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ROBUSTNESS OF ONE- AND TWO-SAMPLE RANK TESTS AGAINST
GROSS ERRORS!

By HELMUT RIEDER
University of Freiburg

The classical nonparametric hypotheses of symmetry and equality of distri-
bution functions are extended to hypotheses of approximate symmetry and
approximate equality, by allowing for gross errors, which is indispensable for
practical applications. It is shown that for these hypotheses one- and two-sample
rank statistics maintain their distribution freeness, which now refers to their
stochastically extreme laws. These laws are evaluated asymptotically, also under
similarly extended alternatives, in the author’s previous local framework, which
has not yet covered rank statistics due to a subtle asymptotic fine structure of
infinitesimal neighborhoods. Consequences on asymptotic maximum size, mini-
mum power and relative efficiency of rank tests are drawn. In particular, it is
shown that if the scores are unbounded, then rank tests fail completely; and by
suitable truncation of the classically optimal scores, an asymptotic maximin rank
test is obtained.

1. Introduction. Because symmetry about zero of a distribution function and equality of
two distribution functions are rather stringent properties that can be destroyed by the slightest
amount of contamination, the classical nonparametric hypotheses in the one- and two-sample
problems do not appear to be compatible with the inevitable occurrence of gross errors or
other indeterminacies in practice, although distribution freeness of rank statistics for these
hypotheses has sometimes been regarded as a kind of robustness; cf., e.g., Puri and Sen (1971),
page 2. Further somewhat contradictory statements about the robustness of rank tests have
been made by Hodges and Lehmann (1963), page 598, who use the unproven robustness of
rank tests against gross errors as motivation for their rank estimators, discarding their earlier
observation that the normal scores rank test is so sensitive to heavier tails that it loses its
superiority to the Wilcoxon when there are only about 2.5% (rather innocent looking) outliers;
cf. Hodges and Lehmann (1961), page 317.

The reason why a subject like this appears to be controversial may be that there is no
unique answer; the robustness or not of rank tests may depend on the method by which we
assess robustness. Unlike in robust estimation, where about three or four different approaches
are known to describe the various aspects of robustness (cf. Huber (1977), Chapter II), such
alternative ways have not yet been developed for robust testing, or only unconsciously or
tentatively so. The topics of this paper shall be distribution freeness and infinitesimal
robustness of rank tests, with the further concepts of qualitative robustness and breakdown
point to follow in a subsequent paper ([26]).

To formally account for gross errors or other indeterminacies of distribution functions, we
first enlarge the classical nonparametric null hypotheses to the nonparametric hypothesis of
approximate symmetry in the one-sample case, and to the nonparametric hypothesis of
approximate equality in the two-sample case. Thus we formulate a nonparametric and robust
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framework which, apparently, has also been demanded by Bickel and Lehmann (1975),
Section 4 (neighborhoods of nonparametric models with natural parameters). It extends the
previous robustness models that have been tied to parametric families, and simultaneously the
classical nonparametric models which have used the above-mentioned stringent null hy-
potheses and, as for alternatives, have equally employed parametric families (cf., e.g., Hijek
and Sidak (1967)). It is shown that for these hypotheses rank statistics maintain their
distribution freeness, which now refers to the stochastically extreme laws of test statistics
(Section 3).

These extreme laws are quantitatively evaluated in the asymptotic, infinitesimal framework
of Rieder (1978), which seems to be the most canonical approach in view of the fact that test
statistics are commonly standardized so as to achieve local power rather than just consistency
of tests. The local alternatives, which we employ, similarly relax the classical requirement of
stochastic ordering to ordering restricted to some compact, leaving the unreliable tails of
distribution functions unspecified. By tedious calculations it is mathematically justified (Sec-
tion 4) that rank statistics can indeed be formally subsumed under the result of Rieder (1978),
which is necessary due to a subtle asymptotic fine structure of infinitesimal neighborhoods. At
first glance, they may appear sufficiently small so that, despite the occurrence of asymptotically
orthogonal sequences, a restriction to contiguous sequences won’t (and actually does not)
essentially affect the results. However, it is shown that they are rather sufficiently large so that
the extreme laws can be approximated under contiguous sequences, which would not be true
automatically for smaller neighborhoods (Section 6.1).

Section 5 states the consequences on asymptotic maximum size and minimum power, as
well as on asymptotic relative efficiency of rank tests, which, aside from their invariance
properties that are maintained in this framework and, for example, yield a robust version of
the r-test, do not reveal extra robustness properties. Thus, on one hand, unbounded scores
cause a total failure; on the other hand, by a suitable truncation of the classically optimal
scores, an asymptotic maximin rank test can be obtained. Also the classical ARE-results are
invalidated; for example, under sufficiently contaminated normal shift alternatives, the sign-
test surpasses the Wilcoxon, which even may turn biased.

In order not to overload the presentation, the exposition concentrates on the one-sample
case, the two-sample analog being briefly treated in Section 6.2. In Section 6.3 the possibility
of other asymptotic approaches is mentioned.

2. Preliminaries. This section introduces the notation for the one-sample case and presents
two auxiliary results which will be used throughout.

The sample space in this paper is the extended real line [—o, +], endowed with its Borel
o-field #. We denote by .# the set of all probability measures (pm’s) on 4, by /. the subset
of ./ that corresponds to continuous distribution functions (df’s) which assign probability zero
to —co and +; and by ., the subset of .#. that corresponds to df’s which are symmetric
about zero. A pm G shall be identified with its df and with its expectation operator; hence the
identities G(t) = G([— oo, t]) for t € [~, +], G({t}) = G(t) — G(t — 0) for ¢ € (=0,
+ ], and G(B) = G(Ip) = [ dG for B € . The left-continuous pseudoinverse of G is given
by G7'(s) = inf{t € [, +®]| G(t) = s}, s € (0, 1). Note that, if the random variable ) u
is distributed uniformly on (0, 1) (to be abbreviated subsequently as u ~ A), then G () ~ G,
even if G({—o, +e}) > 0. For n, a positive integer, and G, - - -, G, € 4 the symbol %, G,
stands for the stochastic product of Gi, --- G,, and if 2 C 4, then 2™ = (W, | W, =
®L1Gi, GEP,i=1,...,n) and 2" = {G"| G" = ®%,; G, G € P}; these classes represent
all possible joint laws of the observations xi, .-, x, which are always assumed to be
independent and, sometimes, identically distributed, when the law of the single observation
varies over the class 2. This 2 is usually a neighborhood (nbd) of the following kind. Given
Fe#ande 6€[0,1,0<e+ 5< 1, the gross error nbd 2 of F with radii €, § is defined as
P=2P(F,68)={GEM|VBE B, GB) = (1 — €F(B) — §}. These nbd’s conveniently
generalize e-contamination and total variation nbd’s by means of a composition, cf. [23],
Remark 5, page 1082, and at least in these more special forms, they have been used in robust
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statistics from the start. While e-contamination nbd’s are not defined by a metric total variation
nbd’s can be generated by the total variation distance, which is given by |G — F | = sup{| G(B)
- F(B)|BE #}.

The rank tests considered in this paper are obtained by inserting a rank statistic into a test
of the form @, (t) = (1 — y)I(t > k) + yI(t = k), t € [, +], where y is the randomization
constant and k the critical value. Because discontinuous df’s ought not to be ruled out by
artificial assumptions, our definition of rank statistics must respect ties among the absolute
values of the observations xi, - - -, x,, and also zero observations, cf. Hajek and Sidak (1967),
page 118. Although one can think of other combinations of treating the two types of ties, we
restrict ourselves to either averaging or randomization, for lucidity’s sake; the particular
treatment of ties does not affect the results anyway. Now, for every sample size n, let scores

a,(l), ---, a,(n) € (—», +o) be given. We arrange the ordered absolute values of
X1, - -+, X, into g + 1 different ties (tie O possibly empty) so that 0 = | x| = ... = | x|
<|x|"* =...=|x|" < ... <|x|"); tie k has length px = 74 — 741, k=0, .-+, g;
7-1 =0, 7, = n. Then averaged scores a,(-) are defined by

Q.1 an() = pi' Y {an(f)| 1 <j=S M}, me1 <isS 1, k=0,---,g,
and the average scores rank statistic R, is defined to be of the form

(2.2) R.=n""2 Y0, (sign(x.) + % I(x, = 0))@n(r.);

here and subsequently, sign(¢) = —1, 0, 1 according to ¢t < 0, = 0, > 0, and the r /s denote the
absolute ranks,

23 o= Y I( x| = | xi), i=1,.00,n.

For the randomization method, additional random variables are required: uy, - - -, u, ii.d.
~ A, and by, -+, by iid. ~ Z (1, %) (binomial), such t+hat the u-, b-vectors and the x-vector
are independent. Then the randomized absolute ranks 7¥ can be defined as

2.4) ;';-'=2,'-'=11(;,+u,§;,+u,), i=1..-,m

thus, the observations in tiek inherit their ranks from the corresponding u,’s. The randomized
scores rank statistic R} is by definition of the form

.5) R¥ = n"V2 YL, sign*(x)aa(r ¥),

where sign*(x;) = —1 if x, <0, or x, = 0 and b, = 0, and sign*(x,) = 1 if x, > 0, or x; = 0 and
b, = 1. The common symbol for R, and R} will be R,.

