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NONNEGATIVE MINIMUM BIASED INVARIANT ESTIMATION IN
VARIANCE COMPONENT MODELS!
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In a general variance component model, nonnegative quadratic estimators
of the components of variance are considered which are invariant with respect
to mean value translations and have minimum bias, analogously to estimation
theory of mean value parameters. Here the minimum is taken over an
appropriate cone of positive semidefinite matrices, after having made a reduc-
tion by invariance.

Among these estimators, which always exist, the one of minimum norm
is characterized. This characterization is achieved by systems of necessary and
sufficient conditions, and by a nonlinear cone-restricted pseudoinverse. A
representation of this pseudoinverse is given, that allows computation without
consideration of the boundary.

In models where the decomposing covariance matrices span a commuta-
tive quadratic subspace, a representation of the considered estimator is derived
that requires merely to solve an ordinary convex quadratic optimization
problem. As an example, we present the two-way nested classification random
model.

In the case that unbiased nonnegative quadratic estimation is possible,
this estimator automatically becomes the “nonnegative MINQUE”.

Besides this, a general representation of the MINQUE is given, that
involves just one matrix pseudoinversion in the reduced model.

1. Introduction. The fundamental defect in estimating variance components by
unbiased quadratic estimators is the fact that the estimators can take on negative values
while estimating nonnegative variances. Much attention has been given to this problem
and several approaches are taken; see Thompson (1962), Federer (1968), McHugh and
Milke (1968), J. N. K. Rao and K. Subrahmaniam (1971), C. R. Rao (1972), Drygas (1972),
LaMotte (1973), J. N. K. Rao (1973), Harville (1977), Pukelsheim (1977, 1979, 1981),
Hartley, et al. (1978), and the discussion and references given by Searle (1971), pages 406-
408. The proposed nonnegative estimators either lack some desirable optimality properties
or they exist only for special models, resp. are applicable only under particular assumptions.

The MINQUE (minimum norm quadratic unbiased estimator), introduced by C. R. Rao
(1970; 1972; 1973), pages 303-305, is usually defined on the whole space of appropriate
symmetric matrices. In order to get nonnegative estimates C. R. Rao (1972), Section 7,
suggested restricting the class of possible estimators to the corresponding cone of positive
semidefinite matrices, mentioning the resulting problem of finding a “nonnegative
MINQUE?”, if it exists, as likely a difficult one. This problem is further considered, e.g., by
LaMotte (1973b) and Pukelsheim (1977, 1979, 1981). However, such estimators exist only
in very special cases. For example, in the analysis of variance (ANOVA) models, besides
the overall variance o2, none of the other variance components permit the existence of a
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positive semidefinite matrix that is an unbiased estimator, as pointed out by LaMotte
(1973b).

In this paper we consider minimum bias estimators (as introduced by Chipman (1964)
for estimating mean value parameters), which are invariant under the group of mean value
translations. Here the minimum is taken over the appropriate cone of positive semidefinite
matrices after having made a reduction by invariance. These estimators always exist, and
of course they guarantee nonnegative estimates. Moreover, they are unbiased if nonnega-
tive unbiased quadratic estimation is possible. To get a unique estimator, we choose the
one with minimal norm.

We characterize the minimum norm minimum bias invariant positive semidefinite
estimator by introducing a cone-restricted pseudoinverse, and we obtain a limit formula
that partially extends a result for null-space-restricted pseudoinverses given by the author
(1979). Further, useful necessary and sufficient conditions for a matrix to be the desired
estimator are derived.

In models where the decomposing covariance matrices span a commutative quadratic
subspace the computation of this estimator is reduced to an ordinary convex quadratic
optimization problem. As an example, the balanced two-way nested classification model
with random effects is considered where the estimators for the three variance components
are stated explicitly.

For the MINQUE a representation is given that involves just one matrix pseudoinver-
sion, in the reduced (by invariance) model.

Some results of this paper were presented by the author at the 11th European meeting
of statisticians in Oslo, Norway in August, 1978,

2. Formulation of the problem, definitions, and a representation of the
MINQUE. Let us denote by Sym the Hilbert space of all real symmetric n X n-matrices,
where the inner product is given by (A |B)sym = trace AB =: tr AB, defining the norm
| A llym = tr AA = tr A®, for A, B € Sym. Further let PSD denote the closed convex cone
of positive semidefinite matrices in Sym,

PSD := {A|A € Sym, x’Ax = 0 for all x € IR"}.
We consider the linear variance component model
2.1) 2~ (XB; Yty ),
that consists of an n-dimensional random variable z with mean value
Ez=XB
and variance-covariance matrix
Cov(z) = Y21 a, U,

where the n X k design matrix X and the m symmetric positive semidefinite n X n matrices
U, are known, U, € PSD, i = 1, ..., m, while the parameter 8 varies in IR* and the
parameter a = (ay, . .., an)’ varies in IRY, the nonnegative orthant of IR™.

