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STRONG CONSISTENCY OF LEAST SQUARES ESTIMATORS IN
REGRESSION WITH CORRELATED DISTURBANCES

By V. SoLo!
CSIRO, St. Lucia, Australia

This note considers, under minimal assumptions, the strong consistency
of least squares estimates in regression with correlated errors.

Recently Lai et al. (1979) have proven the a.s. convergence of the least squares
regression estimator (with nonstochastic regressors and martingale difference sequence
disturbances) assuming only the smallest eigenvalue of the X’X matrix tends to . Further,
Lai et al. were able to handle some types of autocorrelated noise. The aim of this note is
to discuss strong convergence with minimal assumptions on the X’X matrix for some types
of autocorrelated noise not handled by Lai et al.

Consider then the regression model

Yn = x:nﬂ"' &n

where y, is an observed sequence, X, a p-vector of nonstochastic regressors and ¢, a
disturbance sequence. We are interested in the least squares estimator

Bn=Vi 3%y, V.=3Ix.xi
Assume V,, is positive definite, as then also is V., n = p. Now we can write
Bn=PBns + Vi'xmen,
en=Yn— Xnfn-1.

Let a be a fixed vector and suppose it can be shown that Y} ¢;e; converges a.s. with ¢; =
a’V;'x,. Then B, converges a.s. and to conclude B, — B a.s. it will be enough to show
B. — B in probability. We now derive two identities that are basic to all that follows.
Suppose ¢, is an uncorrelated sequence with unit variance. It is well known, and easily
verified directly, that e, is also an uncorrelated sequence but with variance
1+ x,V;Lix,. Thus is this case, letting c; be some sequence of constants we have

(1) E(37 cses)® =37 c2(1 + xiVihix,).
However we can also write
€= — Xifo1 =& — X\(Bocr — B)
=& —x{Vh Zi_l X &
=Yiaxe
with ass = 1 and a,, = —x.V;1,x,, t < s. Thus
@) Ylcses =7 ¢ Y1 et = YT & Yt CsQst
= Y1 &bu, say
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Thus taking variances and equating to (1) yields

(3a) Ytei1 4+ x(VIix,) = Y1 bhe.
Similarly computing covariances gives, for n > m,
(3b) ST bhe = YT i1 + x(Vx,) = 37 buebome.

Let us now list three types of disturbance sequence to be considered.

N1. {e.} is an uncorrelated sequence with sup; E(e?) < K < .

N2. {e,} is a stationary sequence with autovariance function £(s) and spectrum f(w)
bounded by K an a.s. constant.

N3. {en} is such that the largest eigenvalue of the covariance matrix of any fixed
number of successive values of ¢, is bounded by a constant K. Actually this condition
includes N2 and N1, but N2 and N1 are singled out because of their concrete meaning.

Now suppose N1 holds, and let n, m be fixed integers with-n > m. Then using (3a) and
(3b) we have

E(Tnscie)’ = E(TT cies — Y7 cse5)? = E(I7 buier — Y7 bmet)?

= E(Z541 bute + TT (b — bme)e)’
< K{Zn+1 05+ 31 (bne — bme)?)
= K(¥ne1 b+ 3T bhe — X7 b70)
=K(Z! b — X7 brr)

(4) =K Ynuc2(1 +x:V3ix,).

We next demonstrate that (4) holds also under N2. Writing

Y1 bueee + TT (bne = be) & = X1 bumet
we deduce, since m, n are fixed, that

E(Z;+1 cses)2 = 2'1! 2'11 bnmlbnmsﬂ(t - )
= f IZ? bnmtemtlzf(w) dw

=K3}? b2ne)
=KYn+ci(l+xiVihix,)

by the arguments just given. Similarly (4) holds under N3.

REMARK 1. If we observe
1+ x,Vidix, =¥ a = v?,
say, then it is clear that for any array {a.} which is such as to ensure that {e,} is an
orthogonal sequence whenever {e,} is, we have under N1 or N2 or N3 that
E(Th+ cses)’ < K Y civi.

Continuing, we observe that (4) is all that is required for Menchoff’s inequality (Stout,
1974, page 18) to hold. (In that inequality and its proof replace (= -.-)E(x%) wherever it
occurs by (= K - --)c2v2.) Thus via the method of subsequences (Stout, 1974, page 20) we
have the following result.

THEOREM 1. If N1 or N2 or N3 holds, then
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(5) Y1 cses converges as.if Ypwc (1l +x,Vihix,)logls < .