Although it does not seem to be essential for the results of this paper to hold, we assume for
convenience that the scores a,(-) are nonnegative and increasing,

(2.6) 0=sa.(1)= .. =an(n).
Then the rank statistics R, are stochastically increasing.

PROPOSITION 2.1.  Let the rank statistic R, be given by (2.2) or (2.5), and assume (2.6). Then
the law (®'=1G;) ° R;" is increasing in each argument G, i = i, - - -, n, with respect to stochastic
ordering.

Proor. We shall consider R, first. By the argument of Lehmann (1959), Lemma 2, page
74, it suffices to show that, as a point function, R, (x1, - -+, X,) is increasing in each argument.
In showing this, we may without restriction keep x2, - - -, x, fixed, while x; is moved from the
left to the right. Several cases occur, which can be settled by similar arguments; to illustrate
the idea, we sketch the following cases: x; leaving zero, x; = | x| entering, and then leaving,
tie k.

The only part of n'/?R,, that is affected when x, leaves zero is % ), {6,,(;i)| Fo=rm) =%
121 an(j). This expression turns to % ¥ <" @.(j) + (o), and thus increases by the amount
of % an(7o).
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When x; = |x1| = | x| -0 enters tie k from the left, the part of n'/?R,, that corresponds to
Fi < The1 OF 7 > 7y is not affected. The remaining part is an(tx-1) + 3, {s1gn(x,)an(r,)| Fi=
&} . The score of x, increases from a.(7e-1) to (e + 1)7'Y {@n(j)| Ta-1 = j = 74}, while the
common score of the x’s in tie k decreases from pi' Y {an(j)|me-1 < j = Tk} to
(e + 1) Y {@n(j)| Th-1 = j = 74} . Therefore, the amount of increase is minimized if all x/’s in
tie k are positive, and then it is zero.

When x1 = |xi| = |x |“ leaves tie k, the only part of n'/?R, that is affected is
¥ {sign(x:)a.(r:)| 7:=14}, where @n(7r) = ' Y {an(j)| Th-1 <j = m4}. The score of x; increases
from this value to a.(r:), the common score of the other x/s in tie k decreases to (ux —
1)7'Y {@n(j)| Te-1 <j < 7&}. Therefore, the amount of increase is minimized if, again, all x,’s
in tie k are positive, and then again, it is zero.

To treat R, we may again invoke Lehmann’s lemma, in view of the independence of the
u-, k-vectors and the x-vector, and must show that, as a point function, R¥(x1, -, X») is
increasing in each of its arguments, when the values of the randomization variables u;, b,,
i=1, ..., n,are fixed. Without restriction, keep x2, - - -, x, fixed and vary x;. We sketch the
argument for the following cases: x; increases while remaining negative, and x, entering zero
from the left. The remaining cases can be treated similarly.

When x, increases and remains negative, then its absolute value decreases, and so does r 1,
whereas r; increases for i > 1. Because the value of the randomization vector u is fixed, the
same can be shown, by going back to definition (2.4), for the randomized absolute ranks: 7 ¥
decre+ases 7 ¥ increases for i > 1. Then, because also the b-vector is fixed, n'/?’R¥ =2 Y
{an(r*)|x.>00rx, =0, b, = 1} — Y%, a.(i) increases.

When x; approaches the tie at zero from the left, then F¥=r1=10+ 1, and the part of

n'?R ¥ that corresponds to rE >0+ 1 won’t be affected. The remammg part is given by the
expression Y;er sign*(x; )an(( *) — an(1o + 1), where I = {i| x; = 0}. Let 7;, i € I, be the ranks
of u;, i € I. By definition, r ¥ = 7,, i € I. Let r;, i € I U {1}, denote the ranks of u;, i € T U
{1}; put I’ = {i € I\u, > u,}. Then the above expression’s increase amounts at least to

an(TO + 1) - an(;l) - ZiEI’(an(;i + l) - an(’,:t ))9

which is nonnegative, since 7y = 7, = roforie I’. O

The preceding proposition tells us in particular that a rank statistic R, attains its stochas-
tically extreme laws with respect to some 2™, 2 C , at the stochastically extreme df’s in 2
itself (provided these exist). To be precise, the notion of stochastically extreme law or df is
used in the following sense: a set 2 C ./ has a stochastic supremum iff there is a Go € ./ such
that, first, G(t) Z Go(¢) for all G € 2, t € [—o, +], and second, for every ¢, k € (0, +) there
is a G € 2 such that sup,<.| G(t) — Go(t)| < {; then we write Go = sup 2. The definition of
stochastic infimum (inf 2) is entirely analogous. The usefulness of these notions, which will be
extended to an asymptotic setting in Section 4, rests on the following applications: if ¢, x° T,
denotes a test of the previously introduced form, based on a statistic T, :[—o, +%]" — [—oo,
+o], and if for some 2 C M, Go = sup{ Wy T.,' | W, € 2™}, G, = inf( WyoT;;)'| W, €
2™}, then sup{ Wa(@,x°To)| Wo € 2™} = Go(py.x) and inf{ Wo(p, ko Tn)| W, € 2™} =
Gi(py,»)-

The next proposition provides a further reduction, to the continuous and i.i.d. case. It also
shows that for gross error nbd’s of centers F € .. the particular treatment of ties has no
influence on the extreme laws of rank statistics. Despite its technical nature, the proof also
gives some insight into a peculiar robustness property of rank statistics that might be called
“bring-in effect of ranks”.

PROPOSITION 2.2.  If R, is a rank statistic of form (2.2) or (2.5) and (2.6) holds, then for F
E M. and P = P(F, e, §) we have

sup{ WooR,'| W, € 2™} = sup{G"R,'|GE 2 n M.}
inf{ WooR;' | W, € 2™} = inf(G"°R;'|GE 2 n M.).
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ProoF. The nbd 2= 2( F; €, ) has a stochastically largest element Go, which is given by
Go(t) = ((1 — €)F(t) — 6)", t < +oo. It puts mass € + § to +o, and so it is not in .#.. We would
like to bring in this outlying mass smoothly without changing the law G§°R,,' much.

Observe the following phenomenon (bring-in effect of ranks). Let k € (0, + «) be fixed. If
ty, o+ o €(—k,+o]and i1, -+, [, € (— k, +®] such that | ;| <k=F=t;and t; Z k=,
=k, fori=1,-.-.,n then R,(f1, -+, {n) = Ru(t1, + - -, t). (In the case R, = R} we assume
fixed values of the randomization rv’s.) Thus, outliers to the right, and similarly to the left, are
automatically brought in (e.g., #; = +o may be exchanged for 7; = k).

Now choose a H, € M. such that Hy(b) = 0 and define Gy € . by Go(t) = Go(t) +
(€ + 8)Hy(t), t < +». Then Gy € 2, because Go(B) = Go(B N (—», +®)) + € + 8§ = (1 —
€)F(B) + € + 8 for B € #. Furthermore | G§ » R, — Gi ° R | = G3(Qi, t: = —b) + GE(3i,
t; = —b) = 2nGo(—b), and this bound tends to zero as b — +oo. (Here, the approximation of
the stochastic supremum even holds in total variation distance.)

The argument for the second assertion runs similarly. 0O

REMARKS (1). This proposition remains true if 2 is a Kolmogorov or Lévy or Prokhorov
nbd.

(2) If § > 0, we can generally achieve equality of G5°R;" and Gi°R,". However, note that
b may necessarily have to tend to infinity if § — 0. Therefore, the bring-in effect of ranks may
(and actually does) disappear for infinitesimal nbd’s; cf. Section 5.

3. The nonparametric hypothesis of approximate symmetry, and distribution freeness of
rank statistics. The classical nonparametric null hypothesis in the one-sample case is the set
M s, i.e., the underlying df F, which for convenience is assumed continuous, shall be tested for
symmetry about zero, without any further consideration of its particular shape. For this
problem rank statistics R, of form (2.2) or (2.5) bring along a very attractive property: the law
F™ o R;' does not depend on the particular F € .,; more generally, if = denotes a
probability density with respect to A(1/2,1,2) (Lebesgue measure restricted to (—%, %)), then for
F,(dt) = n(F(t) — %) F(dt) the law F; > R;" does not depend on the particular F € ... This
distribution freeness is useful to guarantee uniform level a for F € ./, and it has also been
used to obtain lucid, uniform power results under nonparametric alternatives (cf. Lehmann
(1953) and Behnen (1972)).

