convergence theorem, we may conclude that (8) holds
when 7 is continuous for almost all x(u). For general 5, we may argue as follows. For any
€ >0, find 7’ bounded and continuous such that E (| n(X) — n’(X)|) < €. Then

E{Yiecy |n(X) —n(X)|} = E{(Ticoy In(Xi) —n'(Xi)]}
(10)
+ E{Yiccy [n'(X)) — 7' (X)|} + E{Ziecy [1(X) —0"(X) ]}
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By (7), the sum of the second and the fourth term in (10) is not greater than (¢ + k)e. We
have already shown that the third term tends to 0 as n — o, and thus (8) is proved.
Finally, the absolute value of the difference between E {tn,(X)} and the right-hand-side

of (9) is not greater than
E{}j | P(Nx=j|X) — P(N =))|} = Ea(X).

For almost all x(u), we have a(x) — 0 as n — . Also, 0 < a(x) < 2, and therefore Ea(X)
— 0 as n — o, This concludes the proof of (9).

LEMMA 5. Let o be a class of Borel sets from R®, and let C.,, be the closed sphere of
R? centered at x with radius r. If there exists ¢ > 0 such that

A C Co,, cA(A) = A (Cy), allA€ «,

where \ is the Lebesgue measure, and if i is a probability measure on the Borel sets of R*
with density f, then there exists a set B such that u(B) = 1, and

wix +ra) _

NCET VAR

SUPae.w

= supAer | f(y) = f(x)| dy/A(x + rA)
x+rA

Scf | f(y) = f(x)]| dy/\(Cy) > 0asr—0, allxE B.
C,

xr

ProoF. Apply the Lebesgue density theorem. See also Wheeden and Zygmund (1977,
pages 108-109).

2. Main results. From Lemma 4 we see that the quantities Et,(X) are of great
importance for all m.v. estimates. In this section we study the asymptotic behavior as
k — oo, uniformly over all distributions of (X, Y). We will need three universal constants
related to the tail of the normal distribution. If @(¢) = [7 exp(—u?®/2) du/ V27 then we
define

a = max;-o 2tQ(t) = 0.3399424150. . .,
and let § be the value of ¢ for which this maximum is attained, namely

8 = 0.7517915241. . . .

Furthermore, we let
B = maxo 2t7Q (¢)/a = 0.9749687445. . . .

We define the sequence

ca (4L
=395 % —3)

The main result of this section is the following.

THEOREM 1. Let

Et.(X)
g+
Then, for k odd, k = 5, Ty, < ax. Also, Ty ~ a/VE as k — o.

Tk = supan distributions of (X, Y) with R* > 0

Proor. Note that forx € R?and k= 1,  odd,

(x) o [1-2n(x)] o k) _, _ k-t
) 1= {__—U(x) } Zl>k/2 (i)’fl () {1 —n(x)}*™
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If we can show that on A = {x | n(x) =%}, & (x)/n(x) — 1 =< ax, and that on the complement
of A, A, ty(x)/{1 — n(x)} — 1 < ax, then

Et(X) = E{tx(X) 1 (X)} + E{t:(X) Ls-(X)}
=1+ a)EMmX)L(X)} + E{(1 — (X)) L4 (X)}]
= (1 + a) E[min{n(X), 1 —n(X)}]
=(1+a)R*

Let b, (%, p) be the ith term of the binomial distribution with parameters % and p. It is
clear that we need only show that for %2 odd, 2 = 5,

1-2p

(11) Bj, = supo<p=12 Nisk2 bi(k, p) < ai.

By the relation between the binomial and the beta distribution,

’ 3
(12) sk bi(k, p) = f {x(1 - P9 L e L —"
0

(&)

More conveniently, with

this expression can be rewritten as

Vi3 L2\ D22
c},J’ (1 — ) dz,
2¢vk—3 k-3
2 -1
-1
ch=Fk! H(k—z-)'} 2% Vb — 3]

Now, using the Cesaro-Buchner inequalities (Buchner, 1951; Mitrinovic, 1970, page
183),

where

-1
1
(12k +1) <log — <ok, k=2,
4 k

e (Y e c1a 2 \_
"= Nk \k-1) &P 12k 6k —23/4) ~ *

Next, because log(1 — u) = — u — u?/{2(1 — u)}, u > 0, we have

E—1\" 1_1k> ot
)" k) =P 2k—2)
el <cf= .___..{ci_._.exp( )
k=6 T gz —g) Pin

1, 1 2
Y"T 12k 2k—2 6k-—23/4

we see that

Thus,

where
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Since for z =2g+vk — 3, we have
2p=1-29=01-4¢%/(1+2q) = {1-2%(k-3)}/(1+2q),

B, can be estimated from above as follows:

Vh-3 AN
B = suposg<1/2 (4g)(1 + 2q)ct f (1 TR 3) dz

2qvk-3
o

VE 2, 1
= Supo=g<i2 2(1 + 29) 7— (2qVk - 3) e‘22/2\/—2_— dz.
2¢Vk—3 kK

kil;3 e"{a + supuso 2u°Q (u)/ vk — 3}

=

_ e, o< Yk @ B
_k_ge»(a+a,8/ k_3)5k—31—yk<1+\/kT3)'

Now,
Br=a: forallodd k=5if (k—3)(1 —y) =k — 1%,
But this follows from the observation that

gl 1,1 1 1 4 1
"TE18TeT3 TR E—1 Ter—69-1

for all 2 > 1.
To prove the second half of Theorem 1, consider Y independent of X with

P(Y=1)=p=p(k)=%<l—%).

