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ON THE ALMOST EVERYWHERE CONVERGENCE OF
NONPARAMETRIC REGRESSION FUNCTION ESTIMATES

By Luc DEVROYE!

McGill University

Let (X, Y), (X1, Y1), -+, (X, Y.) be independent identically distributed
random vectors from R*XR, and let E(| Y|?) < o for some p = 1. We wish to
estimate the regression function m(x) = E(Y|X = x) by m.(x), a function of
xand (X, Y1), « -+, (X, Y.). For large classes of kernel estimates and nearest
neighbor estimates, sufficient conditions are given for E {| m.(x) — m(x) |7}
— 0 as n — oo, almost all x. No additional conditions are imposed on the
distribution of (X, Y). As a by-product, just assuming the boundedness of Y,
the almost sure convergence to 0 of E {| m.(X) — m(X) || Xi, Y1, « -+, Xn, Yn}
is established for the same estimates. Finally, the weak and strong Bayes risk
consistency of the corresponding nonparametric discrimination rules is proved
for all possible distributions of the data.

1. Introduction. Let (X, Y), (X1, Y1), :--, (X., Y,) be independent identically
distributed R “xR-valued random vectors with E(| Y |) < . The regression function m(x)
= E(Y|X = x) for x € R? is estimated by

(1.1) ma(x) = Yot Wailx)Y;

where (W,1(x), - -+, Wan(x)) is a probability vector of weights and each W,:(x) is a Borel
measurable function of x, X;, X, ---, X,.. The nearest neighbor estimate is defined as
follows. Rank the (X;, Y;),i=1, - - -, n, according to increasing values of | X; — x || (ties are
broken by comparing indices) and obtain a vector of indices (Ri, - - -, R.) where Xz, is the
ith nearest neighbor of x for all i. If (vn1, - - -, Uns) is a given probability vector of weights,
then set

(12) WnR,v(x) = Uni,

see Cover (1968) for a particular choice of v,’s, and Stone (1977) for more general weight
vectors. The kernel estimate can be obtained by putting

(1.3) Wou(x) = K((Xi — x)/h)/¥}-1 K(X; — %)/ h),

where h = h, is a positive number depending upon n only, and K is a given nonnegative
function on R¢; we will treat 0/0 in (1.3) as 0. See Watson (1964), Nadaraya (1964, 1965)
for the original definition, and Collomb (1976, 1977, 1981), Schuster and Yakowitz (1979),
Revesz (1979), Devroye and Wagner (1978b, 1980a, 1980b), Gyorfi (1981) and Spiegelman
and Sacks (1980) for recent developments.

Stone (1977) showed the following interesting nontrivial result. If the weight vector v,
= (Un1, -+, Unn) satisfies

(1) Un1 = +++ = Unn (all n)’

(1.4) (i) vi—= 0 as n— o«

(iii) there exists a sequence of numbers 2 = k&, such that
k/n—>0 and i1 Un—>0 as n— oo,
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NONPARAMETRIC REGRESSION ESTIMATION 1311

then the nearest neighbor estimate is universally consistent, that is,
(1.5) E(|mn(X) — m(X)|?) >0 asn— o whenever E(|Y|?) < o, all p=1

Devroye and Wagner (1980b) and independently, Spiegelman and Sacks (1980), showed
that the kernel estimate is also universally consistent provided that K and 4 satisfy:

(i) >0 and nh®—> o asn— o,

(1.6) (ii) there exist r1, 2, c1, c2, all positive numbers, such that
cil(uy=ry = K(u) = c2(juy=r, where I is the indicator function.

Gyorfi (1981) presents universal consistency results for other estimates related to (1.1) and
(1.3).
In this paper we find sufficient conditions on the W,,’s that guarantee

L7) E(|mu(x) —m(x)|?) >0 asn— for almost all x(u)
‘ whenever E(|Y|?) <o, allp = 1.

In (1.7) p is the probability measure for X. Notice that from (1.5) we can merely conclude
that lim inf E (| m,(x) — m(x) |?) = 0 as n — o for almost all x(p) by Fatou’s Lemma.

In what follows, we will use the symbol S, for the closed ball of radius r centered at x.
The crucial result from real analysis that is needed here is the following (see for instance
Wheeden and Zygmund, 1977, page 189):

LEmMa 1.1. Iff€ L'(p), that is [ | f(x) | p (dx) < o, then

J' f(Mu (dy)/J' p (dy) = f(x) as r—0
s, s,

for almost all x(yu).