However, symmetry about zero is a rather stringent requirement which, artificial and trivial
cases excepted, will hardly ever be met in practice; already the slightest asymmetric contami-
nation suffices to destroy the relation F(—t) = 1 — F(t), t € [—oo, +o]. Consequently, the
danger is imminent that an unmodified rank test becomes significant in the presence of only
minor deviations from a symmetric df that we would readily neglect.

The situation concerning classical alternatives may be argued similarly: the optimality of
a rank test, and the relative efficiency of two rank tests, are usually determined under the
assumption of positively asymmetric df’s, in the sense that,

Vit € [—x, +x], F(-t)=1-F(@), At € [—o0, +0], F(—=t) <1 —F(t).

Also these relations can be destroyed by the slightest contamination (when positive mass is
moved towards —oo, for example). Thus the superiority of one rank test to another may depend
on practically too restrictive alternatives. It will be shown quantitatively in Sections 4 and 5
that gross error deviations have indeed nonnegligible, and possibly disastrous effects. There-
fore, a robustification of the classical nonparametric approach is needed.

The basic idea that also prevails in other areas of distributional robustness will be to replace
single pm’s by nbd’s. On the type of nbd’s and their size, one has to agree on a priori grounds.
In our case we are lead to the following notion of approximate symmetry: a df G is
approximately symmetric about zero iff there is a F € ., such that G € 2(F; ¢, 8). The
nonparametric hypothesis of approximate symmetry is #%; = U{ P(F; ¢ 8)|F € M.}. In
the case of e-contamination nbd’s, G € %, means that we observe a continuous and
symmetric rv with probability 1 — ¢, and, with probability €, a completely unspecified rv. In
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the case of total variation nbd’s and G € ., G € #3%; is equivalent to sup{| G(B) —
G(—B)||B€ %} = 26. When the classical alternatives of positive asymmetry are enlarged in
the same manner to collections of alternatives, one could equally strive for an interpretation
(of approximate positive asymmetry, e.g., as positive asymmetry of df’s on some compact).
However, one should not care too much because the main purpose of alternatives, as
formulated by Lehmann (1953), is to provide a technically feasible basis for power comparisons
between the various tests. Furthermore, we choose our alternatives in generalization of the
classical ones and in accordance with the type of deviations that occur under the null
hypothesis.

Leaving quantitative aspects to other sections, our interest here concentrates on the question
whether rank statistics preserve their distribution freeness in the following generalized sense.

DEFINITION. A statistic 7),:[—o0, +2]" — [—o, +] is distribution free for a class %,
C A with respect to nbd’s 2(-; ¢, §) iff for every Fo € ., the stochastically extreme laws,
sup{ W, o T:'| Wo € P(Fo; € 8)™} and inf{ W, o T;,'| W, € P(Fo; €, 8)™)}, exist and do
not depend on the particular Fo € Ao.

REMARK. In view of tests of the form ¢, ° T,, it would be sufficient to require that,
separately, the supremum is independent of F;, Fo € null hypothesis and the infimum is
independent of Fy, Fi € alternative hypothesis, in order to get a “distribution free” test. But
subsequently, the stronger condition is simultaneously fulfilled, or not. Moreover, it appears
to lead to a more canonical notion.

THEOREM 3.1.  Let 7 be a probability density with respect to \(_12,1/2), and let M ()= { F,
€ M|\IF E M, F (dt) = n(F(t) — %) F(dt)}. Then rank statistics R, of form (2.2) or (2.5)
are distribution free for M .(m) with respect to nbd’s P(-; ¢, §).

REMARK. While the theorem remains valid for Kolmogorov nbd’s, rank statistics are not
distribution free for ... with respect to Lévy and Prokhorov nbd’s. These latter nbd’s would
lead to a notion of approximate symmetry that is not scale invariant (as follows from the
subsequent proof); more severely, a look at the extreme case of one-point measures I, | | =
8, reveals that such a notion would collide with the presumed unrestricted accuracy by which
we can evaluate the sign-function.

Proor. Without restriction, the argument concerning the stochastic supremum is given.
For nbd’s 2 (F,; ¢, 8), F € M., this is attained, in view of Proposition 2.1, under G* where
G(t) = (1 — )F,(t) — 8)", t < 4. (If € = 0, then the same G is the stochastic supremum of
the Kolmogorov nbd of radius & centered at F,, so these nbd’s are covered automatically.)

Let x ~ F,, and ¢ ~ # (1, €), independent of x (and the randomization rv’s). Define the rv
y by

y=xI(c =0) + ol(c = 1))I(x > a) + ©I(x = a),

where a = F;'(8/(1 — €)). Then y has df G and, without changing its law, it can be represented
as

y=(F'(% + v)I(c = 0) + 0I(c = ))I(v > ao) + ®I(v = ao),

where v ~ Fo,, Fo = A-1/2,12), and ao = Fo,(8/(1 — €)). Indeed, by the definitions, we have
F7'(% +v) ~ F,and F7'(% + 5) S a & s = ao, for | s| < %. Let the transformation f: (—%,
%) U {+®} — [—o, +] be defined by f(s) = F'(% + s), | s| < %, and f(+®) = +o0. Then
we have y = f(w), where w is the rv (vI(c = 0) + o0l(c = 1))I(v > ao) + wI(v = ao), whose df
is the stochastic supremum of 2(Fu.; €, §). Note that the function f is strictly increasing, and
that f(—s) = —f(s + 0), | s| < %.

Therefore, if w,, i =1, - - ., n, are n independent copies of w, and y, = f(w;), then the vector
of signs and absolute ranks based on the w,’s coincides almost surely with that computed from
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the y.’s (the only possible exceptional set is included in {3i, w, = 0}). This implies R,( 1,
©+*, ¥n) = Rp(wi, - -+, w,) almost surely, and the theorem is proved.

The remark is based on the following observations. Take a F; € .#,, with compact support.
Note that the stochastic supremum of the Lévy nbd, and also of the Prokhorov nbd, which is
centered at Fy and has radius § € (0, 1), is given by Gi(¢) = (Fi(t — 8) — 8)*, t < 4. This is
the df of the rv y; = (x1 + §)I(x1 > a1) + wI(x, = a1), where x; ~ Fy and a; = F7'(8). Now
make scale changes, x, = 07'x;, 0 € (0, +). This gives F,(1) = Fi(ot), t €[—, +], and a,
= F;(8) = 0'a1; moreover, with self-explanatory notation, y, = (¢ ~'x, + NI (x1 > ar) +
®I(x1 = a1). Because R, is invariant under scale changes, we may equivalently consider oy,
= (%1 + 08)I(x1 > a1) + ®I(x1 = ). If o is large enough, then oy, is positive with probability
1, and so R, = n™"* ¥, a,(i) almost surely. For sufficiently small o however, x; + 08 < 0
holds with positive probability, hence R, < 0 with positive probability. 0

The quantitative evaluation of the extreme laws of a rank statistic with respect to gross
error nbd’s is certainly not easier than in the classical situation where one already resorts to
asymptotic (as.) approximations. For e-contamination, the extreme laws can at least be reduced
explicitly to the classical case: for F € ., the stochastically largest law G, = sup { W, ©
R | W, € P(F; € 0)™}, for example, is given by

Go(2) = Yo=1 (1 — €)%€"™" Yaep, F*(v**RE = n*? — Y iza an(i))
+ e l(n P g, ()= 1), 1<+

where D, = {d C {1, -+, n}|#d = v}, and for d € D,, R is the rank statistic at sample size
v, with scores a,(i), i€ d;v=1, ..., n. In particular, distribution freeness is directly visible.

4. Extreme limit laws of rank statistics. In this section, an as. investigation of one-sample
rank statistics shall be carried out in the model of [23]. This model employs local alternatives
in the same manner as, e.g., Le Cam (1960), Hajek and Sidak (1967), Roussas (1972). As test
statistics are commonly standardized so as to achieve local power rather than just consistency
of tests, such a differential approach appears to be the most canonical way to assess the
influence of outliers quantitatively. A peculiar feature of this model is that the nbd’s have to
shrink at an appropriate rate; otherwise, the maximin test based on least favorable pairs, at
level a, would either degenerate to the test identically a (in case the nbd’s shrink too slowly so
that they overlap eventually) or it would be as. equivalent to the classically best test between
the nbd-centers (in case the nbd’s shrink too quickly).

Let {Fy|0 € ©) C 4 be a parametric family, whose parameter space © is a subset of
[—o, +] and contains 0 in its interior, and which satisfies the following conditions (4.1)-
(4.3).

.1 e #..
(4.2) Fy < Fy, e 0.

There exists a function A € Ly(dF,) such that, if f5 denotes the Fo-density of Fj, then

-
4.3) A 7
Let parameters €, § € [0, +) be given (they determine the size of the nbd’s to follow) and
some 7 € (0, +) (which determines the distance between the classical null hypothesis and
alternative). The following condition is imposed,

1
d EA in Lz(dFo) asfd — 0.