The problem considered here is to find quadratic estimates for the variance components
ay, . . ., an, that are nonnegative and invariant with respect to the group G of mean value
translations,

G={z—z+ XB|BERY.
A maximal invariant liner statistic y with respect to G is given then by (Seely (1971))

y = Projree 2 = (I — XX )z,
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where I is the n X n identity matrix, X™ is the Moore-Penrose generalized inverse, and
R(X) denotes the range of X. We get the reduced (by invariance) linear variance component
model

(2.2) ¥y~ (0; X V), a€RY, V.ePSD,

where V, = (I - XX")U,(I - XX*),i=1,..., m. Often a model of the kind (2.2) is given
also by the experimental arrangement, for instance by grouping and measuring of differ-
ences.

Now let A € Sym, then a quadratic invariant estimate for a linear form p’a, p € IR™, is
given by y’Ay, with the bias

Ey'Ay —p'a=Y" altr AV, —p,).
Here y’Ay is an unbiased estimate of p’a if
(2.3) trA V,=p, forall i=1,...,m.
It is additionally of “minimum norm” if A solves the problem
(2.4) minimize {tr B|BE€ Sym,tr BV,=p,i=1,...,m,)}.

Then A is called the MINQUE, minimum norm quadratic unbiased estimator.

However, the MINQUE doesn’t always exist. By analogy with estimation theory of
mean value parameters (cf., for instance, Chipman (1964)), the condition of unbiasedness
(2.3) may be weakened to that of finding a best approximate solution of (2.3), i.e.,
minimizing the discrepancy ¥, (tr A V, — p,)? over Sym, cf., Pukelsheim (1976).

DEFINITION 2.1. For estimating the linear form p’« the matrix A € Sym is the MINQE
that gives minimum bias with respect to Sym, if A solves the following problem.
(2.5)  minimize tr A? subject to: A € Sym, and ¥, (tr A V, — p,)? = minlesym.
Let us introduce the linear operator
tr A V1
(2.6) g Sym —» IR™, A gA= .
trAV,
Then (2.5) is equivalent to
(2.7 minimize {tr A’| A € Sym, |gA — p|lr~ = minluesym},

respectively, find a best approximate solution A, of minimum norm of the linear equation
gA = p, A € Sym. By definition of a pseudoinverse operator, e.g., Holmes (1972), page 220,

(2.8) A=g*p,

g the pseudoinverse of g, which for matrices is identical to the Moore-Penrose generalized
inverse, cf., Mitra (1975). The estimator A always exists and A is equal to the MINQUE if
P ER(g).

We now show how to compute g*. The adjoint g* of g is given by

(2.9) g IR"— Sym,a— g*a =31 aV, a=(ay,...,anm) .
Then »

(2.10) gg* = (tr ViV))imr,mis=1,..ms

and

(2.11) g% Sym — Sym, A — YL, (tr A V) V..
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Using now the following properties of pseudoinverses in Hilbert spaces (e.g., Holmes
(1972), page 222),

(2.12) g =g"(gg"",
(2.13) g =(g%9" g"
we get a computational representation of g*, resp. of A or of the MINQUE A4 if p € R(g).

THEOREM 2.1. The estimator A satisfies the “normal equation”
(2.14) m(tr A V)V, = Y2 [plV,
and permits the computational representation
(2.15) A=g'p=3"L[(gg")"PLV,

where [w], denotes the ith component of vector w.

Now, an estimate y’Ay with A € Sym can be negative, while estimating nonnegative
variance components. Therefore, C. R. Rao (1972), Section 7, suggested finding a MINQUE
over the cone PSD, i.e., find a solution A° of the problem

(2.16) minimize {tr A*|A € PSD, gA = p},

a problem further considered for instance by LaMotte (1973b) and Pukelsheim (1977, 1979,
1981). However, the kind of models where such an estimator A° exists for all variance
components is very limited. For instance, as pointed out by LaMotte (1973b), in ANOVA
models the only component that might be estimable in this way is the overall variance
oZ; cf. also the 2-way nested layout considered in Section 5.

Thus we are led to exchange the unbiasedness condition in (2.16), gA = p, by the claim
to minimize the discrepancy ||gA — p|lr~ over PSD.

DEFINITION 22. A € PSD is the nonnegative MINQ minimum bias estimator of the
linear form p’a if A solves the following problem,

(2.17)  minimize tr A? subject to: A € PSD, and ||gA — p|| = mingersp || gB — p|.

THEOREM 2.2. A always exists and is uniquely determined.

Proor. The cone PSD is closed and convex, g is a continuous linear mapping with
closed range, R(gpsp) is closed and convex, and so there exists a best R(gpsp)-approxi-
mation to p, say p,, that is unique. Now PSD N {A|gA = p.} is nonempty, closed and
convex, so has a unique element of minimum norm and this is just A.