REMARK 1.1. Wheeden and Zygmund prove this result for balls defined by the L.
norm on R Their result remains valid however for the L, norm. To see this, it suffices to
check that Besicovitch’s covering Lemma (ibid, pages 185-186) remains valid for the L.
norm.

The main results are stated in Section 2. From the pointwise consistency (1.7) and the
dominated convergence theorem one can prove (Section 3) globally consistent behavior
that comes close to (1.5). The strong pointwise consistency of both estimates is treated in
Section 4 for the special case of bounded Y. In Section 5 we present analogous consistency
results for the nonparametric discrimination problem.

2. Pointwise consistency.

THEOREM 2.1. The nearest neighbor estimate satisfies (1.7) when there exists a
sequence of integers k = k, such that

(i) B/n—>0 and k— x asn— o,
(2.1) (ii) sup, k& max; v, < o,
(i) v =0 when iI>k.
The kernel estimate satisfies (1.7) when
() h—>0 and nh®—> o asn— x,

(2.2) (i1) there exist positive numbers r, ¢, ¢; such that
CII(||u||5r) =K(u) = CzI("u"Sr).
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REMARK 2.1. Throughout the paper, all norms are the same: they are either all L., or
all L.

REMARK 2.2. The k-nearest neighbor estimate (defined by v,; = 1/k, 1 <i <k, and v,;
=0, 1 > k) satisfies (2.1) when k/n — 0 and k — » as n — o,
The elementary result needed to prove Theorem 2.1 is:
LEMMA 2.1. If f € LP(p) for fixed p = 1 and (2.1), (2.2) hold, then
E(¥i Walx) [ f(X:) — f®) ) >0 as n—> o

for almost all x(u) for both the nearest neighbor estimate and the kernel estimate.

Proor oF LEMMA 2.1. Assume that f = 0. Since for @, b =0, p = 1, |[a — b|?
= |a® — b?|, we see that for almost all x(u),

(2.3) J’ [f(y) — f(x)|7p (dy)/f p(dy)—>0 as r—0;
S, S,

see for example, Wheeden and Zygmund (1977, page 191, example 20). For general £, split
f into its positive and negative parts, f* + f, note that | f* + f~ |7 =277 (f*™ + | f~|?),
and apply (2.3) twice. Thus, (2.3) is valid for all f € L”(u). Let A be the set of all x’s for
which (2.3) is true. Define further the maximal function corresponding to | f|? by

(2.4) f*(x) = supr=o f [ () |71 (dy) / J u (dy).
S, S,

Fix x € A, and for arbitrary € > 0 find § > 0 such that the expression in (2.3) is smaller
than ¢, all r < 8. Let C be the closed ball centered at x with radius || Xz,,, — x ||, and let B
be the corresponding open ball. For the nearest neighbor estimate, there exist positive
constants c¢; such that

E {3 Walx) | f(X.) — f(x) |7}
=cE{(R7YE | fXR) — f(0) |7}
= clE{maX<ﬂ*‘(B)J [ F(y) — f(x) |7 (dy),u"‘(C)J’ [f(y) = fx) " (dy))}
(2.5) B C
= ClE{Sup0<rs||xRM—x|| w (S, J [f(y) = f(x)|7p (dy)}
S,

= cie+ 2PN {f*(x) + | f(x) |P}P(|| Xr,,, — x| = ).

If x € S = support (p), then k/n — 0 implies that P(|| Xz,,, — x|| = 8) < c: exp(—csn)
(Devroye, 1978a). Thus, the first part of Lemma 2.1 follows since u(S) = 1 (see Cover and
Hart, 1967), u(A) = 1 (which we established) and u({x:f*(x) = »}) = 0. The last fact
follows from the basic inequality for maximal functions (Wheeden and Zygmund, 1977,
page 188): namely, there exists a constant a(d) > 0 only depending upon d such that for
all 5> 0,

(2.6) p({x: f*(x) > b}) < {a(d)/ b} J’ [ F(3)|"n (dy).