2
44 0<n<FuA*; g=°F 8

T

The right-hand inequality is a disjointness condition (cf. Remark 4 of [23], page 1082);
equivalently, it ensures strict as. unbiasedness of the as. maximin test (cf. (5.14), (5.15) below).
For all positive integers n, the numbers 7,, €, and 8, are defined by

4.5) £ =n"12, E=1,€ 8:
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Then the null hypothesis Ho. and the alternative H,, at sample size n (sufficiently large) are
of the form

4.6) Hon = P(Fo; €, 8:)"™, Hin = P(F,; €, 8,)",
and the as. null hypothesis H, and the as. alternative H; are defined by
.7 H, = ((W,)|Vn, W, € H;,}, j=0,1

If (T,) is a sequence of statistics T, :[—o, +0]" — [—oo, +00] that defines an as. test (@,) in
the usual way, @n = @,z © Tn, Where y € [0, 1], k € (—o, +), then as. approximations of the
maximum size a,(g,) and the minimum power B,.(g»),

(48) ah((pﬂ) = Sup{ Wn((Pn)I Wﬂ € HOn}’ Bn(q)n) = ll'lf{ Wn(‘pn)l VVn € Hln},

can be obtained from the extreme limit laws of (7, ). This latter notion generalizes the notion
of stochastic extremum of a set 2 C ./, as introduced in Section 2, to the present asymptotic
setting, where the class 2 now consists of sequences of pm’s, 2 = {(G.)}. We shall say that
2 has a stochastic limit superior iff there exists a Go € . such that, first Go(¢) = liminf,, G,(¢)
for all (G,) € 2, t € [—», +x], and second, for every ¢, k € (0, +) there is a sequence (G.)
€ 2 such that limsup,supj<«| Ga(t) — Go(?)| < {; then we write Go = limsup 2. The
definition of stochastic limit inferior (liminf 2 ) is entirely analogous. The usefulness of these
notions rests on the following application to tests of the above form: if Go = limsup{(W, °
T:H)|(W.) € Ho} and G = Liminf{(W, ° T,")|(W.) € Hi}, then limsup,an(p.) =
sup {limsup, Wo(¢x)|(W,) € Ho} = Go(9,.x) and liminf, B.(p,) = inf {liminf, Wo(p.)|(Wa)
€ H\} = Gi(@y.2)-

For the determination of the extreme limit laws of one-sample rank statistics R, of form
(2.2) or (2.5) we make the following assumptions. The scores a,(i) are generated by a function
a:[0, 1) = [0, +) in either one of the two ways,

a,(i) = a(

), for i=1,...,n,
n+1

4.9)
an(t) = Ea(v(” for i=1 ..., n,

where v denotes to the ith order statistics in a random sample of size n from the pm A (as
previously, Lebesgue measure on (0, 1)). The scores generating function a shall satisfy the
following conditions.

(4.10) a is increasing, nonconstant, a(0) =

a is absolutely continuous on [0, r] for every r € (0, 1),

@10 and d(s) < K(1 — s)7%?*? ae. A, for some K, & € (0, +o).

a is Lipschitz bounded of order 1 on [0, so) and convex on (so, 1),

4.12) for some 5o € [0, 1].

To some extent, these conditions are dictated by the subsequent use of the Chernoff-Savage
type theorem of Sen (1970). They are fulfilled, for example, by the functions a(s) = s and a(s)
= ® (% + %s), s € [0, 1) (® denoting the standard normal df), which correspond to the
Wilcoxon and van der Waerden, Fisher-Yates one-sample rank tests; the sign-test (@ = 1) is
already covered by the results of [23].

By virtue of Proposition 2.2, under these assumptions, the extreme limit laws of rank
statistics over Ho and H; may be calculated in the restricted model H, Hi (continuous iid.
case),

Hy= {(G})|Vn, G, € P(Fo; €, 8) 0 M},
H = {(G)|Vn, G, € P(F. ; €, 0n) N M.}

4.13)
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Let the functional R : #. — [0, +) be given by

4.14) R(G) = f a(G(t) — G(—1))G(dt), Ge M..
(0,+0)

The following uniform asymptotic normality is basic.

PROPOSITION 4.1. Let (R,) be a sequence of rank statistics of form (2.2) or (2.5) with the
scores an(i) and the scores generating function a satisfying (4.9)-(4.12). Then

PL(Rn — n"*QR(G,) — Ma))| Gr) = A (0,A(a®)) a5 n— +w
for all (G) € Ho U H1.

Proor. For G € M. let G+ € M. be given by G+(t) = G(¢) — G(—t), t € [0, +oo], and
define the (substochastic) measure »¢ on (0, 1) by ’

dG

(4.15) vo(ds) = — (G5 (s))A(ds).
dG,

Moreover, let the function o®: .#. — [0, +) be defined by

a*(G) =J’J {sAt(l —sva(s)a) + (1 —s Vv )a(s At)a(s v 1)

(4.16)
— 5 A td(s A Ha(s v D)}re(ds)ve(dr) + ve(a®) — (ve(a))>

This functional defines the scaling constants that are given by formulae (2.13), (2.14) of Sen
(1970), as can be seen upon a transformation to (0, 1) X (0, 1), which is possible in view of the
continuity of G and the relation G™' © G = idj—w,+«] a.€. G. As will be proved below, o” is
continuous at Fy in the weak topology. This entails that lim,¢*(G,) = %A(a®) for all (Gr) €
H{u Hi, because o%(Fy) = %A(a?) (cf, e.g., (3.39) of [29]) and even lim, || G, — Fo|| = 0. Then
we invoke Sen’s (1970) Theorem 2.1 and Theorem 5.1 (apppealing to the considerations on
pages 61 and 62 of [29] as for the choices of scores) and conclude that for all (G7) € Ho U H1,

@.17) ,%’(Rn - n‘/2(2R(Gn) —nl YR, a<;—i-f))| GZ)

= H(0,A(a%) as n— +o.

Then it remains to show that lim,n"?(n™' Y&, a(i/(n + 1)) — A(a)) = 0. To see this most
easily, we insert the sequence G, = F; into (4.17) and make use of the equality R(Fo) = %2A(a)
and the asymptotic normality £(R.| F§) = 40, A(a®)); this latter convergence is obtained
from the asymptotic expansion

(4.18) R, —n™2 Y sign(x)aRFo(|x.]) = 1) »r; 0 as n— +ox,

cf. Hajek and Sidak (1967).

To prove continuity of o at Fy, let the sequence (G,), G» € 4., tend to F, weakly. Then
SUPse(-m,+w]| Ga(t) — Fo(t)] = 0, supeefo,+w1| Ga+(t) — Fos(t)] — 0, and hence G i(s) —
F5i(s) as n — +oo at all continuity points of Fo}. Because the measures »g, have df’s vg,(s)
= Gn(Gri(5)) — G.(0) and »r,(s) = %s, s € (0, 1), we conclude that vg,(s) — vr,(s) a.e. A, and
therefore v, (h) — vr,(h) for all continuous A : (0, 1) — (—o0, +) with compact support. The
set C.(0, 1) of such functions is dense in L;(dA). Furthermore, the densities of the measures
vg, are uniformly bounded a.e. A, because generally dG/dG. = 1 a.e. G, for G € /.. This
convergence, therefore, extends to every h € Li(d\), in particular to the functions 2 = a and
h = a® In order to show convergence of the double integral in the defining expression (4.16)
we recall that the set of all finite sums of functions (s, ) — hi(s)h2(2), hi, he € C.(0, 1), is
dense in L;(dA ® d)); so the same argument applies because by the Chernoff-Savage condition
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(4.11), cf. also (3.17) of [29], the integrand is indeed in L,(dA ® d)). O

The determination of the extreme limit laws is thus reduced to the extreme limits of the
centering constants. Their maximization and minimization is carried out for every 7 in Lemma
4.2. Lemma 4.3 contains the asymptotic evaluation. The assumptions are the same as for
Proposition 4.1 (although weaker assumptions would suffice for Lemma 4.2). For the statement
of the lemmas, let the functionals U.(a), 1i.(a) be defined by

1—(en+8,) +5 +
Un(a) = f a(s - ((l - e,.)F()(—FEl(i 6")) - 8n> ))x(ds)
(1—e,) Fy(0)—3, n
1
+ J adh,
1=(ep+8,)

1
- n + 87:
602 f (0 (522
(l=€x)F, (O)+en 8, T

+ €, + Sn)))\(ds).

(4.19)

(That these expressions are well defined for sufficiently large n follows from the subsequent
proofs.)

LEMMA 4.2. It holds that
sup{R(G,)| Gn € P (Fo; €n, 8,) N M.} = Dn(a),
inf{R(Gn)| G. € P(F,; €, 8n) N M.} = tir(a).

