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BOOTSTRAPPING REGRESSION MODELS

By D. A. FREEDMAN!

University of California, Berkeley

The regression and correlation models are considered. It is shown that
the bootstrap approximation to the distribution of the least squares estimates
is valid, and some error bounds are given.

1. Introduction. This paper, a sequel to Bickel and Freedman (1981a), will develop
some asymptotic theory for applications of Efron’s (1977) bootstrap to regression. Auto-
regressive models and linear econometric models may be considered elsewhere. Here, only
multiple linear regression models will be considered:

(1.1) Y(n) = X(n)B + e(n).

In this equation, 8 is a p X 1 vector of unknown parameters, to be estimated from the data;
Y (n) is an n X 1 data vector; X (n) is an n X p data matrix, of full rank p = n; e(n) isann
X 1 vector of unobservables. The models differ in the stochastic mechanism supposed to
have generated the data. However, in all cases ¢ is supposed random. Throughout this
paper, p is fixed and n is large. The case where p and n are both large will be considered
in a future paper, Bickel and Freedman (1981b).

Attention is restricted to the conventional least squares estimate (n) for 3, given by

Bn) = (X)X ()} ' X()TY (n).

How close is A(n) to B? The object of this paper is to compare the bootstrap approximation
with the standard asymptotics. Under mild conditions, the bootstrap is valid. However,
details depend on the model.

To fix ideas, it may be useful to review two different kinds of models, “‘regression” and
“correlation”, and to indicate the results for each. Naturally, the mathematics may apply
in other cases as well. In the regression model, X is fixed and the errors are “homoscedastic.”
In the correlation model, X is random and the errors are in general “heteroscedastic”: the
conditional distribution of the errors given X depends on X. (As it turns out, only the
behavior of the conditional second moment counts.) In order to succeed, the bootstrap
simulation must reflect the relevant features of the stochastic model assumed to have
generated the data. This point is also discussed by Efron (1977, Section 7), and in the
jackknife context by Hinkley (1977).

The regression model. This is appropriate if, for example, the basic source of uncer-
tainty is measurement error. An instance is the weighing designs used in precision
calibration work at the National Bureau of Standards. The main assumptions are as
follows.

(1.2) The matrix X (n) is not random.

Received August 1980; revised April 1981.

' Research partially supported by NSF Grant MCS-80-02535. I worked on this paper while enjoying
the hospitality of the ETH, Zurich.
AMS 1980 subject classifications. Primary 62E20; secondary 62G05, 62G15.
Key words and phrases. Regression, correlation, least squares, bootstrap, Wasserstein metrics.
1218

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [&
The Annals of Statistics. RIKGJY

A58

®
www.jstor.org



BOOTSTRAPPING REGRESSION MODELS 1219

(1.3) The components ¢, e, - - -, &, of e(n) are independent, with common distribution
F having mean 0 and finite variance ¢; both F and o are unknown.

The Y-vector is considered to be the observed value of the random vector X (n)8 + &(n).
Then ﬂ(n) has mean ,8 and variance-covariance matrix ¢*{X(n) "X (n)}~'. Suppose

(1.4) - X (n) "X (n) — V which is positive definite.

Suppose also that the elements of X (n) are uniformly small by comparison with Vn . Then
Jn {,B(n) — B} is asymptotically normal, with mean 0 and variance- covariance matrix

0’V ™" In particular, the distribution of the pivotal quantity {X(n) "X (n)}"*{8(n) — B} /o
is asymptotically normal with mean 0 and variance-covariance matrix I,x,, the p X p
identity matrix.

NotatioN. XX is positive definite, so it has a unique positive definite square root;
this is (X"X)"2 “Positive definite” is taken in the strict sense.

The correlation model. This is appropriate if, for example, it is desired to estimate the
regression plane for a certain population on the basis of a simple random sample, and to
quantify the sampling error in the estimate. Now X must be considered random, and ¢ may
be related to X. The ith row in the data array (X, Y) will be denoted (X,, Y,), representing
the measurements on the ith subject in the sample; so (X,, Y,) is a random (p + 1)
dimensional row vector. Potentially, there are infinitely many such vectors; the rows of
X (n) consist of the first n of the X,’s and Y (n) consists of the first n of the Y,’s.