Consider now the kernel estimate, and let r, ¢, c; be the constants defined in (2.2). We
will prove the following inequality:

27 E{¥a Wu@)|fX) - )7} = 7(62/01)J’ [£(y) — fx)["p (dy)/J p (dy).
Srn Sra
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Lemma 2.1 then follows from (2.7) and (2.3). For n < 7, (2.7) is trivially true. We fix n > 7,
and define U = K(X, — x)/h), u = E(U), V=Y K((X; — x)/h), Z,-1 = min(1, cz/V).
Since W,,(x) = U/(U + V) < Z,—,, we can estimate the left hand side of (2.7) from above
by

(2.8) nE{| f(Xn) — fx) IPI(||Xn—x||5rh}E(Zn—-l)-

Now, E(Z,-;) = P(V < ¢) + c3/c for arbitrary ¢ > 0. Take ¢ = (n — 1)u/2, and use
Chebyshev’s inequality:

P(V<c¢)=P{V—-E(V)<—-E(V)/2} =4 Var(V)/E*V)
<4EU?/{(n — Du?} < 4cs/ {(n — 1)u}.
Hence, (2.8) is not greater than

6{n/(n — 1)}(02/U)J’ | f(y) — f(x)|"u (dy)
Srn

from which (2.7) follows easily when n > 7.

REMARK 2.3. For the kernel estimate with ¢; = ¢z in (2.2), a short proof of Lemma 2.1
is possible by applying Lemma 1.1 and Lemma 1 of Spiegelman and Sacks (1980).

LEMMA 2.2. Let h = h, be a sequence of positive numbers with nh® — » as n — .
For all ¢ > 0, we have
nu(Sep) > © as n— oo, almost all x(p).
ProOF oF LEMMA 2.2. We may acsume that lim, 2~ = 0. Decompose the Lebesgue
measure on R%(\) into its u-absolutely continuous part (A;) and its p-singular part (Az). By

a well-known theorem on the relative differentiation of measures (see for instance Section
(10.50) of Wheeden and Zygmund, 1977),

d\
A(Ser) /p(Ser) — TF:— (x), almostall x(p),
where d\;/du is the Radon-Nikodym derivative of A; with respect to p. Thus, there exists
a nonnegative function g with g(x) < o, almost all x(u), such that
he/u(Sa) — g(x), almost all  x(p).

This concludes the proof of Lemma 2.2.

ProOF OF THEOREM 2.1. By Minkowski’s inequality, for any p = 1,
E{| Y Wai(x) Y — m(x) |} < E{| ¥ims Wax)(Y: — m(X,)) [P }7P
+ E{| Tt Wai(x) | m(X:) — m(x) | P37,

With the kernel estimate, the possibility exists that W,(x) = 0 for all i; thus, in that
case, a third term should be added on the right hand side of (2.9), namely |m(x) | {P
(Y W,i(x) = 0)}2. Clearly, this term cannot cause any trouble because m is finite for
almost all x(u), and because by Lemma 2.2,

P{Y W.(x) =0} = {1 — u(S;x)}" < exp{—np(Ss)} = 0

(2.9)

for almost all x(u).

The last term in (2.9) tends to 0 for almost all x(u) and for both estimates considered
here by Lemma 2.1. We will show that the first term on the right hand side of (2.9) tends
to 0 for almost all x(u) when p = 2. The case 1 < p < 2 is then obtained through a standard
truncation argument.
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Let A(x) = E{| Y — m(X)|?|X = x}. By successive applications of inequalities of
Marcinkiewicz and Zygmund (1937) (see also Petrov, 1975, pages 59-60) and Jensen, we
have for some constant a(p) > 0 depending only upon p,

E {| ¥ Wai(2)(Y; — m(X3)) |7}
< aE{| Tk Waix)(Y: — m(X:))* P}
(2.10) < aE[{sup; Wyi(x)}??| Y1 Woa(x)(Y: — m(X:))?| 7%
< aE[{sup: W,i(x)} " Tiu1 Wai(x) | Y — m(X;) |?]
= aE[{sup; W ()} " Ty Wou(x)h(X,)].

For the nearest neighbor estimate, sup; W,;(x) = sup; v,; — 0 as n — . Since A € L'(y),
E (3, W.i(x)h(X;)} remains bounded for almost all x(u) by Lemma 2.1. Thus, (2.10)
tends to 0 for almost all x(u).