Proor. Independently of the asymptotic setting we shall find the extrema of R with
respect to 2 = P(F; € 8) N M., where FE M .and e, § €0, 1), 0 < e + § < 1. Without
restriction, we shall give the argument concerning the supremum. Since only continuous df’s
G are considered, for which G™" © G = id|_,+) a.e. G generally, we may make a transformation
to the unit interval so as to obtain that R(G) = [ a(s — G(—G'(s)))A(ds). Because a is
increasing, nonnegative, it follows from this representation that R is increasing with respect to
stochastic ordermg Moreover, for all G € 2, we have G(¢) = ((1 — €) F(t) — 8)*, t € [—o0,
+],and G7'(s) = F'((s + 8)/(1 — €)), s € (0, 1 — (€ + 8)). Therefore,

1—(e+8) + 8 +
R(G) gf a<s - ((1 - e)F(—F“(s——>) - 8) ))\(ds)
(1—e) F(0)—8)* I—e
1
+ J ad\, GE 2.
1—(e+4)

It remains to show that this bound can be approximated arbitrarily closely. Consider the
partlcular elements of 2 that are given by G(t) =((1=e)F() — 8" + (e + H)Arr+n(2), t

€ [—o, +x], where A,.+1) denotes Lebesgue measure restricted to (k, k + 1); k € (—oo,
+). Assume k > 0 so that G(O) = ((1 — &)F(0) — 8)*, and k even so large that (1 — €) F(k)
— 8> 0; then G™'(s) = F7'((s + 8)/(1 — ¢€)) for s = G(k). Because s > ((1 — €)F(0) — 8)*
implies that —F~'((s + 8)/(1 — €)) < 0, we have altogether that

G s+ 6 *
R(G) = J a(s— ((1 —e)F<—F‘1< )) - a) ))\(ds)
(1) FO)—-8)* I—e

+ J’ a(s — G(—G(5))A(ds).

G(k)

First, the second integral shall be shown to tend towards [{_(c+s) adA as k — +o. Indeed,
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because G(k) — 1 — (e + 8) and a € L,(d)), it suffices to bound the difference (&) {a(s) —
a(s — G(—G'(5)))} A\(ds). Since a is increasing and 0 = G(—G(s)) = G(—k) for s > G(k), this
difference can be bounded from above by [&w) {a(s) — a(s — G(—k))}A(ds) = [i-gr ad\
— J&B-c-w ad\. By dominated convergence, this bound tends to zero as k — +oo. As for the
first integral it suffices to show that [&(5"® adA — 0 as k — +oo, because of the monotonicity
and nonnegativity of a. However, this is again obvious as G(k) > 1 — (¢ + §) and a €
Ly(d\). O

Subsequently, we set a(1) = a(1 — 0), and let the function IC:[—o, + 0] — [—o0, +x] be
defined by

(4.20) IC(t) = sign(t)aR Fo(|t]) — 1), t € [—oo, +00].

LEMMA 4.3. It holds that
lim,n'2(2i.(a) — A(@)) = (€ + 28)a(l),
lim,n"?Q2i.(a) — A(a@)) = 1Fo(IC-A) — (e + 28)a(l).

PrOOF. In view of the continuity and symmetry of Fy the expression for U,(a) simplifies

considerably so that
1

4.21) n'220.(a) — A(a)) = n'? J' ad\;

1—(e,+28,)

the latter integral tends to (¢ + 268)a(l), as a is increasing.

As for u,(a) note that, by virtue of (4.18) and Le Cam’s third lemma, #(R.|F7,) =
N (1Fo(IC-A); A(a?)) and consequently, in view of Proposition 4.1, n'/2(2R(F.,) — A(a)) —
T7Fo(IC-A). Thus it remains to investigate the differences

—2n"*(i,(a) — R(F.,)))
(4.22)

ch 1
=n"? j a(s — Cp(s))\(ds) + n'/? f {a(s = CL(s)) — a(s = Ci(s)}A(ds),
where the following notation has been employed:

cn=2F, (0)— 1, cn =21 - €)F, (0) +e +8,)— 1;

(423) C:;(ZS - l) = an(—F:nl(s)) - (l - S), sE (F‘rn(O)? 1)7

S — €, —

Cl@2s—1=(1- en)F,n(—F;I( — 8)) + (€ + 8,) — (1 — 5),

1
se<—2—(l+c,'[), l).

Because (4.3) entails that

(4.24) fi‘g—‘_, A in Li(d\) as 0 — O,

it holds that || F,, — Fo|| = O(n~"?); hence c;, ci = O(n™"/?) and n'(c} — ch) — € + 28 as
n — +oo. It will follow from (4.26), (4.27) below that also the maximum c, of the sup-norms
of the functions C;, and C,, is of the order O(n~"/%). Moreover, it will be shown that

(4.25) lim,Supseq/za+e;),n |n(CH(2s — 1) — Cn(2s — 1)) — (e + 28)| =0.
Then the proof can be concluded in the following way. By a monotony argument, the first
integral in (4.22) tends to (e + 28)a(0) = 0. We split up the second integral according to



256 HELMUT RIEDER

assumption (4.12). By dominated convergence, the integral

n' f {a(s = Ca(s)) — a(s — Cr(s))} A(ds)

{a(s — Ch(s) — a(s — Cr(s))}
Cr(s) — Cr(s)

S0—Cn
=f n'? (Cr(s) — Cr(s)) A(ds)
converges to (€ + 28)a(so), in view of (4.25), the Lipschitz boundedness of a, and its absolute
continuity that ensures differentiability a.e. A. The corresponding integral over (so — ¢a, So +
¢n) obviously tends to zero. Because 4 is increasing on (so, 1), outside some A-nullset, the
remaining integral over (so + ¢, 1) is bounded from below by

1
f n'’% (CH(s) — Cn(s))d(s — cx)A(d5s)
$,tce,
Z (e + 28) + o(D))(a(l — ¢z) — a(s)) = (€ + 28)(a(l) — a(s,)).
It is bounded from above by
1-c,
j n'2 (CH(s) = Ca(s))d(s + ¢a) A(ds) + n2cu(a(1) — a(l = c))
= (e + 28 + o(D))(a(l) — a(so + 2¢2)) + nca(a(l) — a(l — c,))
— (€ + 26)(a(l) — a(so)).
Therefore, 2n'/%(i.(a) — R(F,,)) — —(e + 28)a(1), as desired.
In order to prove the outstanding formula (4.25), let a sequence (y») be given such that vy,

>0, vy, — 0, and for every s € (0, 1) a sequence (s,) C (0, 1) such that | s, — 5| < y». In view
of (4.24) we have that | F,, — (Fo + 7. A dFo) || = o(n™"/*) and so

= 0(71_1/2),

t
(4.26) SUPtef—w, +w | Fr, (—1) — {1 —F, () + 27 f A dFo}

where A7) = % (A(2) — A(—1)), t € [—oo, +]. Furthermore,

Fi'(s = vn = | Fr, = Fol) S F7(s)) S F3'(s + va + | Fr, — Fo|),
where we may set Fo'(s) = —oo for s = 0, F5' (5) = +, for s = 1, and so we obtain that

Fil(s) . Fi'(s) _ 2
J A dF, — f A dF,

Now insert s, = (s — (e, + 8,))/(1 — €) for s € (1/2(1 + ¢y), 1) to conclude (4.25) directly
from (4.26), (4.27).0

By means of Proposition 2.2, Proposition 4.1, Lemma 4.2 and Lemma 4.3, we have thus
derived the following result about the extreme limit laws of one-sample rank statistics in the
model Ho U H;.

THEOREM 4.4. Let (R,) be a sequence of rank statistics of form (2.2) or (2.5) with the scores
a,(i) and the scores generating function a satisfying conditions (4.9)-(4.12). Then

limsup{( W» © Rz")|(Wn) € Ho} = (€ + 28)a(1); A(a®)),
Liminf {( W,  R;*)|(W,) € Hi} = N(rF(IC-A) — (€ + 28)a(1); A(@)),
where IC is given by (4.20).

427 = 2yn + | Fr, = Fol) Fo(A?).
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Note that for this IC, in addition to A(a®) = Fo(IC?), also a(l) = sup IC = sup;r, IC =
—inf;;/C = —inf IC. So if we formally insert this I/C into [23], then the preceding theorem
agrees with the results obtained in this paper about the extreme limit laws of sequences of
statistics T,

4.28) T.=n""2 Y% IC(xi),

where IC € Ly(dF,), Fo(IC) = 0.

REMARK. As mentioned in Remark 6, page 1082, of [23], this paper can be modified so
that the parameter sequence (—7,) is exhanged for the sequence identically zero. Moreover, it
should be noted that all arguments go through under the present weaker differentiability
assumptions about the densities. Condition (4.24) is sufficient for most conclusions (apart from
the log likelihood expansion in Section 4 of [23], for which (4.3) is required). Where the proof
of Lemma 4.5 of [23] employs pointwise convergence, a subsequence argument can be used
instead.