(1.5) The vectors (X,, Y.) are assumed independent, with common (unknown) distri-
bution p in R”*'; and E {|| (X,, Y.) ||*} < », where || - || is Euclidean length.

By convention, X, is a row vector. Let = = E (X”X,), the p X p variance covariance matrix
of any row of X. Assume

(1.6) 3 is positive definite.

The p-vector B of parameters is defined as the vector which minimizes E (|| Y, — X.8|?);
equivalently, Y, — X, is orthogonal to X,:

(1.7) EX,e) =0 for j=1,.--,p, wheree, =Y, — X,8.

Of course £(n) in (1.1) consists of the first n of the ¢ ’s. Relationship (1.7) entails
(1.8) B=Z2"'E(XTY).

If the nonnegative definite matrix M is defined by

(1.9) M = E (X, Xpe?)

then the asymptotics in the model can be summarized as follows: X (n) Ts(n)/\/; is
asymptotically normal, with mean 0 and variance-covariance matrix M. Since

(1.10) Vn{Bn) - B} = {%X(nVX(n)} % X (n)Te(n)

n

and
1 T
;X(n) X(n)—> X ae,

it follows that \/E{,é(n) — B} is asymptotically normal, with mean 0 and variance-
covariance matrix X 'MZ .
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The X in the correlation model plays the role of V in the regression model. However,
the asymptotics are quite different, unless the correlation model is “homoscedastic,” which
can be interpreted mathematically as follows:

(1.11) E(e?|X;) =0> ae., whereo®= E(e?).

Then M = ¢* Z; as a result, in the homoscedastic case, the correlation model has the same
asymptotics as the regression model, Perhaps surprisingly, the condition E (¢; | X;) = 0 does
not seem to be needed, or even E (g;) = 0.

Bootstrapping. The object of this paper is to show that if the simulations are done in
a manner consistent with the model, the bootstrap will give the same asymptotic results
as classical methods. In the regression model, it is appropriate to resample the centered
residuals. More specifically, the observable column n-vector é(n) of residuals is given by
&n)=YMn) - X (n),é. However, i, = (1/n) Y ?-1 &(n) need not vanish, for the column
space of X need not include the constant vectors. Let F, be the empirical distribution of
#(n), centered at the mean, so F', puts mass 1/n at &;(n) — fi, and [ x dF.* = 0. Given Y (n),
let ef, .- -, &X be conditionally independent, with common distribution F.;let £*(n) be the
n-vector whose ith component is ¢*; and let

Y*(n) = X(n)B(n) + ¢*(n).

Informally, ¢* is obtained by resampling the centered residuals. And Y* is generated from
the data, using the regression model with £ as the vector of parameters and F, as the
distribution of the disturbance terms e. Now imagine giving the starred data (X, Y*) to
another statlst1c1an and asking for an estimate of the parameter vector. The least squares
estimate is ,8* = (X"X)"'XTY*. The bootstrap principle is that the distribution of
\/;(B* B), which can be computed directly from the data, approximates the distribution
of Vn(f — B). As will be shown in Section 2 below, this approximation is likely to be very
good, provided n is large and o%p-trace(X"X)™" is small.

What happens if the residuals are not centered before resampling? Suppose the constant
vectors are neither included in nor orthogonal to the column space of X. Then the
distribution of Vn (B* — B) incorporates a bias term which is random (depending on
€1, -+ -, €x) and which in general has a nondegenerate normal limiting distribution. This is
so despite the fact that the empirical distribution of the uncentered residuals converges to
F. In short, without centering, the bootstrap will usually fail. Efron (1977) asks about this
issue in his Section 7. This completes a sketch of the bootstrap for the regression model;
details will be found in Section 2.