For the kernel estimate, define U, u, V and Z, as in the proof of Lemma 2.1, and
estimate (2.10) from above by

@11) anE[{sup;Wyi(x)} "> Won(x)h(X,)] < anP{V < (n — 1)u/2)
2.11
« E{Ix,-x)=rmh(X,)} + an{2c:/(n — 1)u} E{ W (x)R(X,.)}.

By (2.7) and u = c;u(S;.) we know that the last term of (2.11) does not exceed

2
(2.12) 14(c2/c1)*{a/(n — 1)} J' h(y)u (dy)/(j ® (dy)>
Srh Srn

which is o(1) for almost all x(u) by Lemma 2.2. Below, we show that P{V < (n — 1)u/2}
=< exp{—c4nu(S;»)} for some ¢4 > 0. Thus, the second term of (2.11) is not greater than

(2.13) an f h(y)u (dy) exp{—csnu(Sy»)}
Srn

which tends to 0 for almost all x(p) in view of Lemmas 1.1 and 2.2. Thus, Theorem 2.1 is

proved for p = 2.
The exponential inequality needed to obtain (2.13) follows from Bernstein’s inequality
for sums of bounded random variables (see Bennett, 1962 or Hoeffding, 1963):

P{V<(n—-1u/2} =P{V—-E(V)<-—(n-1)u/2}
(2.14) < exp{—(n — 1)(1/2)%/(2 Var(U) + cau/2)}
=< exp{—(n — 1)u/10c;}
=< exp{—csnpu(S:)}

where ¢4 = ¢:/20¢2, n = 2.
For p < 2, define for integer ¢t >0, Y| = Yilv=y, Y/ = Y: = Y, m'(x) = E(Y1| X, =
x), m”(x) = E(YY | X; = x). Thus,
E{|Y Wai(x)(Y: — m(Xy)) |?}
(2.15) .
= 2PE{| Y Wa(x) (Y = m' (X)) |7} + E (T Wai(x) | Y? — m” (X)) |7}

The last term of (2.15) is not greater than
2PE (Y1 Wai(x) | Y|P} = 2PE (Y1 Wa(x)g:/(X:)}

where g:(x) = E(| Y] |?| X1 = x). Let A, be the set of all x for which the first term of (2.15)
tends to 0 and E {3=; W,i(x)g:(X;)} tends to g:(x) as n — x. We have already shown that
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for each fixed ¢, u(A;) = 1. Let B be the set of all x with &:(x) — 0 as t > . Clearly, u(B)
=1 because E {g,(X)} — 0 as t - « and g, is monotone in ¢ For all xin B N (N Ae), we
claim that (2.15) tends to 0: first pick ¢ large enough so that g,(x) is small, and then let n
grow large. Since this set has y-measure 1, the theorem is proved.

3. Global consistency.

THEOREM 3.1. Let E(| Y |”log*|Y|) < « for some p = 1. If the estimate m, satisfies
the conditions of Theorem 2.1, we have

(3.1) E{{m,X) —mX)|?} >0 as n-»x.

REMARK 3.1. The condition put on Y in Theorem 3.1 is stricter than the condition
E(|Y|?) < o needed for (1.5) in the papers of Stone (1977) and Devroye and Wagner
(1980b). The conditions on the sequences of weights are not strictly nested for the nearest
neighbor estimate: the monotonicity condition (1.4)(i) is absent in (2.1); but (2.1)(iii) is
stricter than (1.4)(iii).

REMARK 3.2. E(|Y|? log"|Y]|) < o implies E{|m(X)|? log*|m(X)|} < « and
E{]Y — m(X)|? log"|Y - m(X)|} < . We say that f € L log* L(u) when
[1£(3) [log* | £(3) | (dy) < .

