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A NOTE ON THE ASYMPTOTIC OPTIMALITY OF THE EMPIRICAL
BAYES DISTRIBUTION FUNCTION

By BENJAMIN ZEHNWIRTH

Macquarie University, N.S.W., Australia

This paper establishes the asymptotic optimality (in the sense of Robbins) of
the empirical Bayes distribution function created from the Bayes rule relative to
the Dirichlet process prior with unknown parameter «(.). It will follow that the
same result applies to the estimation of the mean of a distribution function.

0. Summary and introduction. Korwar and Hollander [3] demonstrate that the empirical
Bayes distribution function satisfies a criterion that is intimately related to Robbins’ [4] concept
of asymptotic optimality of empirical Bayes procedures. Their analysis presumes, inter alia,
that the parameter a( R) of Ferguson’s [2] Dirichlet process is known. It is natural to extend
the optimality result to the case of unknown a(R). In order to carry out this extension
effectively we present a consistent estimator of a(R) that is based on an identity found in
Zehnwirth [5] and moreover make extensive use of the results contained in Ferguson [2].

1. Framework and preliminaries. For the necessary preliminaries relating to the Dirichlet
process, the reader is referred to Ferguson [2]. The terminology and definitions which are met
within the present paper without explanation may be found in his paper. For the formulation
of our problem the reader is referred to the paper of Korwar and Hollander [3]. Briefly, the
setup is as follows:

A random sample of distribution functions Fy, Fs, +--, Fn41 is chosen from a prior
distribution given by a Dirichlet process on (R, B) with parameter a(-). Next, random samples
X, = (Xa, X2, +++, Xum) are chosen from the distribution functions F,, i = 1,
2, «++, n+ L. The interest is on estimating F,.; using the squared error loss function, L(Fy+1,
F) = [o(F(t) — Fo1(t))? dW(t), where W(-) is a given finite measure on (R, B) and F'is an
estimate of F,.;. The parameter and action spaces are the set of all distributions on (R, B).
Recall that Ferguson’s [2] Bayes estimator of Fy.; based on X, is given by

(1.1) Fu(t) = (1 = pm) Fo(t) + pmEnsa(t),
where

(1.2) pm=m/(m + a(R))

(1.3) Fo(t) = a((—, t])/a(R)

and Fl(t) is the sample distribution function of X,, i = 1,2, --., n + 1. The Bayes risk of ) 205
is given by

(1.4) r(Fm, @) = E[ j (Fu(t) — F(1)) dW(t)] - j E[(Fn(t) — F(1))’]1 dW(2),
R : R

where F is a realization of the Dirichlet process, and the last equality follows from Fubini’s
theorem. The expectation operator E denotes expectation with respect to distributions of the

-andom variables Xi, X3, «++, Xn+1, F. Define for n = 1, 2, ... the sequence of estimators
Hn+l by
15) Hn+1(t) = (l _[;nm)ﬁon(t) +]7Amnpn+1(t)
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where

(1.6) Fo(t) = X1 F(0)/n,

(L7) Prmn=m/(m+ ax (R))

and a.(R) is an estimator of a( R) based on the data X, Xs, - - -, X». The overall Bayes risk

of H,.1 based on the data X, Xz, - - -, X,+1 is given by

(1.8)  r(Hpsr) = E[ J (Hur (1) = F(1))? dW(t)] =f E[(Hna1(t) = F(0)*1dW ().
R R

2. Asymptotic optimality of {H,,.,}. In thissection operators with subscripts will represent
conditional expectations (variances) given the subscripted variables. Before we present the
main result we give a lemma which aids the demonstration of the result.

LEMMA. Under the set-up of the foregoing section the following identities hold,

Q.1 Er[F(1)] = E(1).

22 Varg [ E(1)] = F(0)(1 = F(0)/m.

(23) E[F()(1 = F(t))] = a((—, tDa((t, ®))/[a(R )(«(R) + D)].
2.4 E[Fon(0)] = Fo(2).

Identities (2.1) and (2.2) are well-known, being based on the moment properties of the
binomial distribution, whereas identities (2.3) and (2.4) are based on the moment properties of
the beta distribution since Fy(¢) is distributed as Be[a((—, t]), a((t, ®))].

THEOREM. If the sequence { pmn} is consistent for pn as n approaches «, then the sequence
{r(Hn+1)} converges to r(Fn, &) as n approaches .