Turning now to the correlation model, there is in general some dependence between ¢;
and X;, “heteroscedacity.” So it is inappropriate to resample the residuals, for that
obliterates the dependence. Instead, it is necessary to resample the vectors. More specifi-
cally, let u. be the empirical distribution of the (X;, Y;) for i =1, ..., n. Thus, u, is a
probability on R?*', putting mass 1/n at each vector (X;, Y;). Given {X(n), Y(n)}, let
(X?¥, Y}) be independent, with common distribution y,, for i = 1, - . ., m. Informally, this
amounts to taking a resample of size m from the n observed vectors. The technical
advantages of letting m # n are seen in Bickel and Freedman (1981a). Informally, data
from a small sample can be used to judge the likely performance of a larger sample.

Remember that £ (n) minimizes 1/n ¥, {Y: — X; B(n)} %, Thus, ,B(n) is to u. as B is to
the true law p of (X;, Y:). Let 3*(m) be the least squares estimate based on the resample:

(1.12) B*(m) = (X*(m)TX*(m)} ' X*(m)"Y*(m).

In Section 3, it will be shown that the conditional law of vim {B*(m) B} must be close to
the unconditional law of Vn 8 B{(n) — B}, i.e., the bootstrap approximation is valid. Notice
that in the correlation model, unlike the regression model, the first m rows of the starred
design matrix are random. Notice too that in the correlation model, the residuals should
not be centered before resampling: they are already orthogonal to X.
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2. The regression model. Assume the regression model, with (1.1-2-3). Let ¥, (F)
be the distribution of v {#(n) — 8}, when F is the law of the ¢’s. So ¥, (F) is a probability
in R?. For the next theorem, let G be an alternative law for the ¢’s: assume G also has
mean 0 and finite variance. In applications, G will be the centered empirical distribution
of the residuals. Bickel and Freedman (1981a) will be abbreviated B & F, due to frequent
citation.

DEFINITION 2.1. Let d? be the Mallows metric for probabilities in R”, relative to the
Euclidean norm || - ||. Thus, if u and » are probabilities in R?, d?(y, ») is the infimum of
E[|U — V|']1'* over all pairs of random vectors U and V, where U has law u and V has
law ». Abbreviate d, for d;. For details, see Section 8 of B & F. Only { = 1 or 2 are of
present interest.

NoTATION. In the present paper, p is the dimension of a linear space; in Section 8 of
B & F, however, p is the index of an L, space.

THEOREM 2.1.  d2{¥.(F), ¥,(G)}’ = n-trace{X (n) "X (n)} '-d:(F, G)*.

ProoF. LetA(n) = {X(n)"X(n)} 'X(n)7. Then ¥, (F) is the law of VnA (n)e(n) where
e(n) is an n-vector of independent random variables ¢, having common law F. Likewise for
G. Now use Lemma 89 of B & F, observing that A (n)A(n)” = {X(n) "X (n)}™". Also see
(8.2) of B & F. ]

To proceed, let F, be the empirical distribution function of e, ---, &,; let F, be the
empirical distribution of the residuals &, (n), - -, é,(n) from the original regression on n
data vectors, and let F, be F, centered at its mean ji, = (1/n) Y'-1 & (n). Since £(n) = Y (n)

- X(m)B(n),
(2.1) é(n) — e(n) = —P(n)e(n)

where P(n) = X(n){X(n) "X (n)} "X (n) 7 is the projection matrix onto the column space of
X (n).

LemMa 2.1. E{d:(F,, F.)?} =¢*p/n.

PROOF. A routine computation starting from (2.1) shows

(2.2) E{||é(n) —e(n)|?) = o’p.
But
(2.3) do(F, Fu)* = 1 T {éan) — &)’ = 2 é(n) — e |I*.
’ “ne n |
LEMMA 2.2. E({d:(F,, F,)*} = ¢*(p + 1)/n.
Proor. Two applications of Lemma 8.8 of B & F show that
2 2

(2.4) ds(F, F,)* = (% e,) - [% Y1 (& (n) — el}] + do(Fy, o).
Now use the present Lemma 2.1. O

REMARK. The negative term in (2.4) is a bit disconcerting. However, it is small. To see
this, let the n X 1 column vector v(n) be identically 1. Using (2.1),

2

1 . 2 2 ‘
E([; 2=t {é(n) — a}] ) = % | P(n)v(n) ||* = %,
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As will now be shown, these results imply the validity of the bootstrap approximation,
in probability, assuming for example (1.4). Recall ¥, from the beginning of the section.
Now

(2.5) E[d3{¥.(F,), ¥u(F))?] = n-trace{X(n)"X(n)} - E {do(F., F)*}
and because d; is a metric
(2.6) Vody(F, F)? = do(F., F.)* + do(Fn, F)?

