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ON THE EXACT ASYMPTOTIC BEHAVIOR OF ESTIMATORS OF A
DENSITY AND ITS DERIVATIVES!

By R. S. SINGH
University of Guelph

For an integer p = 0, Singh has proposed a class of kernel estimators f*’
of the pth order derivative f'?’ of a density f. This paper examines the detailed
asymptotic behavior of these estimators. In particular, asymptotically equiva-
lent expressions for the bias (Ef‘® — f”), the mean squared error E (f‘? —
™)? and the error (f® — f‘?’) are obtained, which in turn give exact rates of
convergence of these terms to zero.

1. Introduction and preliminaries. Let X, = (X, .-+, X;) be a random sample
from a univariate population with unknown probability density function (pdf) f, and let p
= 0 be an arbitrary but fixed integer. Based on X, Singh (1977) exhibited a class of kernel
estimators [P of f'”, the pth order derivative of f, and proved various asymptotic
properties of f P’ concerning their bias, error and mean squared error. Rates of convergence
for each of these terms, uniform on the real line, are also obtained there, bringing
improvements over the corresponding results of Bhattacharya (1967), Schwartz (1967) and
Schuster (1969). This note is formulated to study the exact asymptotic behavior of these
improved estimators of Singh (1977). More precisely, we will obtain here the exact
asymptotic expressions (and hence also the exact rates of convergence) for the bias (Ef‘?’
— £, the mean squared error E (£ — f?)? and the error (7 — f'?) of estimators f ¥’
of 7. Results on Cov(f?(x), f?(x3)) x1 # x2, are also obtained.

We will briefly reintroduce estimators f'?. Let » > p be an iuteger, and K be a real
valued bounded function vanishing off (0, 1) such that

1 4 .
@ j—!Jy’K(y)dy=1 if j=p

=0 if j#p,j=0,1,...,r—1L

Let 0 < A, = h | 0 as n — . (The restriction 2 < 1 put in Singh (1977) is in fact
unnecessary for the results obtained there.) Let

1.2) Y, (x) = h“"lK(&h_—{).

Then Singh’s (1977) estimator of f‘? at x is
(1.3) fPx) =n7' B Y, ().

Silverman (1978) has considered estimatois /© (with different kernels) of f and Bhat-
tacharya’s (1967) estimators 9”f®(x)/0x” of f ‘P’ (x). His objective there has been to prove
uniform strong consistency of these estimators under minimal conditions on A rather than
to investigate the exact asymptotic behavior of the terms like those mentioned earlier
concerning estimators of f7’. Silverman has obtained the minimal conditions on A for the
purpose with some stringent restrictions on the kernel; see Singh (1979a). How estimators
f? improve Bhattacharya’s (1967) estimators of f‘? is discussed in Singh (1977).

As mentioned in Singh (1977), kernels (1.1) could be negative, thus leading to a negative
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estimate for the density. But this is the price one pays to reduce the bias of the estimate.
Kernels (1.1) for p = 0 and 1 have initially been used in estimation of a density and its first
derivative by Johns and Van Ryzin (1972) for improving convergence rates for empirical
Bayes two-action problems. A version of (1.3) for p = 0 and 1 has recently been used in
Singh (1979b) to improve convergence rates for empirical Bayes squared error loss
estimation problems.

2. The results. To describe our results here, we will make use of the following
definition. We will say two sequences {a.} and {b,} are asymptotically equivalent, and
write a, ~ b,, if lim,_,(a,/b.) = 1. We recall the following definition.

DEFINITION 2.1. A point y on the real line R is a right Lebesgue-point of a real valued
function gon R if e [}* |g(¢) — g(y)|dt—> 0 ase | 0.

Notice that every right continuity point of a function is also a right Lebesgue-point of
the function. The converse, however, is not true, e.g., take a function g which is 1 at every
rational point and —1 elsewhere.

THEOREM 2.1. (Exact asymptotic expression of the bias). If f exists a.e. on [x, x + h)
and x is a right Lebesgue-point of ", then
(2.1 h="PUEf P (x) — [P (x)) ~ ke f7 (%)

where

1 r
kr=ﬁJ’y K(y) dy.

Proor. The proof follows from (3.5) of Singh (1977) since the second term on the
right-hand side there is asymptotically equivalent to f”(x) times

-r

(r—1)!

=

x+hy
J K(y) j (x + hy — )" dt dy. 0

THEOREM 2.2. (Exact asymptotic expression for MSE.) Under the hypothesis of
Theorem 2.1,

E(fP(x) — fP(x))*
(2.2)
~n! [(n = Db PF ) + B () f K* — (f®@)* = 20"k, [ (x) [ (x)] .