Theorem 3.1 is an immediate consequence of the following property of maximal
functions:

LEmMA 3.1. If f € Llog*L(p), then f* € L(u) where

3.2) f*(x) = supro f [f(3) | p (dy) / f © (dy).
S, S,

ProoF oF LEMMA 3.1. The proof is a slight variation of an argument of Wheeden and
Zygmund (1977, pages 155-156). For ¢t > 0, define g(x) = | f(x) | I fx)|=/2 and let g* be the
maximal function corresponding to g. Clearly, | f(x) | = g(x) + ¢/2 and f*(x) < g*(x) +
t/2. Thus, {f*(x) > t} implies {g*(x) > ¢/2}. So,

f u (dx) < J i (dx) < (2a/t) f | &()| p (dx)
*(x)>t g (x)>t/2
= (2a/t) f [ f(x) | p (dx)
| f(x)|=¢/2

for some a > 0 only depending upon d (see (2.6)). Let & = 2a [ | f(x) | u (dx). Then

ff*(x)# (dx) = J’ u(x:f*(x)'> t) dt

= j (2a/t) | F(x) | (dx) dit + to
to | f(x)|=t/2

2| f(x)|
=2a J | flx)| J t' dtu (dx) + &
2|f(x)|=to to
<% J’ | £(x) log* (2] F(x) |/to)p (dx) + to,

thus concluding the proof of Lemma 3.1.
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Proor oF THEOREM 3.1. The proof merely consists of exhibiting a function ¢: R¢ —
R with the properties ¢ € L'(u) and E {| ma(x) — m(x) |?} < ¢(x). Theorem 2.1 and the
dominated convergence theorem are then sufficient for (3.1).

Since m € L?(u), we need only show that E {| m,(x) |} < ¢(x) € L'(p). Let f(x) =
E(|Y|?| X = x), and let f* be the maximal function corresponding to f. We show that
E{|mn(x) |?} = cf*(x) for some constant ¢, and apply Lemma 3.1.

For both estimates considered here,

(3.3) E{|mn(x) |7} = E{¥i1 Walx) | Y. |7} = E{31 Walx) f(X)}.

Expression (3.3) is smaller than 7(cz/ci)f*(x) for the kernel estimate (see (2.7))
and is bounded from above by c3f*(x) for the nearest neighbor estimate where c; =
sup,(k max, v,,) (see (2.5)).

4. Strong consistency. In this section we will assume that

(4.1) |Y|<y<oo.

THEOREM 4.1. Assume that (4.1) holds and that k = k, is a sequence of integers such
that

(i) k/n—>0 and k—> o as n— »,
(4.2) (i1) sup, k2 max;v,; < ®,
(lll) Zl>k Up — 0 as n— o«

Then, for the nearest neighbor estimate, E {| m.(x) — m(x) |} — 0 as n —  for almost all
x(p) and E {|m,(X) — m(X) |} = 0 as n — . If in addition k/log n — © as n — «, then

(4.3) |ma(x) —m(x)| >0 as.asn— oo, almost all x(u),
and
(4.4) E{|m.X) —mX)|| X1, Y1, -++, X0, Yn} > 0 as.asn— oo,

NoTE. Gyorfi (1981 and private communication) showed Theorem 4.1 independently
of myself for the case v, = 1/kn, i <k, U, = 0,1 > k.

ProOF OF THEOREM 4.1. When f € L*(p), the replacement of (2.1)(iii) by (4.2)(iii)
does not upset the conclusion of Lemma 2.1. In the proof of Theorem 2.1, take p = 2, and
estimate (2.10) from above by c sup; v,; for some constant ¢ < «. The weak convergence
part of Theorem 4.1 now follows without work from (4.2) and the dominated convergence
theorem.

Assertion (4.4) follows from (4.3) by a standard application of Fubini’s theorem and the
dominated convergence theorem (see, e.g., Glick, 1974). To prove (4.3), we have

4.5) | mu(x) — m(x) | = | T Wu(x)(Y: — m(X.)) | + Yis Wailx) |m(X:) — m(x) |,
and
4.6) P{|YL1 Wu(x)(Y,— m(X))) | > €| Xy, -+, Xn} = c1 exp{—cz/sup, W.(x)} as.

for some c;, cz > 0 depending upon € and y only (see, e.g., Devroye, 1978a, Lemma 1).
Thus, for all x, the first term on the right side of (4.5) tends to 0 a.s. as n — o when
(log n)sup, v, — 0; this follows from (4.6) and the Borel-Cantelli lemma. Since % sup, Un.
=< ¢3 < % and

(4.7) 1 Wa(x) |m(X,) — m(x) | < csU(x) + o(1)



NONPARAMETRIC REGRESSION ESTIMATION 1317

where U(x) = k7' Y&, |m(Xg,) — m(x) |, and since E {U(x)} — 0 as n — o for almost all
x(u) by Lemma 2.1, we must only check whether U(x) — E{U(x)} — 0 a.s. as n — .
Again by Bernstein’s inequality, we have a.s.,

(4.8) P{|U(x) — EU(x) | > €| Xr,, } < c4 exp(—csk)
for some ¢4, ¢5 > 0 depending upon € and y only. When k/log n — oo, the right hand side

of (4.8) is summable with respect to n, and U(x) — E {U(x)} — 0 a.s. because € is arbitrary.