Analogously to a nullspace-restricted pseudoinverse (cf., Minamide and Nakamura
(1970), Holmes (1972), Section 35, Hartung (1979)) let us introduce now a cone-restricted
pseudoinverse, which, of course, in general is a nonlinear operator.

DEFINITION 2.3. The operator gjpsp:IR” — PSD is the PSD-restricted pseudoinverse
of g if for every ¢ € IR™ the best approximate solution A(g) of minimum norm of the linear
equation

8A =q subject to A € PSD

is given by A(q) = grpso q. A
So the solution A of (2.17) is given by A = gjpsp+ p, and by Theorem 2.2 gjpsp+ exists and
is a single valued function.
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If nonnegative unbiased estimability is given then A automatically becomes the “non-
negative MINQUE” A°.

REMARK 2.1. In our approach to finding an estimation function da(y) = y’Ay, A €
Sym, of p’a we have simultaneously three goals in mind: (i) d4(y) should be nonnegative
for all realizations of y, i.e,, A € PSD, resp. A = Projpsp A; (ii) da(y) should be unbiased,
ie., gA = p; (iii) A should be of minimum norm. Thus the general decision problem here
consists of minimizing “simultaneously” the three functions,

1. ri(A) == tr(A — Projpsp A)%

2. r(A) = |lgA - p|}

3. r3(A) =tr A%

Choosing a lexicographical preference in the indicated order, then A = gpsp+p gives the
lexicographical minimum and, of course, ds is admissible, resp. A, in the sense that there
is no function d4, such that r(A;) < r(A), r = (ry, rs, r3)’, A; € Sym.

With arbitrary weights 7; > 0, i = 1, 2, 3, we get by minimizing Y% r7:(4) over Sym a
unique solution A(7). da(,) is also admissible, and it is known that each admissible function
da, can be approximated by a sequence {da.w}.en of such functions, i.e., tr(A(+*) —
Aq)?— 0for v — o, where 71 > 0,i = 1, 2, 3, » € IN. Hence in particular to A there belongs
a sequence {r"’(A)}, so that A is approximated by admissible A(r"’(4)), and in section 4
such a sequence {r"/(4)} is specified, where for convenience a norming condition of the
weights is omitted. Note that finding an A(7) is an unrestricted optimization problem,
which is in general much easier to solve than restricted problems. Thus the convergence
properties mentioned above also provide a method for determining A. But first necessary
and sufficient optimality conditions are derived for the three-stage minimization problem
corresponding to A.

3. A characterization of A. First we consider the class of nonnegative minimum
bias estimators. For the following convex program, describing the nonnegative minimum
bias estimators for a linear form q’q,

(3.1) minimize {]|gA — q|*| A € PSD},

with ¢ € IR™ given, we define the correspondent Lagrange function

(3.2) L(A,B) =||gA — q|F — tr AB, A, B € Sym.
By Theorem 2.2 there always exists a solution of (3.1).

THEOREM 3.1. There exists a “Lagrange multiplier” B° € PSD such that for any
solution A° of (3.1)

(3.3) lgA® — q|* = L(A° B®) = minses,m L(A, B°)

and ‘

(3.4) tr A°B° =0.

Further, (A°, B°) is a saddle point of L(A, B) with respect to Sym X PSD, i.e.,
(3.5) L(A°, B)<L(A°, B = L(4, BY

for all A € Sym, B € PSD. Conversely, if (A', B') € Sym x PSD is a saddle point of L
in (3.5), then A' solves the problem (3.1).

ProoOF. Since Sym with the inner product tr AB for A, B € Sym is a Hilbert space,
the “positive” dual cone of the “ positive” cone PSD is given by

PSD* = {B € Sym|tr AB = 0 for all A € PSD},



NONNEGATIVE VARIANCE COMPONENTS 283

cf., Luenberger (1969), page 215, Berman (1973), page 5. Now PSD is self-dual, and its
interior consists of PD, the set of positive definite matrices in Sym, cf., Berman (1973),
page 55, i.e.,

(3.6) PSD* = PSD, int PSD = PD,

and PD is nonempty.

The cone PSD introduces a partial order on Sym, by saying A = B if A — B € PSD and
A>Bif A— B € PD. Then A € PSD, B € PD correspond to A = 0, B > 0, or equivalently
—A=0,-B<0,ie, —A € —PSD, the “negative” cone in Sym, —B € —PD, respectively.
Now with these reformulations and (3.6) we may apply the theorems of Luenberger (1969),
pages 217, 219, 221, to extract our statements.

LEMMA 3.1. The matrix A° € PSD is a solution of (3.1) if and only if
(i) g*gA° — g*q € PSD and
(i) tr A%g*gA’ — g*q) = 0.