REMARK 2. Take x; = 0 to see that under N1 or N2 or N3
Yr e <was. if YT ciflogs < oo,

This result was given (implicitly) by Hannan (1978) under N2.

FirsT PROOF. The proof is the same as that of Theorem 2.3.2 of Stout if wherever

(= ---)E(x}) occurs we replace it by (< K ---)c2v2 and we realise that orthogonality in

that proof is used only to ensure that (4) holds.

SECOND PROOF. The Theorem also follows from Serfling’s inequality (Theorem 2.4.2
of Stout, page 25). To see this set
8a,n = Kz:i{' cgv?
ha,n = Kzgif cgvflogzs,

so by (5), for some constant K’,

(6) hon=K' <o VYa,n.
Also observe that, from (4),

0 E(TaiT coes)’ < gan,

while

(8 8ain = ha,n/log’(a + 1)
and

(9a) 8an + Barnit = gan+t,

(9b) han + hasni =< hapns.

Now Stout requires gq,» to be of the form g(F, ), a functional on the joint distribution
F,pof Xg41 +++ Xavn. However a perusal of the proof of Theorem 2.4.2 will show that a set
of numbers gq,», Aq,» Obeying (6)-(9) will do.

To apply Theorem 1 take ¢; = a’ V;'x,, call o, the smallest eigenvalue of V, and observe

=V = = VaxxIVIL /(1 + x Vi)
so Vi'x, = Viiix,/(1 + x;V:iix,). Also tr(V;?') < p/o.. Thus
Yo i1+ x5 Vi1ix)log?s < a’a ¥ 34 log?s tr(VE =V 1)
s pa’a Yy, (logis — log%(s — 1)) /051 + a’a log?(p + 1)tr(V,;1).
Elementary considerations show the first sum is finite iff
Y o+2 log 8/(s0,-1) < 0.
The following Theorem may now be stated.
THEOREM 2. If N1 or N2 or N3 hold and ¢, 1 «, then ., — B — 0 as. if
Y2 (log?s — log%(s — 1)) /o5-1 < o

or equivalently Y 5.2 log s/(s0,-1) < .

ProoF. It is only necessary to show 8, — B in probability. However let a be a fixed
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vector and consider that under N2, for example,
Var(a’,) = E(a’V;' 37 X¢,)?
=YY a’'V:'x,Q(s — s')x4V;'a

= f |37 &’ Viix.e™* | *f(w) dw

=K¥! (a'V;'x,)?
=Ka'Vi'a— 0
if g, 1 co. Similar calculation follows under N1 and N3.
REMARK 3. For the scalar case p = 1, and under N2, this theorem is implicit in Hannan

(1978). The proof in the scalar case is straight forward since the fact that 8, — 8o — 0 a.s.
follows via Kronecker’s lemma from YT x;&/ Vs < o, which Hannan shows will hold if

Y5 x2log?s/ Vi< oo

cf. Remark 2 above.

REMARK 4. From Kronecker’s lemma it follows that o, increases more rapidly than
log?s. It is instructive to restate the basic theorem of Lai et al. in the present terms.

THEOREM 3. (Modified from Lai et al., 1979). Let ¢; be a sequence of constants and let
¢; be such that
(10) e el <oo,= V7 ¢ie; < o as.
Then e; ‘inherits’ this property from &; in that
Yree<was. if YT ci(1+x/Vilix) <o,
REMARK 5. When ¢, are Gaussian with constant variance then {e,} is a martingale
difference sequence. Then the claim of Theorem 3 holds from the martingale convergence

theorem. This idea, which is effectively that used by Sternby (1977), gives an alternative
proof to that of Anderson and Taylor (1976) in the Gaussian case.

THEOREM 4. Hannan (1978) has shown that condition N4 below implies (10).
N4. {e.} is a stationary sequence obeying the following two conditions
E(en| #-x) =0 (&, is purely nondeterministic)
and
3§ aj < oo,

In condition N4, &, are the increasing o-algebras generated by e, while the o; occur as
follows. Consider

un,; = E(ex| %) — El(en| Fi-1)
so that
&= Yo Unj+ E(en| F-).
Then stationarity ensures we can write

o = \/E (urzz,n—j)
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so that
& = 230 aj&n,n—j + E (¢ I 97—00)’

where
E@#,.) =1

REMARK. Hannan shows that ¢, in N4 obeys a Doob-like maximal inequality and this
enables (10) to be established. ‘
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