ProoF. The proof is split into three parts. Let fo(t) = E [(Hrn+1(2) — F(1))*] and let f(1) =
E[(F.() — F(1))*]. By virtue of the bounded convergence theorem it suffices to show that
f=(t) = f(¢) as n approaches o, for each t. Now, f(#) may be recast in the form,

fot) = EU{E(t) = Fo(t) = Prn(Fas1(t) = Fo(1))}’]
(2.5) + 2E[{F(1) = Fo(t) = Prn(Frs1(t) = Fo(1))}
{Fo(t) = Fou(t) + prn(Fon(t) = Fo(1))}]
+ E[{Fo(t) = Fon(t) + Prm(Fon (1) = Fo(1))}*]-
First, consider the third term on the right of expression (2.5).
E[{Fo(t) = Fon(t) + Prn(Fon(t) = Fo(1)}*]
= E[(pmn = D*(Fon(1) = Fo(1))’]
< 2Var[ Fu(1)]
= 2Var[ F(1)]/n
=2/n
-0 as n— o

Next, we show that the first term on the right of expression (2.5) converges to f{(¢) (for every
t). Define

gn(t) = (F(8) = Fot) = prn (Fna (1) = Fo(0)))?
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and

g(t) = (F(1) = Fo(t) = pm (Fur(1) = Fo(1)))*

We require lim,—..E[ g.(t)] = E[g(?)] for every t. Assume the equality is not valid for #, say.
We can therefore find an € > 0 and a subsequence {g.(t0)} C {gn(t0)} for which

(2.6) Elg.(t)]= E[g(t)] +€ for all n’".

But since gn.(fo) —p: g(to) as n’ — o there exists a subsequence {gn-(to)} C {gn (%)} for which
gn(to) = g(to) almost surely. So, by the bounded convergence theorem lim, .« E[ g (t)] =
E[g(%)], which contradicts inequality (2.6). Alternatively, for any ¢ every subsequence of
{ E[ g+(1)]} has a subsequence that converges to E[g(¢)]. Finally, we note that the second term
on the right of expression (2.5) approaches 0 as n approaches o, as a consequence of Schwartz
inequality and the result obtained concerning the third term. This completes the proof.

We now exhibit a consistent estimator for a( R). Invoke the identity,

@7 o(R) = E[Varr(X;j)]/Var[ Er,(Xi)],
found in Zehnwirth [5]. This identity suggests the estimator
(2.8) Gn(R) = mF™!

where F denotes the F-ratio statistic in the one-way ANOVA based on the treatments X;, Xz,
- -+, X». However, this estimator is not consistent because Var Er(X,;) is being estimated by
a statistic that is biased upwards as seen from (2.10) below. Adopting the usual notation for
the one-way ANOVA setup we have

— P
MSw = 5t 1 (X = %)/ (n(m = D) ———
(2.9) _
E[S7-1 (X, = %.)*/(m = 1)] = E[Varg(X,,)]
Similarly,

_ _ Pr =

=\ _ 2 _ .

(210) MSB/m 2;:1 (X; X)/(n l)n_)—oo) Var[X,]
1
= Var[Epl(Xl,')] + ; E[Varp,(X,-,-)].
Therefore, one has
P
(2.11) (MSp — MSW)/m; Var[ Er(X,))].
n— oo

Thus, m(F — 1)"" is consistent for o R). But then F can be less than or equal to one, making
the above estimator possibly negative. If one defines
2.12) a(R) =0 L if F=1

=m(F-1)7" if F>1,
then

. Pr

an(R) ———— (R).
Note that the consistency argument does not rely on any special properties peculiar to the
Dirichlet process. Indeed, a.(R) is consistent for the ratio E[ Varr(X;,)]/Var[ Er(X;,)]in the
case where Fy, F, - -+, Fp.1 belong to a parametric family and the parameter is assigned a

prior distribution (provided second order moments exist).

FINAL COMMENTS. Perhaps it is worthwhile noting that the present framework does not
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fall within Robbins’ [4] or Deely and Zimmer’s [1] general framework for proving asymptotic
optimality. Our proof'is facilitated by the boundedness property of the estimators. Convergence
in probability plus uniform boundedness implies convergence in L-space.

ACKNOWLEDGEMENT. I am indebted to the referee for pointing out the inconsistency of
a»(R)and for suggesting the alternative a.(R). His proof was based on a special property of
the Dirichlet process.
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