Proor. Let A° solve (3.1), then by Theorem 3.1 there exists a B® € PSD such that
minimum L(A, B°), A € Sym, is achieved at A°. This implies that the gradient of L(4, B°)
with respect to A vanishes at A, i.e., A° and B° are connected by

(3.7 g*gA’ — g*q =B

and by (3.4) tr A°B® = 0, so that (i) and (ii) follow.
Now let A° € PSD satisfy (i), (ii) and define B° by the relation (3.7), then L(4, B°) is
stationary at A° and by a convexity argument we have

L(A°, B%) = minaes,m L(A, BY).
With (ii) this means,
[gA° — g|* = minses,m {|gA — ¢l — tr AB®}
< minacrsp {|gA — g — tr ABY)
=< minaersp |84 — q|f%,

because tr AB® = 0 for A, B® € PSD by the self-duality (3.6) of PSD.

Since A° is assumed to be in PSD it minimizes ||gA — ¢|| over PSD, and the lemma is
proved.

Using the self-duality of PSD, we may state the following corollary.

COROLLARY 3.1. A° € PSD solves (3.1) if and only if A® solves the variational
inequalities
tr B(g*gA® — g*q) = 0, for all B € PSD,
and ‘
tr A%g*gA’ — g*q) = 0.

Now we give necessary and sufficient conditions for a matrix A to be an estimator A,
i.e., to be the minimum norm solution of the program (3.1) for a ¢ € IR™, denoted by
&ibsp q, cf., Definitions (2.2) and (2.3).

THEOREM 3.2. Let q € R™, then A = gibsp q if the following conditions hold:

(3.8 A ePSD,
(3.9) g*gA — g*q € PSD,



284 JOACHIM HARTUNG

(3.10) tr A(g*gA —g*q) =0,
and for some b° € IR™,

(3.11) A +g*b° € PSD,
(3.12) trAA +g*p% =0.

ProOF. Let A satisfy (3.8)-(3.12), then by Lemma 3.1 conditions (3.8)-(3.10) imply
that A is a solution of (3.1), i.e., A minimizes |gA — g|| over PSD. Denote by S(q) the set
of all solutions of (3.1) and let g, = gA, then ¢, is the unique best R(gpsp)-approximation
to ¢ and

(3.13) S(q) = {A|A € PSD, gA = qu)}, A€ S(.

We have to show that A is the element of minimum norm in S(q). For A, B € Sym, b €
IR™ we define the Lagrange function

(3.14) M(A, b, B) =Y tr A* + (gA — go)’b — tr AB.
Let a fixed b° satisfy (3.11), (3.12) and take
B’ =A + g*b°,

then the function My(A) := M(A, b°, B°) is stationary at A. Note that grad {(gA)'d°} =
grad {tr A(g*b°) = g*b°, and grad My(A) = A + g*b° — B vanishes in A. Now M,(A) is
convex and so is minimal at A. Further, by (3.12) tr AB° =0, and tr AB* = 0 for all A €
PSD by (3.11) together with the self-duality of PSD (3.6). Thus we get for all A, € S(q)

ird2=Y%trA?+ (gA — q.)'b" — tr AB® = My(A) = minacsym Mo(A)
= minAEs(q) M()(A) < Y tr A% — tr AlB0 = Y% tr A%,

and since A € S(g) we have A = gjsp q.

THEOREM 3.3. Let A = gppsp+ q, ¢ € IR™, then there hold (3.8), (3.9), (3.10) and
(3.15) infgepsp {tr AB + % tr[Projre)) (B — A)]*} = 0;
if the infimum in (3.15) is achieved for some B ® € PSD, then A also satisfies (3.11) and
(3.12), with g*b° = B® — A.

ProoF. Now let A = gjbsp ¢, and S(g) may be defined as in (3.13). Of course, 4 € S(q)
and so Lemma 3.1 gives conditions (3.8)-(3.10).
For the Lagrange function (3.14) define

u(A) = sup{M(A, b, B)|b € R™, B € PSD},
and
v(b, B) :=inf{M(A, b, B)|A € Sym}.

Then u(A,) is positive, and finite if and only if gA; = q, and tr A;B = 0 for all B € PSD,
ie., A; € S(q), in which case we get

(3.16) u(A) = Y% tr A, A, € S(q),
and there exists

(3.17) minacsym #(A) = minacsy u(A) = u(A).

v(b, B) is finite for all b € IR™, B € PSD. Differentiating M(A, b, B) with respect to A
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gives grads M(A, b, B) = A + g*b — B, such that for A(b, B) := B — g*b we have
v(b, B) = M(A(b, B), b, B)
(3.18) =Y tr(B — g*b)* + (gB — gg*b — q,)’b — tr B> + tr B(g*b)
=-Ytr(g*b— (B—A))2+ % tr A — tr AB.
With (3.17) we obtain the trivial inequality,
(3.19) sup{v(b, B)| (b, B) € R™ X PSD} = u(A).
Now for some fixed b, € IR™, B, € PSD consider the function
. Mi(A) = M(A, by, B1)
=Y%trA? + tr A(g*b) — qib, — tr AB,
=Y tr(A — (B: — g*b1))* — % tr(B: — g*b1)* — qabi.