The first term goes to 0 in probability by Lemma 2.2; the second, by Lemma 8.4 of B & F:
and n-trace{X(n)"X(n)}™' = O(1) by (1.4). Of course, condition (1.4) can be weakened
appreciably, and p can be allowed to go to infinity slowly: Bickel and Freedman (1981b).
Rather than pursuing this, a theorem for convergence a.e. will be given. Consider X(n)
as the first n of an infinite sequence of rows. Likewise, consider the disturbances &, ¢,
.- -, &, as the first n of an infinite sequence of independent random variables with common
distribution function F. The original regression problem has now been embedded into an
infinite sequence of such problems. Allow the resample size m to differ from n. For
motivation, consider again the weighing designs used in precision calibration. The error
distribution depends in principle only on the apparatus and procedures used, not on the
specific weights. Thus, it may be possible to use data from one design to assess the probable
accuracy from another.
This simulation will now be spelled out in more detail. Recall that ,é(n) is the estimate
of B, based on the first n data points. The starred data is generated by the recipe
Y*(m) = X(m) B(n) + ¢*(m
mx1 mXp pX1 mx1
the et - .- &} being independent with common distribution F,, the empirical distribution
of the residuals from the original data set, but centered at the mean p,. Now B*(m) is the
parameter estimate based on the starred data:

B (m) = [X(m)"X(m)]™" X(m)"Y *(m).

pX1 PXp pPXm mXx1

The starred residuals are
#*(m) = Y*(m) — X(m)B *(m).
mX1 mx1 mXp pX1
The theoretical variance o> = E {¢Z} is estimated from the n original data vectors by
. 1 « 1 N

(2.7) 6= > Sr EXn) — ud, where p, = ~ e é(n).
Likewise, the variance estimate from the m starred vectors is

e 1 .y : 1 .
(2.8) 6 == Y ¥ (m) — ,u,”,‘,z, where pk=—Y% éFX(m).
m m

In principle, the starred data, as well as ,é*(m) and 6}, depend on r; this is suppressed in
the notation. The estimates 6° are slightly biased, but this is immaterial for present
purposes.

The next result is a special case of results in Lai et al. (1979), which gives further
references. Write ¢(n) for the n X 1 column vector ¢, - - -, &,. Likewise, write £(n) for the
n X 1 column vector of residuals from the regression on the first n data points.

LEMMA 2.3. %X(n)Te(n)—»O ae. and B(n)—> B ae.

Proor. Use Kolmogorov’s inequality, along the subsequence of powers of 2. 0

1
LEMMA 2.4. - &) —em)|?—>0 ae.
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PROOF. As is easily seen from (2.1),
(2.9) l | ém) — e(n) ||* = {l e(n)TX(n)} {l X(n)TX(n)} {l X(n)Te(n)}.
n n n n

But the first and third factors go to 0 a.e. by Lemma 2.3; the middle factor goes to V' by
assumption (1.4) O

LEMMA 2.5. d2(17’m F,)—0 a.e.
Proor. Use (2.3), (2.4) and Lemma 2.4. O
LEMMA 2.6. dg(F'n, F)—>0 a.e.
Proor. Use Lemma 2.5, and Lemma 84 of B & F. O
LEMMA 2.7. Let u, and v, be real numbers. Let

1 1

@=— Siiu, and sk= - Yt (w — @)%
and likewise for v. Then

1
(Su - 30)2 = ; Z;;l (uz - Uz)z-

Proor. Clearly, s, = ||u — &|| /n and likewise for v, so
1 _ _

(su=s)’ =~ (u=a) - =0

— 1 _ 2 _ (77— )2

=~ [lu— ol - (@ -0

1
= |u-v|x
~llu o]

d

The next theorem is the a.e. justification of the bootstrap asymptotics. The behavior of
the pivot will be considered in more detail in Bickel and Freedman (1981b).