Statistics of form (4.28) were considered because many other test statistics prove to be as.
equivalent (in a suitable sense) to statistics of this kind; as for rank statistics, such an as.
equivalence, in the sense of equality of the extreme limit laws, is demonstrated by the preceding
theorem for the present context. It should be noted that the Hajek and Sidak (1968)
approximation (4.18) is not sufficient for this model, although it extends, of course, to all
sequences ( W,) which are contiguous to (F5) (to be denoted by ( W,) < (F3)). Unfortunately,
the as. hypotheses Ho and H, (as well as Ho and H1) contain sequences which are not
contiguous, and even asymptotically orthogonal, to (F3); cf. Proposition 6.1 of [23]. Therefore,
the stronger Chernoff-Savage approximation of Sen (1970) was used. (After a simplification
of the centering constants in the manner of Hoeffding (1973), the results of Huskova (1970),
which are based on Hajek’s (1968) projection method, would be equally suited.) It is true that
also by these other techniques rank statistics R, are approximated (in probability) by sums T},
of form (4.18), but with /C = IC, depending on n and, moreover, on the particular sequence
( W) considered; cf. (3.4)—(3.6) of [29] and (12), (13) of [15]. Rather than approximating these
various /C, by some unique /C so that the results of [23] would become directly applicable,
it turned out to be easier to straightforwardly evaluate the normalizing constants.

S. Local robustness of rank tests. In this section we collect and state the consequences of
Theorem 4.4 on the as. maximum size and as. minimum power of one-sample rank tests, as
well as on the as. relative efficiency. Moreover, the established correspondence via IC is
utilized to derive an as. maximin rank test from the results of [23]. Finally, examples are given.
Assumptions and notation are those of the preceding section.

To illustrate the influence of gross errors on size and power of rank tests, let (p.) = (p,, %,
° Ry) be the classical sequence of one-sample rank tests for (F3) vs. (F7) at as. level a, where
(v») C [0, 1] and (k») C (—o, +) such that lim, k, = k,(a),

G.1) ka(@) = us(A(@)'”?,  uy=@7'(1 - a);
thus
(.2) lim, F5(pn) = a,
Cm N1 _1R{UC-A)
11m;: Fyn(q)n) =1 Q(“a (A(az))lﬂ )

where IC is given by (4.20). We have the following corollary to Theorem 4.4.
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COROLLARY 5.1.  The as. maximum size and as. minimum power of the original as. rank test
(9r) are given by
e+ 28)a(1))

l-imn n(Pn =1-® o 21,
5.3) o) (“ a@)"”

lim, Ba(pa) = 1 — @(u _(@RUC-A) — (e + 28)a(1))) '

(A(a*)"

Thus, if the scores generating function is unbounded, a drastic breakdown occurs. If a(1) <
+0o, then it makes sense to adjust (i.e., increase) the as. critical value so as to maintain as. level
a. Let in this case /.(a) be defined by

) l(a) = ka(a) + (€ + 28)a(1),

and denote by () the sequence of modified rank tests, Y, = @, ,;, © Rx, where lim, 1, = I,(a).

COROLLARY 5.2. If a(1) < +oo, then the as. maximum size and as. minimum power of the
adjusted as. rank test (») are given by

(5.5) lim, an($n) = a,
lim, 8.(Y») =1 — (I)<u., -7

(Fo(IC-A) — 211a(1))>
(A(a*)"”

Towards the derivation of an as. maximin rank test, let us first recall that in the classical
situation the sequence of statistics T, = n”/?> ¥%, A(x;) defines an as. maximin test for (F7)
vs. F7)) at some as. level a. By virtue of (4.18) this test is as. equivalent (in the sense of equal
as. size, as. power under (F5), (F7,)) to an as. rank test based on the scores generating function
d (the scores a, (i) satisfying lim,, [ (a»([1 + ns]) — a(s))®A (ds) = 0 would be sufficient at this

point) provided that the following relation can be achieved,
(5.6) A(2) = sign()dR Fo(|t]) — 1), t € [—oo, +x];

and then the as. rank test based on 4 is as. maximin for Ho vs. H; among all as. tests at a
prescribed as. level. This is outlined here in detail because the correspondence (5.6) makes the
following restriction on the kind of alternatives, for which one-sample rank tests can be
optimal, necessary, which has not yet been spelled out explicitly although it is inherent in, e.g.,
Hijek and Sidak (1967) and Behnen (1972), namely that

G A(=t) = =A@), t € [—o0, +00].

This condition entails that the law of the absolute value | x| is the same (up to as. negligible
remainder terms of order o(n™'/?) in total variation) under Fo as under F,,. Then the classically
optimal choice of 4 is

(5.8) d(s) = (A ° F3') (% + % 5), s €0, ).

Second, in deriving an as. maximin rank test for Ho vs. H; at some as. level a, recall Theorem
3.7 and Theorem 4.4 of [23] (slightly modified to account for the substitution of (FZ.,) by
(F3)), which tell us that the appropriate choice of the /C-function is

X)) IC,(t) =do\y A() N\ dy, t é [—o, +0oo],

where the truncation points dy and d, are defined by
(5.10) Fo((do — A)") = n = Fo((A — dh)").

To make the fulfillment of (5.9) by the IC-function of a rank test possible, we retain assumption
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(5.7); thus in particular —d, = d1, and then the optimal choice of the scores generating function
is

(5.11) a,(s)=d(s) N\ d, s € [0, 1),

where 4 is given by (5.8). Moreover, to guarantee the fulfillment of (4.10)—(4.12) by this a,,
we assume that

(5.12) A is increasing, and continuously differentiable on (—o, +o),

(5.13)  Fo is absolutely continuous, with a density that is continuous and strictly positive
on {0 < Fy< 1}.

So we can state the following minimax result.

COROLLARY 5.3. Let (Rx) be a sequence of one-sample rank statistics of form (2.2) or (2.5)
based on the scores generating function a, ((5.11)) so that (4.9) is satisfied. Let (Y}) = @y,.i,
R..) be the corresponding as. rank test, where (y.) C [0, 1], (I») C (—, +») and lim, [, = l,(a,)
((5.4)). Assume that in addition to (4.1)—(4.4) also (5.7) and (5.12), (5.13) hold. Then (y'}) is as.
maximin for Ho vs. H, at as. level a; its as. minimum power is 1 — ®(u, — 7(A(a%))"?).

In Definition 5.2 of [23] the classical asymptotic relative efficiency was generalized to a
minimax setting by the introduction of the as. minimax relative efficiency (AREmy), which is
based on the minimum standardized shifts of the limiting normals of test statistics. Like the
classical Pitman-Noether efficiency, AREn, allows an obvious interpretation in terms of
sample sizes and minimum powers. For its evaluation it suffices to compute AREm« ((¥»):
(Y*)) for a sequence (yr) of one-sample rank test for Ho at as. level a, of the form employed
in Corollary 5.2, based on some scores generating function a, and for the as. maximin test
(y*) of Corollary 5.3. We have to assume that (y») is as. unbiased, i.e.

(5.14) 2na(l) = Fo(IC-A)

for IC given by (4.20). Since, by virtue of (5.9)~(5.11),
(5.15) FoIC,-A) — 2na,(1) = A(a2),
AREn«((¥r):(¥*)) has the following form.

COROLLARY 5.4. Under the assumptions of Corollary 5.3 and (4.10)-(4.12), (5.14), the as.
minimax relative efficiency of ({n) with respect to (y:¥) is given by

(FoIC-A) — 2ma(1))*
Ma*)N(a3)

AREmx(($n):(¥)) =
where IC is defined by (4.20).

The results concerning the as. maximum size of rank tests have been independent of the
particular F,, due to distribution freeness (Theorem 3.3). Similarly, uniform power results
follow if nonparametric alternatives are employed. Then the robustness results about rank
tests take on an intrinsically nonparametric form.

Let {Ils| 8 € ©} be a parametric family of pm’s on (0, 1) whose parameter space is a subset
of [—o0, +] and contains 0 in its interior, and which has the following properties (5.16)-
(5.18), (5.21).

(5.16) o= A
(5.17) < A, geo.
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If 7y denotes the A-density of Iy, then there is a nondegenerate function = € Ly(d\) such that

-1 1
(5.18) ””—0-—>§smL2(d>\) as 6 — 0.
Then, for any Fy € .., define the family {F;| 6 € 6} by
(5.19) dFy = myo Fy dFy, deo.

The nonparametric form that the preceding corollaries now take is based on the fact that
(5.20) FoIC-A) = f a(s) Z (% + % \(ds),

independently of Fy € /.., provided that we assume
(5.21) Z(1 — 5) = —E(s), s€ (O, 1),

which is also in accordance with (5.7). Moreover, the defining equations for the minimax
solution simplify in this case to

(5.22) ME —d))=n,
(5.23) a,(s) = Z(% + %s) A dy, s€[0, ).

To guarantee (4.10)-(4.12) for this a* it suffices to assume that = has a continuous, nonnegative
derivative on [0, 1).