Then the level sets {A|A € Sym, Mi(A) =< ¢}, ¢ € IR, are compact. Hence the “inf-sup”-
theorem of Moreau (1964) yields the existence of a saddle value of M(A, b, B) with respect
to A € Sym and (b, B) € IR™ X PSD, i.e., in (3.19) there holds equality, which, with the
help of (3.16) and (3.18), gives

(3.20) inf{tr AB + % tr{g*b — (B — A)]*| (b, B) € R™ X PSD} = 0.

For g*b' := Projr (B — A) = g*(g*)*(B — A) the infimum in (3.20) with respect to
b € IR™, and B fixed, is achieved, such that (3.15) follows. Now if the infimum in (3.15) is
achieved for some B° € PSD, then each term of the function vanishes, i.e., tr AB® = 0 and
B° — A € R(g*), so (3.11) and (3.12) hold, with, for instance, b° = (g*)*(B° — A), and the
theorem is proved.

REMARK 3.1. If A € R(g*), then B® = 0 is minimizing point of (3.15). Further, defining
the pair of dual programs

(3.21) {P} :minimizeaesq) U(A), {D} : maximize  )ermxpsp U(b, B)

we have implicitly proved the following corollary.

COROLLARY 3.2. For the programs {P} and {D} there holds the strong duality, in
the form: min {P} = sup {D}, and if (b°, B%) solves {D}, then the solution A of {P}
satisfies: A = B® — g*b°.

Here, by (3.16), u(A) = % tr A% and from (3.18) we derive v(b, B) = tr B(g*b) —
% tr B? — % tr(g*b)? — q.b. Noting that the estimator A for ¢’a is the “nonnegative

MINQUE” A° for q4a, a further characterization via dual programs is given in Pukelsheim
(1977).

4. A representation of gjpsp*. Here we give a limit formula for gpsp+ that partially
extends a result of Hartung (1979) obtained for nullspace-restricted pseudoinverses and
permits the pointwise computation.

For this let the spectral decomposition of a matrix A € Sym be given by

(4.1) A = Ypeo) AE(N),

where o(A) is the spectrum of A and E (M) is the projection onto the eigenspace associated
with A. Define the “positive part” A, and “negative part” A_ of A by

(4.2) As = Yaeoa) A+E ), A = Yoeoay \-EN),



286 JOACHIM HARTUNG

where A+ = max {0, A} and A_ = min {0, A}. Then

(4.3) A=A, +A A,,—-A_€PSD,trA,A_=0,

(4.4) A, = Projesp A4, ie., tr(A — A,)? = mingepsptr(4 — B)~

Denote this projection operator by P,

(4.5) P:Sym — PSD, A—PA=A..

For a positive real nullsequence {r,}.ew we define the functionals, cf., Remark 2.1,
(4.6) folA) == tr(A — A.)? + r2l|gA — glfhen + ritr A%,

where A € Sym, and ¢ € R™ fixed.

With a result of Holmes (1972), page 63, regarding the derivative of a projection we get
that A, € Sym minimizes f,(A) over Sym if and only if
(4.7) Ay — (A, +rig*gA, + 1A, = rig*q.

Now (4.7) uniquely defines a solution operator @,, which with (4.5) may be written as
follows,

(4.8) Q.=U—-P+rigtg+ril)'rig*,
that is,
(4.9) A, = Q,q if and only if A, solves (4.7), n € IN.

A, exists and is uniquely determined, because the level sets of f, are compact,
{A € Sym|f.(A) < ¢}C{A € Sym|ritr A? < ¢}, ceRR,

and f, is strictly convex. In general, @, is a nonlinear operator.

THEOREM 4.1. With the operator @, defined in (4.8) there holds the following
representation of the PSD-restricted pseudoinverse of g,

(4.10) & psp+ = lim,—.c@n,

in the sense of pointwise convergence, and for a ¢ € R™,

(4.11) tr(Q.q — (@:q)+)" = o(rs),

(4.12) |g@nq — qllix» = |8 psp+q — qllikn + 0(ry)

for r, - +0,n — o,

Proor. Let g € IR™ be arbitrary but fixed, Ay = gpsp-q(= A) and A, = Q.q,
(A,)- =A, — (A,)+, n € IN. Noting that A_ = 0 if A € PSD we have

(4.13) 0 < fu(A,) < fulA) =ri|lgA — g|* + ritr A? for A € PSD,
and so lim,_..f»(A,) = 0. Together with
0 = fu(An) — tr(4.)2 = fu(A)
this yields
(4.14) lim,,_..tr(4,)% = 0.