THEOREM 2.2. Assume the regression model, with (1.1-4). Along almost all sample
sequences, given Yy, ---, Y,, as m and n tend to =,

a) the conditional distribution of \/r;{ﬁ*(m) - ﬁ(n)} converges weakly to normal with
mean 0 and variance-covariance matrix 6>V ™",

b) the conditional distribution of 6}, converges to point mass at o.

¢) the conditional distribution of the pivot {X(m)"X(m)}"*{B*(m) — B(n)}/5% con-
verges to standard normal in R”. ‘

Proor. Claim (a) is immediate from Theorem 2.1 and Lemma 2.6. Indeed, in the
theorem, one puts m for n and F, for G. Now

-1
m-trace[X(m)"X(m)] - do(F, F,)*= trace[% X(m)TX(m)] “do(F, F)? > 0 a.e.

because (1/m)X(m)"X(m) — V positive definite by assumption (1.4). By construction, X(n)
is the first n rows of X(n + 1), so (1.4) entails that the elements of X(n) are uniformly
o(Vn ), and X(n) e(n)/ Vnis asymptotically normal.

Claim (b). Recall 6, from (2.7). It will be shown that

(2.10) 6n— 0 a.e.



1224 D. A. FREEDMAN
To argue this, introduce
2
1 1
Oi = ;z;;l 612' - (; Z:‘l=1 €i> .
Clearly, 6, — o a.e. In view of Lemmas 2.7 and 2.4,

1
(6'1 - Un)2 = ; Z:l=1 {é,(n) bl 81}2 -0 a.e.

2
: 1 2 1
o ==Y hiel = =Ylief ).
m m

Recall from (2.8) that 6% is the variance of the residuals in the starred regression. Now

E(|6%—on|| Y1, -+, Vo) S E{((65 — o%)*| Y1, -+, Y}

Next, let

1
éE[E ™ {EX(m) — eX)2| Yy, - -, Yn} by Lemma 2.7

=é6ip/m by (2.2) applied to the starred regression
-0 a.e. by (2.10).

What remains is to show that the conditional law of o} is nearly point mass at o2 This
follows from the results in Section 8 of B & F. Indeed, condition on Y7, - -+, Y,. By Lemma
860of B&F,

1 2 1 2
2 2
dil = Y= ef y =1 €, §d1(sf,£,)
m m

(Both sides of the display are random; for the distance computed is between the conditional
distribution of the starred quantity and the unconditional distribution of the unstarred
quantity.) Now & has conditional law F,; and ¢, has law F; and do(F,, F) = 0 a.e. by
Lemma 2.6. So di[¢’, €] — 0 a.e. by Lemma 8.5 of B & F, with ¢(e) = 2. In short, the
conditional law of 1/m Y™, ¢** differs little from the unconditional law of 1/m Y%, £ 7, and
must therefore concentrate near o°. Likewise, the conditional law of 1/m Y, ¢ concen-
trates near 0.

Claim (¢). This is immediate from (a) and (b). O
To conclude this section, consider the bootstrap when the uncentered residuals are

resampled. Let v(m) be a column (m X 1) vector of 1’s. Applying (1.10) to the starred
regression,

2110 E[Vm{B*(m) — B)}| Y1, - -+, Yol = {% X(m)TX(m)} % X(m)TU(m)-\/g 2
where by (2.1)

- % S fn) = % 00T {Tnen — P(n)}e(n).

Now ¢, is scalar, E({,) = 0 and

$n

1
(2.12) E2) =¢? - | (Iix» — P(n)}u(n) || %

It is easy to find a sequence X(n) of designs for which (1.4) holds, and (1/m)X(m)Tv(m)
converges to a limit L; then the right side of (2.12) converges to ¢*(1 — L”V™'L). Assume
L is nonzero, and L”V~'L < 1, i.e., v has a nontrivial projection into the column space of
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X, and this projection is substantially shorter than v. If m is of order n, the right side of
(2.11) converges to a proper Gaussian limit. If m dominates n, the right side of (2.11) blows
up.

