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INVARIANT TESTS ON COVARIANCE MATRICES'

By JoHN I. MARDEN

University of Illinois at Urbana-Champaign and Rutgers University

Minimal complete classes of invariant tests are presented for modifica-
tions of the problem of testing the independence of Y and X, where (Y, X) =

(Y, X,, -+, X,) is a multivariate normal random vector. One modification
involves having extra independent observations on Y. Others involve extra
variates Z = (Z,, ---, Z,) such that (Y, X, Z) is multivariate normal. Among

other results, locally most powerful invariant tests and asymptotically most
powerful invariant tests are found; it is shown that for some problems the
likelihood ratio test is admissible among invariant tests only for levels less
than a specified one; and it is shown that for the problem of testing the
independence of Y and X when it is known that Y and Z are independent, the
test based on the sample multiple correlation coefficient of Y and (X, Z) is
inadmissible.

1. Introduction. Suppose that the random vector (Y, Xi, ---, X,) = (Y, X) has a
(1 + p)-dimensional normal distribution. If n = p + 1 observations are taken, and one
desires to test the independence of Y and X, it is well known (cf. Lehmann (1959), page
320) that the test based on the sample multiple correlation coefficient is the uniformly
most powerful (UMP) invariant test. Here, and throughout this paper, invariance is
relative to the largest linear group which leaves the problem invariant. In this paper we
consider several modifications of this testing problem, involving cases where either g
additional observations have been taken on Y, or where a third set of variates Z = (Z,,
.+, Z,) is present such that (Y, X, Z) has a (1 + p + q)-dimensional normal distribution.
In contrast to the problem above, some of these problems have no UMP invariant test, so
that it is of interest to characterize admissibility among invariant tests. Section 2 contains
a minimal complete class theorem which we apply to demonstrate admissibility or
inadmissibility of specific tests in the problems now described.

Eaton and Kariya (1975) consider the problem when there are extra observations on Y.
These extra data have no effect on the likelihood ratio test (LRT), but they do cause there
to be no UMP invariant test. Using the theorem of Section 2 we exhibit the locally most
powerful (LMP) invariant test found by Eaton and Kariya (1975), find the asymptotically
most powerful (AMP) invariant test, and show that the level a« LRT is inadmissible for
a* < a < 1, but admissible among invariant tests for 0 < a < oa*, where a* depends on
(n, p). We deal briefly with the case in which the variance of Y is known, corresponding
roughly to having g = .

Next we look at a set of problems based on n + g observations of (Y, X, Z). Das Gupta
(1977), Giri (1977), Banerjee and Giri (1977), Sinha and Giri (1976) and R. A. Wijsman
(personal communication) considered several problems based on such data. Let the
covariance matrix A be given as

Ay D Ay
(11) A= Axy Axx sz 3
Azy AZI AZZ
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where A,, is a scalar, A, is p X p, A.. is ¢ X q. The problems treated are
P, Ho: A,y =0 versus Hy: A, #0;
1, Ho:Ay.=Ay— AAZA=0 versus Hy: A, .#0;
(1.2) Ps, Hy:Ay=0, Ap,=0 versus Hs:A,,#0, A,.=0;
P, Hy:Ay=0, Ap=0, Aro=0
versus Hj: Ay #0, A).=0, A..=0.

Das Gupta’s (1977) problems (iv), (iii) and (ii) are P;, P} and P, respectively, and problem
(C) in Banerjee and Giri (1977) is Pi. The UMP invariant tests for P, and P; are based on
the sample multiple correlation coefficient of X and Y, and the UMP invariant test for P}
is based on the sample conditional correlation coefficient of X and Y, conditioning on Z.
There is no UMP invariant test for P,, but we can use the results of Section 2 to find a
minimal complete class of invariant tests. We find the LMP and AMP invariant tests, and
show that the LRT, which is based on the conditional correlation coefficient, is admissible
among invariant tests if and only if 0 < a < a*. Also, the test based on the sample multiple
correlation coefficient of Y and (X, Z) is inadmissible (Remark 3.1).

The ordered set of problems {P1, P, P;} ({P1, P2, P;}) forms a hierarchy in the sense
that each problem tests A., = 0 (A.,.. = 0) but the problems have increasing amounts of
information on (A,., A,.). We look at the potential loss in power resulting from using one
problem when another with more information actually obtains.