By Theorem 3.1 there exists a matrix By € PSD such that for Ay = gpsp+q and for all
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A € Sym, cf. (3.3),
lgdo — gl < lgA — q|* — tr AB,
(4.15) = |lgA — q|* - tr(A+ + A)B,
=|gA — q|* — tr BoA-
=|lgA — q|* + (tr B})"*(tr A%)V2,

where use is made of the Cauchy-Schwarz inequality. Now taking (4.13) for A = A, and
(4.15) for A = A, we get with &, == (tr B3)"%(tr(4,)2)"?,

tr(A,)2 + rillgAn — gl + ritr A% = f£.(A,)
(4.16) =rilgAo — q|* + ritr A3
=rillgAn — gl + k) + ratr A,
and by subtracting rZ|gA. — q|,
(4.17) tr(A,)% + ritr A2 < rk, + ritr A2

By (4.14), k» — 0 for n — o« and so dividing (4.17) by r2 gives lim,_..r;%r(4,)2 = 0,
respectively

(4.18) lim_,ery 'k, = 0.
Further from (4.17),
(4.19) tr A2 < r;'k, + tr A},

hence by (4.18) the sequence {A,}en is uniformly bounded and so possesses an accumu-
lation point A° € Sym and a subsequence converging to it. By (4.14) it follows with the
continuity of the projection

(4.20) tr(A%2 =0, ie.,A°€ PSD,
and by (4.13) with r2||gA, — q|* < fu(A,),
(4.21) lgA. — q|* <|lgA — q|* + ratr A>  forall A € PSD.

Thus together with (4.20),
(4.22) A° minimizes ||gA — q|| over PSD.

By (4.19) we have with (4.18)
tr(A%?% < tr A3,

where A, is the unique minimum norm solution of minsepsp||gA — g/, so with (4.22) there

holds
A’= A4,

and this is valid for all accumulation points of {4 ,}.en, each subsequence of which has an
accumulation point by (4.19). Thus the whole sequence {A,}.ew converges to Ao, and
(4.10) is shown. Then (4.17) and (4.18) yield lim,_.r;%r(4,)%2 = 0, which states (4.11).
Now subtracting r}||gA, — g| + ritr A we derive from (4.16)

raltr A% — tr A3) < ri(|gAo — g’ — |84~ — q|>) = rika,
hence with (4.18) we get
lim, .77 (g40 — q|* = l8A. — q|P) =0,

which completes the proof.
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5. Models where V3, e+, V,, span a commutative quadratic subspace. Here
we assume now that ¥ :=span[Vy, ..., V,,] = R(g*) forms an m-dimensional commutative
quadratic subspace in Sym, i.e., A, B € ¥, implies A€ ¥, AB = BA. By Lemma 6 of Seely
(1971), page 714 a necessary and sufficient condition for a subspace Y to be an m-
dimensional commutative quadratic subspace is the existence of m pairwise orthogonal
projection matrices Py, ..., P, that form a basis for Y. Let these P,, ---, P, be given,
then there is a regular matrix ® = (¢y)i=1,... m;j=1.... » defined by

(5.1) V,="1¢,P, for i=1,...,m.
The problem of computing an estimation matrix A is here now reduced to an ordinary
quadratic optimization problem in IR™.
THEOREM 5.1.  Under the assumptions above the follpwing is valid:
(i) The nonnegative minimum bias MINQ estimator A for p’a is given by
(5.2) A=ym d(rP)'P,
where d = (dy, ---,d,) € R™ is the unique solution of the problem:
(5.3) minimizegerr (Pd — p)' (Pd — p),
respectively the unique solution of the following system:

{delR’f

(5.4) ?'(®d — p) € RY.

d'®(@d—-p)=0
(ii) The corresponding estimation function has the representation
(5.5) pa=yAy =" d||Pz|/tr P,
wherey = (I — XX™)z and z is defined in (2.1).

(iii) If z is normally distributed, thenp/’?x has uniformly minimum variance among all
invariant estimates y’A% where A° is a nonnegative minimum bias estimator for p’a.

Proor. Analogously to the definition of g let the linear operator A:Sym — IR™ be
defined by h:A +— (tr APy, -+ -, tr APy)’, then A*:IR™ - Sym, a — Y%, a,P,, and

tr Pl\ 0
(5.6) hh* = :
0 tr P,,

By (6.1),tr AV, = Y71 ¢ytr AP, fori=1, ..., m, A € Sym, and so
(5.7) g=0h.