3. The correlation model. In this section, the object is to justify the bootstrap in
the correlation model, by a straightforward application of the machinery in Section 8 of B
& F. The following lemma will be useful. To state it, let u, and u be probabilities on R”*',
for which the fourth power of the Euclidean norm is integrable. A typical point in R**'
will be written (x, y), where x € R” is viewed as a row vector, and y € R'. Assume

S(p) = f xTxp(dx, dy)
is positive definite, and let
B(p) =Z(w™ f x"yp(dx, dy);

e(p, x, ¥) =y — xB(p).

LEMMA 8.1, If d5 ' (wn, p) — O, then

a) Z(pn) — Z(p) and B(pa) = B(W),

b) the pn.-law of e(ux, x, y)x converges to the u-law of e(p, x, y)x in d5,
c) the un-law of e(yin, x, y)* converges to the p-law of e(p, x, y)* in d,.

Proor. Claim (a) is immediate from Lemma 8.3c of B & F.

Claim (b). Weak convergence is easy, and then Lemma 8.3a of B & F can be used.
Here is a sketch of the argument.

le(un, %, Y)x]|* = elpn, x, 9)° || 2||*
=yl xll® = 2yxBCpn) [ 1 + Blun) 2 2B (pn) || x |1
Integrate with respect to p,, and use claim (a).

Claim (c). First, the p,-law of e(u., x, ¥) converges to the u-law of (g, x, y) in ds, by
the previous argument. Then use Lemma 8.5 of B & F with ¢(e) = ¢ 0

Now return to the correlation model described in Section 1. The original n data vectors
are (X,, Y,) for i = 1, ..., n; these are independent, with common distribution y; their
empirical distribution is y,. Both p and p, are probabilities in R**",

LEmMMA 3.2. d5"(u,, p) > 0 ae. asn—
Proor. This is a special case of Lemma 8.4 of B & F; the variables are L, by (1.5). O

Turn now to bootstrapping. Given {X(n), Y(n)}, the resampled vectors (X, Y}) are
independent, with common distribution y,, for i = 1, ..., m. Let X*(m) be the m X p
matrix whose ith row is X'; and Y*(m) is the m X 1 column vector of Y*’s. The least
squares estimate based on the original data is 8(n); on the starred data, 8*(m): see (1.12).
In the original data, the vector of unobservable disturbances is e(n), see (1.7); the observable
residuals are

(3.1) &n) = Y(n) — X()B(n).
In the starred data, the m X 1 column vector of disturbances is ¢*, with

(3.2) ef = Yr — X (m)B(n).
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The m X 1 column vector of residuals is £ *(m) with
(3.3) ér(m) = YI — X2 (m)B*(m).

The next result shows that the asymptotics estimated from the bootstrap are correct.
Recall that 2 is the variance-covariz}nce matrix of X;; and M was defined in (1.9). The
dependence of the starred data and 8*(m) on n is suppressed in the notation.

THEOREM 3.1. Assume the correlation model, with conditions (1.5-6). Along almost
all sample sequences, given (X,, Y;) for 1 =i = n, as m and n go to infinity,

a) (1/m)X*(m)"X*(m) converges in conditional probability to =

b) the conditional law of Vm { B*(m) — B(n)} goes weakly to normal with mean 0 and
variance-covariance matrix X 'MZ™,

ProoF. Asin (1.10),

(3.4) Vm (B*(m) — B(n)} = W*(m)'Z*(m),

where

(3.5) W*(m) = % X*(m)"X*(m) = % S XX

and

(3.6) Z¥(m) = —— X*(m)Te*(m) = —z Y2 X
Vm vm

Here, W*(m) is a p X p matrix; Z*(m) is a p X 1 column vector. The corresponding
unstarred quantities are

(3.7 W(m) = ~1—X(rn)TX(m) -1 1 XX,
m m
(3.8) Z(m) =LX(m)Te(m) =LZ"‘ X/e
. \/E % =1 1€

Now W*(m) is a vector sum in R”**; condition it on {X(n), Y(n)}. By Lemma 8.6 of B
& F,

dre (W*(m), Wim)} = d5 {(X*'X¥, XIX.).