ProoF. By (1.2) EY#(x) is A727"" times

h JK2< )f(y)dy h‘f K2< )f(y)dy

which is asymptotically equivalent to f(x) [ K2 Thus, since by (1.3) Ef*” = E(Y1) and
Var (f”) = n™" Var(Y,), by Theorem 2.1 we get

(2.3) Var(f”(x)) ~ n‘l[{h_z”_lf(x) f K2} - {fP@ + h’_"krf(”(x)}z] .

In view of Theorem 2.1, the proof of the theorem is now complete since MSE = (bias)® +
Var. O

It is of interest to study the asymptotic behavior of Cov(f®(x,), f*(x2)). Notice that
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for any two points x; # x; such that A = | x; — x2|,

X; — X2

h

(2.4) E(Yi(x1) - Yi(x2)) = A2 J K(t)K(t + )f(xl + ht)dt=0

since K vanishes off (0, 1). Thus as an immediate consequence of Theorem 2.1 we have the
following corollary.

COROLLARY 2.1. (Exact asymptotic expression for Cov.) For any two points x, # x2,
let 7 exist a.e. on (x1, x1 + h) U [x2, x2 + h). If both points are right Lebesgue-points of
[, then taking h < | x, — x2|, we have

(2.5) Cov(f P(x1), [ P(x2)) ~ =0 [[1 (P (%) + B PRf 7 (%))

If x; (#x2) is a right Lebesgue-point of f, then

xy+h _ _
h“’“E(Yl(xl).Yl(xz))={h‘1 f K(%)K(y xz)(f(y)—f(xl)) dy}

h

1

+ {f(xl) j K(t)K(t + 2 ;’”) dt} = o(1)

since K is bounded and vanishes off (0, 1). Similarly A%*'E(Y1(x1)) - E(Yi(x2)) = o(1).
Thus for every pair of points x; # x», one of which is right Lebesgue-point of f and for
everyp=0,1,2, ...,

(2.6) nh** Cov(f P(x1), fP(x:)) = o(1).

The relations (2.6) are useful in the study of asymptotic normality of the vector (f ¥ (x;),
oy FP(xm)).

We will now investigate the exact asymptotic behavior of the error term (7 ® — f»).

THEOREM 2.3. Ifnh**'— 0, and for every t > 0, i exp(—tnh**') < oo with probability
one, then h™"P(f P — Ef P) s 0(1) as n — o w.p.1.

Proor. Let T, = K((X, — x)/h) — EK((X, — x)/h), T = n7'Y7 T, and let M be the
bound of K. In view of (1.2), (1.3) and the Borel-Cantelli lemma we only need to show that
for every e > 0

@.7) Y= PR T > e <.

Notice that Ty, ... T, are i.i.d. centered random variables, each bounded by 2M, and
by (2.3), 6> = n Var(T) ~ (hf(x) [ K*) = ha (say). Consequently by Bernstein’s inequality
(see, for example, Bennett (1962)),

D) 1 " nh¥ e 2eMh™\ !
(2.8) P[h~ 1)|T|>e]s2exp{— 557 <1+ 357 ) }

The right-hand side of (2.8) is ~exp{—nh**'e*/a} since 6° ~ ha and nh®*' = o(1). Thus
(2.7) follows by our second hypothesis on A. O

Theorem 2.4 shows that under its assumptions both the bias and the error of the
estimators f ¥’ are asymptotically equivalent. As a result, the following corollary is an
immediate consequence of Theorems 2.1 and 2.4.

COROLLARY 2.2. (Exact asymptotic behavior of the error.) Under the assumptions of
Theorems 2.1 and 2.4,

(FP(x) = (fP(x) ~ A" P (x)k. w.p.L.



456 R. S. SINGH

3. Concluding remarks. An optimal choice of A could be the one which minimizes
the positive component of the exact asymptotic expression for the MSE given below. By
Theorem 2.2,

MSE(f” (x))

~ [{h""k,f‘”(x)2 + (nh**1)"'f(x) f K2} - (P + h"‘p)k,f")(x)}z] .

Thus an optimal choice of 4 could be

(2p+ l)f(x)fK2 1/(1+2r)

2(r — p) (k- f " (x))*

However, to make use of this value of A in the construction of the estimators f”, a good
guess of the value of f and f or of the magnitude of the ratio f/(f)? is required
beforehand. Notice that this optimal choice of 4 specialized to the case p = 0 coincides (up
to the factors %, and [K®) with that suggested by Parzen (1962) in the construction of
estimators of a density.

h = pVa+20
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