Denote p, := Projrgpsp P, then all matrices A° € PSD with gA° = p, give minimum bias
with respect to PSD, ||gA° — p|| = minaepsp!, and of course, gg*p, = p,. So with (5.7) we
have ®hA° = ®hg*p,, respectively hA° = hg*p, since ® is regular, and A° € PSD implies
hA° € RY and thus hg*p, € RT. Now R(g*) = R(g*) and R(g*) = Y = R(h*), hence
there exists a ¢ € IR™ such that g*p, = h*¢, and hh*¢é € IRT yields with (5.6) that ¢ € IR7,
implying 2*¢é € PSD. Thus g*p, € PSD and since g*p, is the minimum norm solution of
8A = pg, A € Sym, we have

(5.8) A= gipsp+p =& p, = h*é.

¢ is unique because A is unique and P;, --., P, are linearly independent. Then in
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minimizing |gA — p| over PSD we can restrict ourselves to those A which are in
R (h}rs) and with (5.7) ¢ minimizes (uniquely) ||gh*c — p|| = |®hh*c — p|| over IRT.

Note that 2*c € PSD implies tr PA*c = ctr P,=0,i=1, ---, m and so ¢ € IRY. Now
the conditions given in Theorem 3.2 yield for A € R(h*):

A=h*¢ePSDs é¢€ Ry,
g* (gA — p) = h*®'(Phh*é — p) € PSD © &' (dhh*é — p) ERT,
tr Ag*(gA — p) = (Phh*é)' (Bhh*é — p) = 0;

(3.11), (3.12) are trivially fulfilled for A € R(h*) = R(g*). The ¢ satisfying these three
conditions is unique because of (5.8). Putting d = hh*¢é then with (5.6) assertion (i) is
shown. Denote K=1—- XX, soy=Kz, V,=KUK,i=1, --., m, cf, (2.2), and for all
B € Y we have KB = BK = B. Now Py, ..., P, are in ), such that y'P,y = 2’P,z =
(P;z)'(P,z) fori=1, - .-, m, which with (5.2) gives (ii). Note that since AK = A, minimizing
tr A% subject to gA = p, leads to a K-locally minimum variance invariant unbiased estimate
y'Ay of pia, if z is normally distributed. Then because ¥ is a quadratic subspace, y’Ay has
uniformly minimum variance among all invariant unbiased estimates y’Ay, A € Sym, of
paa, cf., for instance, Seely (1971), Section 3, Kleffe (1977), Section 7, and so in particular

among all invariant unbiased estimates y’Ay of p,a with A° € PSD. Now these A° are the
nonnegative minimum bias (invariant) estimators for p’a, and the theorem is proved.

COROLLARY 5.1. (1) With d defined in (5.3), (5.4) there holds
(5.9) ®d = Projr(g,psp P (= De)-

(ii) The MINQUE A for p’a is given by, cf., also Pukelsheim (1979, 1981),

(5.10) A=Y dtr P)'P,
whered = (dy, -+, dn) = ®'p, and
(5.11) pa=yAy=3n d|Pz|/tr P.

Further, we get useful formulas for computing expectation and covariance. Since gA =
Pe and Ep'a = o’a A we have by (5.9).
12N

(5.12) Ep'a = o'®d.

Let for p = 1,2, A, = ™, dy,(tr P;)7'P;, ¢, = y'A,y, then if y is normally distributed the
covariance of Y4, y» is given by Cov(y1, Y») = 2 tr(4; V,A:V,) where V, = Y7, a,V;. But
Vio=g*a=h*®a= Y"1 &P b= (&1, -+, &) = Do, and 4,V, = T, di,éi(tr P)7'P,,
A] VaAz Va = Z':L:] d,ldizf,?(tr P[_)—ZP[_’ so that

(56.13) Cov(y, ¥o) = 2 ¥Ls dindinti/tr P, £=0a,

if ¥ is normally distributed. ‘

As an example let us now considerzhe balanced two-way nested classification model
with random effects; cf., Pukelsheim (1979) for a characterization of the unbiasedly
nonnegatively estimable linear forms.

ExaMpPLE. The model is

z;j,,=p.+ai+b,,-+eij,,, i=1’...’r>1



290 JOACHIM HARTUNG

where a;, ---, a,, by, -+, by, €1, -+, e are independent (1-dimensional) random
variables with Ea, = Eb,, = Ee;;, = 0 and Ea? = o2, Eb}, = 6}, Ee%, = 02, and u € R is the
mean value parameter. Denote 1, = (1, - .-, 1)’ € R, J, = 1,1, J. = (1/k)J,, I the k X k
identity matrix, K, = I, — J,, k € IN, and ® the Kronecker product of two matrices. The
model has then the equivalent representation

z2=1pu+ [, ®LBOl)a+ (LB L)b+ (I,Q I,® I)e,

respectively z ~ (1,1; 02U, + 03Uz + 02Us), where Uy = I, ® J, @ J,, Uo = I, ® I, ® J,,
Us = I, ® I, ® I. Since for a pseudoinverse there holds X* = (X’X)*X’ we have 1} = (1/
n)1; and so Projra,)L = I, — (1/n)1,1;, = K,.