Again, both sides of the display are random variables: for the distance is computed between
the conditional distribution of the starred quantity and the unconditional distribution of
the unstarred quantity. The right hand side of the display goes to 0 a.e. as n — oo; this
follows from Lemma 3.2, and Lemma 8.5 of B & F; the relevant ¢ is ¢(x,y) = xTx from R?*!
to R”**. In other words, the conditional law of W*(m) is close to the unconditional law of
W(m), but the latter concentrates near X, the variance-covariance matrix of X,. This
proves:

(3.9) The conditional law of W*(m) concentrates near X.

Likewise, Z*(m) is a vector sum in R”. Condition it on {X(n), Y(n)} and use Lemma 8.7
of B & F to obtain

dB{Z*(m), Z(m)}* = d8(X*e, XTe,)?

The right hand side goes to 0 a.e. as n — «. Indeed, Lemma 3.2 shows u, — p a.e. in d4*';
then use Lemma 3.1b. In other words, the conditional law of Z*(m) is close to the
unconditional law of Z(m), and the latter is essentially multivariate Gaussian, with mean
0 and variance-covariance matrix M defined by (1.9). This proves:
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The conditional law of Z*(m) is essentially multivariate normal with mean 0

3.10 . . .
( ) and variance-covariance matrix M.

To complete the argument, combine (3.9) and (3.10). O

In the correlation model, (X"X)"%(8 — B)/4 is not pivotal. However, bootstrapping it
may be of interest. The only new issue is 6. As before, let

. 1 N
Gn= ~ 2 é(n)”.

This estimates o = E(eZ) from the data, as the mean square of the residuals: see (3.1). The
corresponding estimate based on the starred data is

e 1 N
(3.11) G4 == Tm Exm)*
m
where the starred residuals are defined in (3.3).

THEOREM 3.2. Assume the correlation model with conditions (1.5-6). Along almost
all sample sequences, given (X,, Y,) for 1 =1, ..., n, as m and n tend to infinity, the
conditional law of 65, converges weakly to point mass at o.

Proor. Using (2.9) on the starred regression,
| §¥(m) — e*(m) |2 = Z*(m)T- W*(m) ™' . Z*(m).
Now use (3.9-10) to conclude

s 1, .
(3.12) The conditional law of ~ | €*(m) — e*(m) ||* concentrates near 0.
For the definition of 6, see (3.11). Let
: 1
om = Z Zz’il el?

be the average of the squares of the starred disturbances (as opposed to residuals); see
(3.2-3). Now

. 1 .
(6% —on)= - Y (€ m) —ef)?

so it remains only to show that ¢” is nearly ¢° Condition the ¢; on [X(n), Y(n)]. In view
of Lemma 8.6 of B & F,

1 , 1 , )
dl(; Yo el ™ Yt 83) =di(ef? ed).
But the right hand side tends to 0 a.e. by Lemmas 3.2 and 3.1c. In other words, the
conditional law of (1/m) Y7, ¢* is close to the unconditional law of (1/m) Y% ¢;. And the
latter concentrates near o> ]

In particular, as m and n tend to o, the conditional law of {X*(m)7X*(m)}" 2 B*(m)
— B(n)} /6% converges to the appropriate limit: normal with mean 0 and variance-covari-
ance matrix = /M 37'2/06% In the homoscedastic case, this is just the p X p identity
matrix I,x,: see (1.11).

What is the role of the 4th moment condition in (1.5)? To secure the conventional
asymptotics, the following conditions seem to be needed:

E(|X.||?) <o and E(Y;)<wo and E(|| X |%}) < .
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Preliminary calculations suggest that under these minimal conditions, the bootstrap will
be valid in probability; convergence a.e. can be secured by requiring E { || X, || 2 < oo,
Convergence a.e. under the minimal conditions seems to be quite a delicate question.
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