ReMArk. While the case of Kolmogorov nbd’s is automatically covered by the case of
total variation nbd’s, the asymptotics of this section also apply to Lévy and Prokhorov nbd’s.
Given { F9}, one has to pass to the shifted df’s Fo,(f) = FY(t — 8,), t € [—, +], under the
null hypothesis, and to F, (f) = F ‘,’"(t + 8,), t € [—, +0], under the alternative, and consider
total variation nbd’s of radius &, centered at these shifted df’s; also the differentiability
assumptions refer to these shifted df’s. In the case of a location parameter family { Fg}, the
whole modification amounts to decreasing = by 28, when compared with the total variation
case. The argument for the finite sample case can be found in Huber (1968); for the asymptotic
case, it has been spelled out explicitly in [21] and Quang (1976).

EXAMPLES 1. The normal location alternatives, Fy(t) = ®(t — 0); t, € [—o0, +x]. For (F§)
vs. (F7) at as. level a, the as. normal scores rank test (¢,) which is based on the scores
generating function d(s) = ®7'(% + % s), s € [0, 1), is optimal; we have that lim,F§(¢.) = a,
lim,F? (.) = 1 — ®(u, — 7). Due to d(1) = +0o, lim,an(p.) = 1 and lim,B.(¢.) = 0.

Assuming n € (0, 1/V2m), a, is given by a,(s) = @ '(% + % 5) A dy, s € [0, 1), where d| is
uniquely determined by the equation ¢(di) — di(1 — ®(d1)) = n; note that A(a2) = 2(P(d:) —
% — m dy). For the as. maximin rank test () for Ho vs. H; at as. level a (with as. critical value
ua(\(a2)"? + (€ + 28) di) we have limyo(¥*) = a and lim,B.(Y¥) = 1 — B(u, — (A (@2))").

A limiting form of (Y*) asn— 1/ V27, or equivalently d; — 0, is the as. sign-test (), with
as. critical value u, + (e + 28) (consider di'a,). It satisfies lim,a.(y5) = « and lim,B8,(y5) =
1 — ®(u, — 7(V(2/7) — 2m))-(¥7) is never biased. Moreover,

(Y@/m) — 2m)*

AREm(45):(¥%)) = Na2)

this is an increasing function of n which, departing from its value 2/7 in the uncontaminated
model, tendsto 1l asn— 1/ V2. For the unmodified as. sing-test (@), with critical value u,,
we have liman(p3) = 1 — O(uy — (€ + 28)), limnBu(@s) = 1 — (u, — 7(v(2/7) — 7).

If (pr’) denotes the classical as. Wilcoxon test (scores generating function a(s) = s, s € [0,
1), as. critical value 1/v3 u,), then lim,on(¢¥) = 1 — D(us — V3 (€ + 28)), limaBu(p?) = 1 —
D(u, — T(V(3/7) — 3 n)). For the modified Wilcoxon test () with as. critical value 1/v/3 u,
+ (€ + 26) we have lim,a,(¥¥) = a and lim,B.(V%) = 1 — ®(u, — 7</(3/7) — 23 n)). When
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compared with (), (y=) loses its superiority, which in terms of asymptotic relative efficiency
amounts to % in the uncontaminated model, as soon as 1 exceeds a certain value; to be precise,

AREmy(($7):(¥)) > Liff 5 > (1/v2m)-((v3/2 — 1)/(¥3 — 1)). Furthermore,

v3/7m) -2 \/3 2 1
AREn($2):py) =&/ z(az) . ne[o,m].

As n — (1/2+/7), this function first increases, departing from its value 3/7 in the uncontami-
nated model until 1 = n = ¢(d) — d(1 — ®(d)), where d is the unique solution of d =
V7(2®(d) — 1) > 0; at 7 it attains a unique maximum of value 3/d)((1/ ~/;) — 27); then it
tends decreasingly to 0; beyond n = 1/2vm, ({'¥) is biased.

The preceding results hold uniformly for the families F o) = ®((t/o) — 0), t, € [—o,
+oo], if the scale parameter o € (0, +) is unknown. For the mapping G — G°(G°(B) =
G(o7'B), B € #) sends the nbd Z(F}, ¢, 8) onto 2(Fy; ¢, ) one-to-one, and rank tests are
invariant under scale transforms. Thus the previous as. maximin rank test () is actually
uniformly maximin and thus may be viewed as a robust version of the classical -test.
Unfortunately, its form depends on r (given € and §). More generally, the preceding results
hold uniformly for nonparametric alternatives with quadratic mean derivative % =, = = &1,

2. Nonparametric alternatives, induced by the Jamily my(s) = 1 + 0(s — %), s € (0, 1), | 9|
<2. Fix Fy € Mcs. In the uncontaminated model, the as. Wilcoxon rank test (Pu)(d(s) = % s,
s € [0, 1); ko(d) = (1/V12)us) is optimal; lim,Fi(¢,) = a, M, F2(¢.) = 1 — D(u,
—-(l/ \/ﬁ)'r). In the model Ho U H, we have lim,ax(¢,) = 1 — ®(u, — V3 (€ + 26)), lim,Bn(¢»)
=1- ®u, — 7((1/ \/ﬁ) - s/§n)). For the test () with adjusted critical values (I.(d)
= (1I/V12u, + % (e + 25)), we obtain that limman(dn) = a, limaB.(fr) = 1 — D,
- 7((1/V12) — «/En)); this test turns biased for n > V2.

Forn < % let di = % — v2n; then a,(s) = (% 5) A dy, s € [0, 1); M@2) = % (1 + 4 V2n)d2
The as. rank test () based on a,, with as. critical value l.(a,), is as. maximin, uniformly with
respect to Fy € .4 it has as. minimum power 1 — ®(u, — r(A(a2))"/?). In particular

32 V2 - 144 Vy [ 1]
N T}E 0,—2 o
1 — 249 + 329 V29 1

AREo((Yn):(¢¥) = 1 — p*2.

REMARK. Behnen’s (1972) general ARE-bounds are rendered invalid in our model, due to
the possibility that for G, € P(F.; €n, 8,) the relation Gu(—1) = 1 — G, (1), t € [—o0, +00], may
be violated for large values of 1, although F, satisfies it by assumption (and hence G, usually
at least on some compact). In other words, the classical ARE-bounds depend too strongly on
the tail area of df’s, where in practice it does not matter and cannot be decided anyway,
whether or how df’s are ordered, in view of the small values of df’s there, or values close to 1.

6. Further aspects.

6.1. Asymptotic fine structure of shrinking nbd’s. As remarked at the end of Section 4, the
reason why rank statistics were not yet covered by [23] is the occurrence of sequences that are
noncontiguous to (Fg), which renders the approximation (4.18) insufficient. To bypass this
difficulty one could formally make a restriction to the model HY U H? given by

©.1) H] = (W) € H] | (W.) < (FB)}, j=12

(Hj defined by (4.13)). By virtue of Lemma 2.1 of [24], the extreme limit laws of the rank
statistics would stay the same (if the difference between pointwise and Fy-essential extrema is
neglected). Moreover, the sequences (Q%,), (Q7») which are obtained from least favourable
pairs (Qon, Q1) for P(Fy; €, 8,) vs. P(F.; €n, 8,) are contained in H 7 by virtue of Lemma 3.4
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of [27]. (The continuity of df’s Qon, Q1. is implied by the assumed continuity of the Fy's and
Theorem 5.2 of [22]. That also the df’s Qn and Ry, which are used in the proof of Lemma 2.1
of [24], are continuous, follows from their definition. Moreover, note that the proof of this
lemma also applies to moving centers F,.) Thus the submodel Hg U HY turns out to be
representative for the full model Hy U H, in every respect. It has the further technical
advantage that condition (4.9) could be relaxed to

(6.2) lim, J’ (an([1 + ns]) — a(s))*\(ds) = 0

for some a € La(d\), and that assumptions (4.10)—(4.12) and (5.12), (5.13) could be dispensed
with completely.

The reason why the restriction to Hg U Hi appears to be artificial is that the contiguity
assumption (W,) < (F3) is purely asymptotic in nature; it has no interpretation for finite n
(e.g., one could not tell which portion of 2(Fy; €., 6.) is excluded). For this reason,
approximations that cover the full nbd’s are more honest. Certain undesirable aspects that go
along with the nonuniformity of the contiguity of the sequences (W,) in H; have already
been pointed out in the context of initial estimates at the end of [24]. For the present context,
the following example may demonstrate the unreliability of approximations that are confined
to contiguous sequences.

ExampLE. Let T, be of form (4.28), with IC € Ly(dFo), Fo(IC?) = 1, and IC unbounded,
sup IC = + say. The sequence (T,) shall be examined under nbd’s 2(Fy; €., 0) where €, =
o(n™V3).

Let Gon = sup{W, o T:'| W, € Ho,} and Go = lim sup{(W, o T:)|(W.) € Ho}(Hon, Ho
given by (4.6), (4.7)). Then Gon(t) = (1 — €)"Fo(T, = 1), t < 4. Thus Go = I, (one-point
mass in +) if ne, — +o. (If €, = o(n ") then G, = ®; nbd’s this size cannot have any influence
asymptotically, as || W, — F§|| = ne, for W, € Hoy).