2. Extra observations on Y. The data for this section consists of n = p + 1
independent observations on (Y, X), plus another ¢ independent observations on Y alone.
We assume (Y, X) has mean zero and nonsingular covariance matrix, and reduce the data
by sufficiency to S, the sum of squares and cross products matrix of the complete
observations, and V,,, the sum of squares of the extra observations. Thus

S~Woa(n,Z) and  V, ~a,x

where

_ {0 x|,
z= [Exy Exx] ’

i.e., S is a central Wishart variable on n degrees of freedom which is independent of the
scaled chi-squared variable V,, on ¢ degrees of freedom, a,, is a scalar, 2., is p X p, and S
is partitioned as . We test

(2.1) Hy:2,,=0 versus Hy:3,,#0

based on (S, V,,). This problem is invariant under multiplication of the Y’s by a nonzero
scalar and the X’s by a p X p nonsingular matrix. Eaton and Kariya (1975) show that the
invariance-reduced problem tests

(2.2) Hy:A=0 versus Hy:A>0
based on (L, M), where
A=0,3,.31,2,, L=S8;'S,.S%%.,S,, and M=S,V,,.
The statistic (L, M) has the distribution given by
2
Xo(AS,y) _
(2.3) L|S,, ~ %‘: M|S,, ~ o)’ySJ’le?Ir S,y ~ ayyX%l'
n—p

Here, x5(As,,) is a noncentral chi-squared variable with noncentrality parameter AS,,
which is independent of the central chi-squared variable x2_,. The variables L and M are
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conditionally independent given S,,, and are unconditionally independent under H,. The
distribution of M does not depend on A, hence M is an ancillary statistic.

If there is no extra information, ie., ¢ = 0, then the UMP invariant level « test for
problem (2.1) rejects H, when

(2.4) L>{p/(n—p)}Fpnpa

where F, ;. is the upper a point of the F,; distribution. When g > 0, there is no UMP
invariant test. However, Eaton and Kariya (1975) have shown that for each fixed value of
M, this test is the UMP conditional level « test for problem (2.2) and is also the LRT for
problem (2.1). Two distinct tests which are admissible among invariant tests are the level
a locally most powerful (LMP) test as A — 0, found by Eaton and Kariya (1975), which
rejects H, when

(2.5) {(n/p—1DL-13A+L)'QA+M)"'>d,
and the asymptotically most powerful (AMP) test as A — o, which rejects H, when

dif( L ’“>
1+ L &

k
k!
where d, and g, are chosen to provide the desired level, and

dr=(@u()r/ Ok, @Dw=ZZ+1)---(Z+k—-1), a=n/2, b=p/2, c=(m+q)/2.

(2.6) RXL,M)= 1+ M) Yio

Thus there are potentially many admissible tests for problem (2.2).
Define the functions Ra(4 m), RX(4 m) and d(¢, m) as follows:

(2.7) Ru(4 m) = fal4, m)/fo(4 m),
where fp(4 m) is the density of (4 m) when A obtains, RX(£ m) = (1 + A)°Ra(4 m), and

1 o
d(4m) = d(4m; 7° ') =f [{RX(4 m) — 1}/Alr°(dD) +f RE (4, m)m'(dD),
0 1

where 7° and 7' are finite measures on [0, 1] and [1, ] respectively. The definition of
(R& — 1)/A is continuously extended to A = 0 by setting

(RX —1)/A a0 =%R3‘ lamo=c + c{(a/b—1)¢—1}/(1 + £)(1 + m)

and the definition of R# is continuously extended to A = o by defining R ¥ to be as in (2.6).
Unless otherwise specified, an integral over an interval is assumed to include the endpoints
of the interval. Define @ to be the class of all tests ¢ of the form

(2.8) ¢ = Laym>y a.e. [Lebesgue]

for some 7°, 7' and | ¢| < , where for any set C, I represents the indicator function of
that set. We now state the first theorem, which is proved in Section 4.

THEOREM 2.1. The class of tests ® is minimal complete for problem (2.2).