THEOREM 4.2. Assume that (4.1) and (2.2) are satisfied and that nh®/log n — © as
n — o, Then conclusions (4.3) and (4.4) hold for the kernel estimate.

LEMMA 4.1. If N is a binomial random variable with parameters n and p, then

Yr-1 E{exp(—sN)} < o, all s> 0,

whenever np/log n — .

ProoF oF LEMMA 4.1. We show that E {exp(—sN)} = 2 exp(—s'np) where s’ =
min(s/2, %o). Clearly,

E {exp(—sN)} =< exp(—snp/2) + P(N/n — p < —p/2)
< exp(—s'np) + exp{—n(p/2)*/(2p + p/2)} < 2 exp(—s’'np)

by Bernstein’s inequality (see (2.14)).

ProoF oF THEOREM 4.2. We use (4.5) and estimate the left hand side of (4.7) from
above by

U(x) = (c2/c1) Zf=1 |m(X,) - m(x) |IA,/Zf[=1 IA,

where 4, is the event (|| X; — x || = rh). By Theorem 2.1, E(U(x)) — 0 as n — oo for almost
all x(p). Also N = I4 is binomial with parameters n and p(x) where for almost all x(p),
np(x)/log n — ® as n — oo; this follows since nk?/log n — » and A%/p(x) — g(x), almost
all x(u), for some g € L'(n), g = 0 by Lemma 2.2.

For any € > 0, we have as.,

P{|U(x) — EU(x)| > €| A1, -+, An} = c3 exp(—csN)
where c3, ¢4 > 0 depend upon ¢, v, ¢; and c; only. Thus,
P{|U(x) — EU(x) | > €} < csE {exp(—csN)}

which is summable with respect to n for almost all x(p) by Lemma 4.1. We can also
estimate (4.6) from above by

cs exp(—cgN)
because sup, W,.(x) < cz/c1N. Another application of Lemma 4.1 and the Borel-Cantelli
lemma shows that for almost all x(u), | m.(x) — m(x) | = 0 a.s. as n — o,
5. Discrimination. In discrimination, Y takes valuesin {1, - - -, M} and is estimated
from X and (X, Y1), - -+, (X, Y») by g.(X). This results in a probability of error
L,=P{g.X)#Y|X1,Ys, -+, Xs, Yo} = L* =infop,q,...sy P{g(X) # Y},
where L* is the Bayes probability of error. Consider now functions g, that satisfy

(5.1) Yie1 Wo () (v =g, () = MaXisr=mr Y=t Wii() L (v,=p).

For particular choices of the weights, we thus obtain the nearest neighbor discrimination



1318 LUC DEVROYE

rule (Cover and Hart, 1967), the k-nearest neighbor rule (Fix and Hodges, 1951) and the
potential function method or kernel method. For references, see Stone (1977), Devroye
(1978b) or Collomb (1981). Since (5.1) implies

(52) 0sL,-L*s2Y5 E{|P(Y=j|X) — 3% WulX) v=j| X1, Y1, « -, Xn, Yu)

(see Stone, 1977, page 617 or Devroye, 1978b, page 3), a straightforward application of
Theorems 4.1 and 4.2 gives:

THEOREM 5.1.

(i) In (5.1) let the W,/’s be nearest neighbor weights (1.2). If (4.2) holds, then L, — L*
in p('obabiiity as n— . If in addition k/logn — « as n — o, then L, — L* a.s. as
n— o,

(i) In (5.1) let the W,’s be kernel weights (1.3). If (2.2) holds, then L, — L* in
probability as n — o, If in addition nh®/log n — « asn — «, then L, — L* as. as

n— oo,

REMARK 5.1. In Theorem 5.1 absolutely no conditions are imposed on the distribution
of (X, 7).

REMARK 5.2. Gyorfi (1978) has shown that (5.2) remains valid even when the coeffi-
cient “2” is deleted.
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