With the usual notation, e.g., z,.. = (1/st) Y.5-1 Yi=1 2., there is the following identity,
cf., Graybill (1976), page 634,

2yv — z..= (z_l - Z_) + (Elj- - Ez) + (Eljv - Elj');
respectively the orthogonal decomposition

K,z = Pz + Pyz + P;z,

where ~

P1=Kr®js®e]t, P2=Ir®Ks®Jt, P3=Ir®Is®Kt
are pairwise orthogonal projection matrices; note that I, J., K. are projectors and
J.K. = K.J. = 0. Further | P:z|? =st-Yiey (z... — 2...)% |Po2|f® = t- Y1 51 (2. — 2..)%
I1Psz|? = Tict Y51 Diat (20 —2,.)% and tr Py = r — 1, tr P, = r(s — 1), tr Py = rs(t — 1),
tr K, =n-—1.

Using the above decomposition of K, we easily get
Vi=K.UiK,=K, QJ;® J, = stP;,
=K. :K, =K, QJ,QJ, + I,Q K, ® J, = tP, + tPs,

V3=KnU3Kn=Kn=P1+P2+P31

so that

st00 s+t +1t2411 pist + pot + p3

q>=( t tO), q>'<1>=< t2+1  t+1 1), <1>’p=( D2t + ps )

111 1 11 Ps
and the system (5.4) is solved, for instance, for p = p, = (1, 0, 0)’ by d (a) = (st/(s*t? + ¢*
+1),0,0),p=py=(0,1,0) byd (b) = (0, t/(¢* + 1), 0), p = p. = (0, 0, 1)’ byd (e) =
(0, 0, 1)’. Then the estimates according to (5.5) are given by 2 = st| P, z|[*/(s%* + t* + 1)
(r— 1), 63 = ¢t|P22|P/(£* + 1)r(s — 1), 62 = || Psz|?*/rs(t — 1). With respect to (5.10) we get
for the MINQUE’s, d (a) = ®'p. = (1/st, —=1/st, 0),d (b) = ®'p, = (0, 1/t, —1/¢),d (e)
= @ 'p. = d(e), and the correspondent estimates are given then by (5.11), which are the

usual ANOVA estimates, cf., for instance, Corbeil and Searle (1976), Graybill (1976), page
635, and are denoted by 62, 6%, 62. Now using (5.12) we get

EG2=02/(1+1/s% + 1/s%?) + o3/(s + 1/s + 1/st?)
+ oZ/(st + t/s + 1/st) > 62  for s— oo,
EG} = ob/(1 + 1/t%) + 0%/(t + 1/t) » 0}  for t— .
If z is normally distributed we have by use of (5.13)
Var(62) = 2{(02 + o%/s + a2/st)/(1 + 1/s* + 1/s%%))*/(r — 1)

0 for r— o
2(0%)?%/(r— 1) for s— o
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Var(63) = 2{(o} + 02/t)/(1 + 1/t)}*/r(s — 1)

0 for rs— o
~ 1206)¥r(s—1)for t—

and for the ANOVA estimates, cf., also Corbeil and Searle (1976),
Var(6?) = 2{[02 + o}/s + o2/st]*/(r — 1) + [0}/s + o2/st]*/r(s — 1)}

0 for r— ®
= 12063 -1 for s—

Var(63) = 2{[o% + o2/tP?/r(s — 1) + (o%/t)*/rs(t — 1)}

0 for rs— o
= {206)Yr(s—Dfor t—w

Var(6?) = 2(6%)?/rs(t — 1) — 0 for rst — oo; further 62, 63, 6> and 62, 62 are independent,
whereas
Cov (62, 63) = — 2(o¥t + 02)?/rsti(s — 1),

Cov(6}, 62) = — 2(62)?/rst(t — 1).

Now for the normally distributed z we get the following distributions from Scheffé (1959),
Section 7.6, by putting there 62 =0, 05 = 0%, 0 =03, o =os,and I =r,J = s, K = ¢,
M=1,

62 = [(r— 1)(st + t/s + 1/st)] (02 + to} + sto2)x’-1,
65 = [rs— 1)+ 1/0]) (0% + tO%)X%(s—l),
s = [rs(t — )] oxEe-n-

These distributions can also be deduced from the general Theorem 7.2 of Rayner and
Livington (1965), cf. also Searle (1971), page 69.

Similarly in other balanced ANOV A models the estimates can be derived explicitly using
the well-known formulas for the “partitioning of the sum of squares”
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