Lemma 4.2 shows that 0 < d(4 m) < « for all (£ m). Note that the function d is linear
in Rs. Any monotonicity or convexity property in (4 m) which holds for R, will thus also
hold for d. By investigating such properties, useful necessary conditions for a test to be
admissible can be found. Following Eaton and Kariya (1975), from (2.7),

A —c dk A / k A -k
_ =(1+ -0~ : * :
(2.9) Ra(ém) ( l+m) 2’“’k!<1+m 1+/) <1 1+m>
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It is convenient to use the homeomorphic transformation
(2.10) (4 m) < (v, w),

where w = (1 + £)”'(1 + m)™", and v = 4w. The range of (v, w) is @ = {(v, w) |v >0, w >
0, v + w < 1}. The function R, can be written in terms of (v, w) as

(2.11) Ralv,w) = {1+ Alw + v)} ¢ ZLO% Av)* (1 + A(v + w)} 7%,

and we define R % (v, w) and d(v, w) in the obvious way.

In the proof of Theorem 2.2, it is shown that R,, A > 0, is strictly increasing in v for
fixed w, and is strictly decreasing in v along line segments w(v) = (n/p — 1)v + y contained
in £. Hence in order for a set {(v, w) |d(v, w) < t} to be the acceptance region for an
admissible test, it must be contained in the class of sets A consisting of all sets A C
satisfying the following two conditions:

(i) For all v < vy, (vo, wo) € A and (v, wo) € 2 implies that (v, wo) € A.

(i1) For all v > vy, y real, (vy, (n/p — 1)vy + y) € A and (v, (n/p — v + y) € © implies

that (v, (n/p — v + y) € A.
Now we present Theorem 2.2.

THEOREM 2.2. A necessary condition for a test ¢ defined on  to be admissible for
problem (2.2) is that ¢ = 1 — I, a.e. [u] for some A € A, where yu is Lebesgue measure on
Q.

Proor. In view of the foregoing discussion, it suffices to prove the monotonicity
properties of Ra(v, w). Set w(v) = Bv + vy for fixed y. Now (3/dv)Rs(v, w(v)) has the same
sign as

1 d
(2.12) {1-(B+1Z} S0 d;' ZF—c(B+1) 2:=0k—’:’z’*,
where
(2.13) Z=Av/{1 + Av + Aw(v)}.

If 8 = 0, then the coefficient of Z* for each % is positive since a > b. If 8 = a/b — 1, then
the coefficient of Z' is zero, and of Z* for £ = 1 is negative. Thus R, is strictly increasing
in v for fixed w, and strictly decreasing along lines w = (n/p — 1)v + v, noting that a/b =
n/p.

Theorem 2.2 shows that the boundary between the rejection region and acceptance
region in & of any admissible test, when considered as a function w(v), must have slope
between 0 and n/p — 1 for all v at which the slope is defined. We now turn our attention
to specific tests for problem (2.1).

The LMP test (2.5) can be seen to be in @ by taking #° = 8, (point mass at 0), 7' = 0,
and ¢t = ¢(d, + 1) in (2.8). In terms of (V, W), this test rejects Hy when

(2.14) (n/p— 1)V — W>d,.

The slope of the boundary of the acceptance region in £ is exactly the largest allowed
under condition (ii).
The boundary of the acceptance region of the LRT (2.4) in  is

—1
(215) W= V( P Fp,n—p,u) .
n-—p

If a > a*, where a* = «*(p, n — p) is given by

(216) Fp,n~p,a‘ = 1)



1262 JOHN I. MARDEN

then the slope in (2.15) is greater than p/(n — p). Thus Theorem 2.2 shows the test
inadmissible among invariant tests, hence among all tests. Some representative values of
a* can be found in Table 3.1 of Marden and Perlman (1980). Comparing (2.14) to (2.15),
it can be seen that the level a * LRT is identical to the level a* LMP, i.e., d,- = 0in (2.14).
Thus the LRT is admissible. To show the LRT is admissible for problem (2.2) when
a < a*, we define 73, 75 and ¢; for § € (0, 1) by

‘ng = (1 + A)_CA_SI(O’U dA,
'}7% =1+ A)_CA_I_BI[L@) dA,

1 00
ts = I {(1 4+ A)° = 1}A7'7%dA) + f /i
[ 1

It can be shown that d(£ m; 73, 7}) > t; is equivalent to

L @ =8 ¢\
(2.17) O oy \1+/) >87%

Thus the test I(a¢m)> is admissible for problem (2.2) by Theorem 2.1, and is clearly a
LRT for some level a. An argument identical to the one in Section 3.4 of Marden and
Perlman (1980) shows that for each a € (0, a *) there exists a § € (0, 1) such that test (2.17)
is the level LRT.