Clearly, R* = p, and

1-2 28 VE2*
P Zz>k/2 b.(k, p) ~ :/:kf
T

28 Vk—1 1 (1 22 )(k—l)/Zd 28 Q(S) a
~—_— _— —_— 2~ — =—,
VE-1J;  on k-1 vk vk

Here we have used Stirling’s formula to show that

k! {(k—;1->!}4 ~ VE2*/ 27,

Ty =

J {x(1 — x)}* V2 gx
(13) 0

The last approximation follows from the dominated convergence theorem after noting that
{1 = 2°/(k — 1)}*"2 < exp(—2?/2), all z < Vk — 1. Theorem 1 now follows from (13)
and Ty < ar ~ o/ Vk.

REMARK 1. The proof of the theorem was based on the observation that T = By; see
(11). The “worst” p(k), i.e., the value of p for which the supremum in (11) is reached, must
necessarily satisfy

1 8
plk) =5 [1 7 {1 +o(1)}]

as k — o. Notice in particular that p (k) — % as k& — .
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REMARK 2. The following bound is valid for all & = 1:

Et(X) = (1 + \/%) R*.

This bound is the best possible among all the bounds of the form (1 + 7(12) R* since it is

attainable for £ = 2. Another simple bound, valid for 2 = 3, is

Et.(X)<|1+— ) R*.
#) ( @)

3. Examples.

The k-nearest neighbor estimate. The k-nearest neighbor estimate, mentioned in the
introduction, is an m.v. estimate with N, = &, all x. Also, for all x € S = support(u), we
have D, = sup.ecq, | X. — x| = 0 as. as n — . (The notation S and D; will be used
throughout this section.) Thus, (5) and (6) are satisfied. Finally, Stone (1977) has shown
that (7) holds with ¢ = kc¢; where c; is a function of d only. We have without work the
following result.

THEOREM 2. For the k-nearest neighbor estimate, lim,_.. L, exists and is equal to
Et,(X). Thus,

limpso L, < (1 + ar)R*
and (4) is valid.

The sphere estimate. The sphere estimate is defined by a sequence of numbers 2 =
h(n) such that

c 1/d

where ¢ > 0 is a constant, and L = A(Cy,1) is the volume of the unit sphere of R9. We let
1€G. iff |X,—x|=h

Clearly, N, is binomial (n, #(Cy+)). Lemma 5 implies that nu(Cqs) — cf(x), almost all
x(p), when p has a density f. Therefore, for almost all x, N, — 7 P(cf(x)) where Zis the
Poisson law. The condition nA? — o would entail N, — o in probability, almost all x. This
is the classical condition required for the Bayes risk consistency of sphere estimates:
Devroye and Wagner (1980) and Spiegelman and Sacks (1980) have shown that lim 2 +
(nh?)"" = 0 implies lim L, = R* for all distributions of (X, Y). This result remains true for
the present A when p is atomic, but it is false for (14) when p has a density.

THEOREM 3. Whenever X has a density f € L*(\), the sphere estimate with sequence
h as in (14) satisfies

Jp—cf(X)
limy . Ly = E[ZFO t,(X)Mr(e——}

Proor. We will first show that (8) remains valid, modifying the proof of Lemma 4
very slightly. Since D, = h — 0 as n — o, (8) is valid when 7 is continuous and lim sup
E(N,) < o, almost all x(u). The latter condition is satisfied in view of E (N.) = nu(Cx»)
— ¢f(x), almost all x. For Borel measurable 7, we use an argument as in (10). By symmetry,
the sum of the second and fourth terms of (10) is

(15) 2E (Ticay [n(X) —n'(X)]}.

The third term of (10) is o(1). Thus, we should just make sure that (15) is arbitrarily small
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by choice of . Let n* be a [0, 1]-valued Borel measurable function on R¢. Then
(16)  E{(Yicayn*(X)} = E{nu(Cxa)n*(X)} = (nh°L)E {n(Cx)n *(X)/(h°L)}.

The first factor on the right hand side of (16) tends to c as n — . The second factor tends
to E{f(X)n*(X)} = [f*(x)n*(x) dx as h — 0, whenever f€ L*(\). To see this, notice that

p(Cen)/(LR?) [ = f(x),  almost all x(p),

= f*(x) = sup,=o p(Cy,)/(Lr?), allh>0, x€& R

Since f*fn* < f** € L'(\) whenever f € L*(\) (Wheeden and Zygmund, 1977, page 155),
the Lebesgue dominated convergence theorem can be applied. But for every € > 0, there
exists 8 >0 such that [f(x)n*(x) dx < § implies [f%(x)n*(x) dx < e. Thus, since continuous
functions are dense in L'(u), we can make (10) arbitrarily small, and (8) follows. The
remainder of the proof is similar to that of Lemma 4.

REMARK 3. For the kernel estimate, let us call L(c) = lim L,. We first note that

L(c)
SUPall distributions of (X, Y) with R* > 0 B oo, all fixed ¢ > 0.

Indeed, from Theorem 3 we note that L(c) = E {n(X)e™*’}. If we let Y be independent
of X and choose n = p > %, then

E((X)e " )/R* = B/} 2 f wasp 1

Thus, distribution-free upper bounds for L(c) of the type derived in Theorem 2 for the k-
nearest neighbor estimate do not exist.
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