Now let 7, be of form (4.28) based on a bounded IC, such that the sup-norm satisfies
| ICx|| = o(n"*) and moreover, Fo((IC — IC,)®) = 0 as n — + . Then by Lindeberg-Feller
theorem (the Lindeberg expression for T, vanishes eventually), (T, — n™"% Y1 G.(ICr))
=> A{(0; 1) as n — +oo, under all sequences (®i-; G,)) € Ho. Therefore, the stochastic limit
superior G, of () under Hy is given by Go(t) = ®(t — lim sup,n*’e,sup IC,), t < +o.

For any sequence €, = o(n"'/?), ne, — +, an appropriate sequence (IC,) can be chosen
such that lim,n'?e,sup IC, = 0. Then G, = ® whereas Gy = I+«, even though lim,F3(T, —
T.)®) = 0 and hence T, — T, —»w, 0 for all (W,) < (F%).

REMARK. Nbd’s that shrink faster than n7"/2 can also be used to demonstrate the effect of
the boundedness of the scores a(i). By (4.21), ® = lim sup{(W. o R;")|(W.) € Ho} (if, without
restriction, A(a®) = 1) as long as lim,n"/? [{1_( +2s, ad\ = 0. The maximum of such shrinking
rate, which cannot exceed o(n~"/?), may actualiy be larger than o(n "), even if a is unbounded.
For example, it equals o((n log n)""/?) in the case of normal scores. (Incidentally, ' (% + %
(n/(n + 1)) = O((log n)'”®); thus in view of the preceding example the normal scores rank
statistic appears to be better approximated by T, for IC,(t) = sig(t)®@ (Fo(|t|) A (% + Y% (n/
(n + 1)), t € [—oo, +o0], which takes into account the boundedness of the scores at stage n.)

6.2. The two-sample case. The two-sample problem can be treated robustly in a similar
fashion; so it shall only be briefly sketched here.

As for the definition of averaged and randomized scores rank statistics R, in this case, the
reader is referred to Hajek and Sidak (1967) and Behnen (1976). It can be shown as in
Proposition 2.1 that, if the scores are increasing, then R, is stochastically increasing. The bring-
in effect of ranks can be stated as follows: let xi, + -+, Xm, 1, - - -, y» denote the two samples of
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observations, then the value of R, remains unchanged if, e.g., y1, - -+, y» < k for some k €
(—, +) and the x;, x, > k, are brought in up to k. (As in the one-sample problem, this
property is a special case of the invariance of rank statistics under monotone (and, respectively,
odd) transformations.) As in Proposition 2.2, a reduction to the continuous i.i.d. case can be
achieved.

Based on a similar reasoning as in Section 3, two df’s G; and G are called approximately
equal iff there is a F € .. such that (¢, § given in advance) Gi, G: € 2(F; ¢, 8). The
nonparametric hypothesis of approximate equality is defined as #7cs = U {P(F, €, 8) X P(F;
€, 8)|F € A.}. If G, denotes the common df of the x,’s and G, the common df of the y/’s, then
(G1, G2) € # o means that the x,’s obey some df F with probability 1 — €, and the y/’s
independently obey the same F with (independent) probability 1 — ¢; the observations being
unspecified otherwise. In the case of total variation nbd’s and if Gy, G; € 4., then (Gy, G2) €
#os is equivalent to | Gy — Ga|| = 28. As has been done for the classical null hypothesis of
equality, we also enlarge the classical alternative of positive deviation of the first sample by
passing from (F1, F;) € M. X M. such that Fi(f) = Fx(?), t € [—o0, +], to P(Fy; €, 8) X P(Fy;
€, 8). In the case of e-contamination nbd’s, the interpretation of (G, Gz) € P(Fi; €, 8§) X P(Fx;
€, 8) is the usual one. As for total variation nbd’s, assume that Fi(¢) = Fa(f) — 26, | t| = k, for
some k € (0, +) such that Fi(—k) = § and Fx(k) = 1 — 4. Then (Gi, G2) € Z(Fy; 0, §) X
P(Fy 0, d) entails that Gi(r) = Gu(1), | t| = k, and Gi(—k) = 28, Ga(k) = 1 — 28. Conversely,
assume that two df’s G, G. satisfy Gi(¢) = Gu(?), | t| = k, for some k € (0, +) such that Gi(—k)
=28 and 1 — 8 = Ga(k) = 1 — 26. Define the df’s Fy, F; by Fi(t) = (Gi(?) — 8)" and Fx(r) =
(Ga(t) + 8) A 1, ¢ € (—, +). Then (G, G2) € P(Fy; 0, 8) X P(Fy; 0, 8) and Fi(t) = F(1), ¢
€ [—oo, +x], Fi(t) = (F(t) — 28)%, |t| = k, Fi(—k) = 8, Fo(k) = 1 — 8. Therefore, our
alternatives represent, in a certain sense, positive stochastic deviation of the first sample df on
some suitably large compact, which is determined by the lower and upper 8-quantiles; the tails
of df’s are left unspecified. Analogously to Theorem 3.1, two-sample rank statistics turn out
to be distribution free for {(F, F)|F € ..}, and more generally, for Behnen’s (1972)
nonparametric alternatives indexed by F € 4., with respect to gross error and Kolmogorov
nbd’s; they are not distribution free with respect to Lévy and Prokhorov ndb’s.

For the local asymptotic study, first the model of [23] has to be extended to the two-sample
case, which is a routine affair. Two-sample alternatives are employed that are defined
essentially as before (quadratic mean derivative %2 A) and are attached to some (Fo, Fo), Fo €
M.. The parameters for the first sample are of the form &y = (1/m)(mn/N)"?¢, and for the
second sample &y = (1/n)(mn/N)"?¢, where £ = ¢, 8,  and N = m + n. Test statistics of the
following kind are considered,

2 1
63) Tn= (%) (;1' = IC(x,) — 5 Y 1C(y;)> , I1C € Ly(dFp), Fo(IC) = 0.

We require that m/N — p as N — + oo, for some p € (0, 1). Then the extreme limit laws of the
sequence (Tn) are A (s(1C), Fy(IC?), respectively A (1Fo(IC-A) — s(—IC); Fo(IC?), where

(6.4)  s(IC) = (1 = p)(=Binfy s IC + (¢ + 8)sup IC) + p(— (€ + 8)inf IC + sup;r[C).

The optimal choice of IC is given by

6.5) IC,=dov AAd,
where
(6.6) Fo((do — A)") = n = Fo((A — d)").

Using this IC, we obtain a test which is as. maximin among all as. tests subject to some as.
level, as is shown by an as. expansion of the log likelihood of least favorable pairs in the
manner of Section 4 of [23]. ,

To treat rank statistics in this model, which contains sequences as. orthogonal to (F?) and,
when restricted to contiguous sequences, allows for the same discrepancies as noted in Section
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6.1, we appeal to Theorem 1, Theorem 2, and corollary of Govindarajulu, et al., (1966), or to
Theorem 2.4 of Hajek (1968) and Theorem 1 of Hoeffding (1973). Then by means of
calculations similar to those of Section 4 it is proved that rank statistics can indeed be
subsumed formally under the foregoing results if we set

(6.7) IC = a°F,,

where a denotes the scores generating function. In particular, an as. maximin test is obtained
from the function a,,

(6.8) a,=doV (N F3") A dy.
The results concerning ARE,, reproduce those previously derived, due to the relation
(6.9) ax(s) = au (Y2 + % ), s€ [0, 1),

between the scores generating function in the one-sample case (ar) and the two-sample case
(an), which in view of the extreme limit laws determined by (6.4) extends to the present model
(e.g., compare (5.11) and (6.8)).

6.3 Other asymptotic approaches. Although the infinitesimal nbd approach of this paper
appears to be most canonical and should yield good approximation for (very) small nbd’s, it
has the possibly undesirable feature that, in the limit, there is zero contamination. A different
approach, which avoids degeneration of nbd’s has been sketched by Huber (1977), page 47: to
each member of a fixed nbd, a classical shift alternative is attached. This method leads to
essentially the same minimax solution. However, it may be argued on the grounds that,
practically, all df’s have to be assumed symmetric, and that the minimax solution is inadmis-
sible; cf. [25]. It is obvious that Huber’s approach is intimately related to Huber (1964), as is
the infinitesimal nbd approach to Hampel’s (1968) local robustness Lemma 5 (cf. also [24]).
Still outstanding seems a counterpart to Hampel’s (1968, 1971) theory of qualitative robustness.
Such an approach, cf. [26], would employ a fixed null hypothesis and a fixed alternative, as
well as constant, nondegenerating nbd’s. In technical respects, consistency of tests and test
statistics would be the main tools rather than local power or as. normality. One expects that,
in such a set up, rank tests turn out to be qualitatively robust, generally.
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