The level « AMP test (2.6) for problem (2.2) is seen to be admissible by taking #° = 0,
7' = 8,, and t = g, in (2.8). The proof of Theorem 4.5 shows that any other level « invariant
test which is essentially different will have lower power than the level « AMP for A in
some neighborhood of .

REMARK 2.1. Suppose that oy, is known, corresponding roughly to the case m = o,
Take o,, = 1. Sufficiency allows us to ignore V,,. Problem (2.1) is now invariant under the
group of p X p nonsingular matrices A which act on S by taking S,, to AS,.A’. The
maximal invariant statistic is (L, S,,), which is distributed as in (2.3). Now

1 2\
R4 8,) = fuld 8) /fold, 8,y) = €797 Tig % %! (sz) '

This is exactly the R, function we had in Marden and Perlman (1980), where we identify
(Syy, SyyL/(1 + L)) here with the (U, V') in that paper (the ranges of the statistics differ).
The LRT (2.4) behaves as before. The LMP invariant test rejects Hy when

nSny;A}Sxy - pSyy > d/.n
and the AMP invariant test rejects H, when
Syy.x <4 X?t—p,a-

3. Extra variates Z. The problems in (1.2) are based on n + ¢ (n = p + 1) independent
observations on the normal vector (Y, X, Z), assumed to have zero mean and covariance
matrix A (1.1). A sufficient statistic is the sum of squares and cross products matrix 7,
distributed as a Wi,+,(n + ¢, A) variable. The invariance groups for the problems (1.2)
are Gy, G1, G: and Gs, respectively, defined as follows. The group G, contains all (1 + p
+ g) X (1 + p + ¢) nonsingular matrices A of the form

a, O 0
(3.1) A=]| 0 A, 0

Azy Azx Azz
partitioned as A, G1 = {A|A'€G,},G: = {AEG1|A,), =0} and G, = {A € G| A.. = 0}.
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In each case the group acts on T via A:T — ATA’. The maximal invariant statistic and
parameter for P; and P; are

—1 —1 -1 -1
L=T,TTw,T and Ay =A% Ay Ay,
for P1 are
—1 —1 -1 -1
Ly :=T5 Ty : Ty Tsy.. and Asy o = Ay 2Dy 2 A ox v sy 2,

and for P, are (Lyy.., M,.) and A,,.., where M,, = T}, T,.T:;'T.,. To show the result for
P;, note that sufficiency allows one to disregard (7)., T..) before applying invariance
arguments. It is interesting that the groups corresponding to the hierarchy (P}, P,, Ps)}
are nested (Gs C G; C G1), but the groups corresponding to the other are not (G:  G,).

The LRT for P, and Ps is based on L., and for P} and P; on L,,... See Das Gupta
(1977). Except for P;, the LRT is the UMP invariant test. Since (L.,.., M,.) given A,,.. has
the same distribution as (L, M) given A in Section 2, the class ® of Theorem 2.2 with (L,
M, A) replaced by (L.,.., M.., A,,..) is the minimal complete class of invariant tests for Ps.
In particular, tests (2.5) and (2.6) are the LMP invariant and AMP invariant tests, and the
LRT is admissible among invariant tests if and only if « < a* (2.16). We show in Remark
3.1 that the test based on

-1
- Tee  Tw T
(32) RZ = T}'yl (Tyxy Tyz) [sz Tzz] I:szj| ’

the sample multiple correlation coefficient of Y and (X, Z), is inadmissible.

For each hierarchy of problems mentioned in the Introduction we consider the effect of
using one problem when a more informative one obtains. The distributions of L,, and
L,,.. are given by

2
(A Ty
(3.3) L,|T,, ~ ‘M: T,y ~ Ayyxqu;
Xn+q-p
2
(Axy..Tyy.2)
(3.4) ny.zl Tyy.z ~)(p—y_L T.)')"Z ~ A)’J"ZX%“

2 ’
Xnop

where the chi-square variables in each ratio are independent. First look at hierarchy { P,
P,, P3}. Assume A,. = 0 and A,. = 0, i.e., P; holds, but we ignore the information that
A:: = 0, ie., we consider P,. We consequently would use the level « test based on L.,.,
rather than that based on L.,. When A.. = 0 and A,, = 0, the former test has strictly
smaller power than the latter for all values of the parameter. To see this, note that A,, =
A.y..=T1and A, = A,,... Letting ¢, and c; be the cutoff points for the L,, and L,,.. tests, the
powers when 7 > 0 obtains are

(3.5) J’ Poigp(Liy> c1|x7)8neq(x) dx  and f P, _p(Lsy.> co|x7) 80 (x) dx
0 ! o

respectively, where Py (- | x7) is the nonnormalized noncentral F distribution with degrees
of freedom (p, k) and noncentrality parameter x7, and gi(x) is the density of a A,,x}
variable. The power of the level a F test is strictly increasing in the denominator degrees
of freedom (see Das Gupta and Perlman, 1974) and the noncentrality parameter, and g (x)
has strict increasing monotone likelihood ratio in the parameter k. Thus the first term in
(3.5) is strictly larger than the second when 7 > 0.

Now suppose A,. = 0 but we ignore that information, i.e., we consider P, instead of P;.
In this case, A, < A,,.. as long as A, # 0. If A, = 0, then we do better using the test based
on L., which is not G invariant, than using that based on L,,.., as in the previous
paragraph. However, if A.. is “large”, A,,.. could be substantially larger than A,,, and
L,,.. would be a preferable test statistic. Thus we may or may not lose power in this
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situation, though P, does have a richer class (®) of tests admissible among invariant tests.
No power is lost using the LRT for P, when P; obtains since they have identical LRT’s.
However, the L,,.. test could be reasonable for P, if A,. or A,, is large, but not P;. Thus
knowing A, = 0 and A,. = 0 would prevent us from using a suboptimal test.

Next we turn to the hierarchy {P1, P:, P;}. If we compare P7 and P., we see that the
LRT’s are identical. Thus the advantage of knowing that A,, = 0 lies in having a richer
class of tests which are admissible among invariant tests. Using P7 or P, when P; obtains
leads to a definite loss of power, as seen from the earlier comparison of P, and P;.

REMARK 3.1. Problem P; based on T conditioned on T}, is identical to the problem
found in Marden and Perlman (1980). According to their results, conditioned on a fixed
T,,, the asymptotically most powerful test as A,,.. — ® rejects H, for large values of R®
(3.2). This is the LRT for the problem of testing

Hy: (AyxAy:) =0 versus Ha:(AyAy2) #0.

We now show that unconditionally, the test based on R? is inadmissible among invariant
tests for P,. Assume it is admissible. By Theorem 2.1, there exist #°, 7, and ¢ such that
d(v, w) > tif and only if R? > R?%, where v and w are defined as in (2.10) by identifying
(L, M) with (L.y.., M..) and R? is chosen to attain the desired level. Since W =1 — R? it
must be that for all v, d(v, w,) = t, where w, = 1 — R%. By Equation 15.3.4 of Abramowitz
and Stegun (1964),

Ri(v,w)=1+A)A+Aw) Y

(Ar(a — o) Av \
k! (b)r 1+Aw)/

Thus d(v, w,) is a power series in v, so that the coefficients of v* for £ > 0 must be zero.
The coefficient for v is zero if and only if

1 o
(3.6) J’ 1+ AF(1 + Aw) “"P7%(dA) + j Al + A)°(1 + Aw,) “Vr'(dA) = 0.
0 1

Since the integrands in (3.6) are strictly positive over [0, 1] and [1, o], respectively, it must
be that 7' = #° = 0. That choice of measures, however, does not yield the R test. Thus we
have a contradiction, hence the test is not admissible among invariant tests.

4. Proof of Theorem 2.1. Theorem 2.1 is implied by Theorems 4.3 and 4.4 below as
follows. Suppose Y & ®. Theorem 4.3 guarantees that there exists a test ¢ € ® such that
Eo(¢) = Eo(y) and Ex(¢p) = Ea(y) for all A > 0. If Eo(¢) = Eo(y), then Ex(¢p) > Ex(y) for
some A > 0 by Theorem 4.4. Otherwise E¢(¢) < Eo(¢). Thus ¢ is inadmissible, showing
that @ is complete. Since Theorem 4.4 proves all tests in ® are admissible, @ is minimal
complete.

Before stating and proving Theorems 4.3 and 4.4, we present two lemmas without proof.
For definitions used below we refer the reader to Section 5 of Marden and Perlman (1980).

LEMMA 4.1. (Ghia, 1976, Theorem 2.1). If F,,, n = 1, F, are functions on Q such that
F,, — F pointwise, and

Iip,>1 —w ¢

for some measurable function ¢, 0 < ¢ < 1, then there exists a measurable function x on
Q2,0 = x =1, such that

¢=Ipsyy + x-Ip-yy  ae. [p].
ProoF. See Marden and Perlman (1980, Lemma 6.2).

LEMMA 4.2. Consider R (v, w) defined in Section 2.
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a) Ri (v, w) is bounded for A € [0, ] for each fixed (v, w) € Q.
b) There exists a constant B, 0 < B < o, such that for all (v, w, A) € @ X [0, 1], 0 <
{R¥(v, w) —1}/A = B.

THEOREM 4.3. If ¢ is the weak* limit of a sequence of proper Bayes tests {¢»} defined
on Q, then ¢ is of the form (2.8). Thus ® is essentially complete for problem (2.2) by
Theorem 5.8 of Wald (1950).

PrOOF. Any proper Bayes test ¢ for problem (2.2) is of the form
y=1 a.e. [u]

{ﬁRmdApl}

for some proper measure 7 on (0, ). Let {7,} be the sequence of proper measures on
(0, ) corresponding to {¢.}. Now, [ Ram.(dA) > 1 if and only if

1- =

(4.1) J' (R% — )7k (dA) + J' Riwk(dA) >1—7%(0, 1),
0 1-

where 7.¥(dA) = (1 + A)"“m.(dA). Let u, = r; + sx + | t5| where

-
ry= J' A7y (dA), sk =m¥[1,0), and ¢F=1-7(0,1).
0

Since at least one of r,} and ¢t} is nonzero, u, is always positive. Divide both sides of (4.1)
by u, to obtain

1—- 00
(4.2) Tn f {(R} — 1)/A}7(dA) + sn f RE7LdA) > t,,
0 1—

where r, = r¥/un, Sn = Sn/Un, by =t/ Un,

(r&) ALgymi(dA)  ifr¥>0

“3) Ta(dA) = { »(db) itri =0,
and

nwai(dA) i sE>0

_ _J(s¥)
Ta(dd) = { #(db) if s = 0,

where »° and »' are arbitrary fixed probability measures on [0, 1) and [1, «) respectively.
Note that r, =0, r, + s, + | t.| = 1 (so that (r», s, t,) ranges over a compact space), and
7% and 7 % can be extended to probability measures on the compact spaces [0, 1] and
[1, o], respectively, by defining 7°({0}) = 7°({1}) = 7'({e}) = 0. Thus there exists a
subsequence {m} C {n}, a point (r, s, ¢) with r =0, s = 0, r + s + | ¢| = 1, and probability
measures 7° and 7' on [0, 1] and [1, »] respectively such that (rn, Sm, tx) — (1, 5, t), 7
— 7% weakly, and 7' — 7' weakly. Lemma 4.2 shows that for each (v, w) € &,

J {(R% — 1)/A}7n(dA) —>I {(RX — 1)/A)7°(dA)
0 0
and

J’ RKﬁ,‘l(dA)—»J R:7'(dA).

Thus Lemma 4.1 applied to (4.2) implies that
¢ = Iaww>n + x[@ww=9  ae [u]
for some 0 < x < 1, where 7°(dA) = r7°(dA) and 7'(dA) = s7'(dA) in (4.3).
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Ifr=s=0,thent=1or—1, and d(v, w) = 0, so that the set {d(v, w) = ¢} is empty. If
r or s is positive,then d (v, w) is strictly increasing in w for each fixed value of v because
Ra(v, w) is (see (2.11)). Hence u({d(v, w) = t}) = 0, and so ¢ is of the form (2.8). The proof
that ® is essentially complete is complete.

THEOREM 4.4. Suppose ¢ € ® and Y is any other test such that Eo(¢) = Eo(y) = a but
w({¢ # ¢}) > 0. There exists a A > 0 such that Ex(¢) > Ea(y). Hence ¢ is admissible.

PrOOF. Let #° and #! be as in equation (2.8) for ¢. Define the sequence of proper
measures {7,} on (0, ®) by m,(dA) = (1 + A)”vp(dA), where

Vo(dA) = ny08,,—| + A_II(n>l’1)7TO(dA) + I[Lm)ﬂl(dA) + Y18n,
o=7"({0}) and v =7'({=}).
An argument similar to that in Theorem 5.11 of Marden and Perlman (1980) shows that

lim, .« j (Eal¢) — Ea())7n(dD) > 0,
proving the theorem.
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