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The Bayesian bootstrap is the Bayesian analogue of the bootstrap. Instead of
simulating the sampling distribution of a statistic estimating a parameter, the
Bayesian bootstrap simulates the posterior distribution of the parameter; opera-
tionally and inferentially the methods are quite similar. Because both methods of
drawing inferences are based on somewhat peculiar model assumptions and the
resulting inferences are generally sensitive to these assumptions, neither method
should be applied without some consideration of the reasonableness of these
model assumptions. In this sense, neither method is a true bootstrap procedure
yielding inferences unaided by external assumptions.

1. Introduction. Efron (1979) has discussed the use of a technique called the bootstrap to
generate sampling distributions of statistics and thereby to draw inferences about parameters.
The bootstrap can be viewed as a generalization of the jackknife (cf., Miller, 1974). The
Bayesian bootstrap (BB) is a natural Bayesian analogue of the bootstrap.

Section 2 defines the simple versions of the bootstrap and the BB, and shows that
operationally they are very similar. Section 3 illustrates the BB in two simple examples from
Efron (1979). Section 4 proves that the BB is simulating the posterior distribution of a
parameter under particular model specifications and shows that the BB and bootstrap are
quite similar inferentially. Section 5 points out that the BB model specifications can be
unreasonable and lead to inappropriate inferences; thus the bootstrap, because of its inferential
similarity to the BB, can also lead to inappropriate inferences.

Serious data analyses require serious consideration of the effects of model assumptions.
Although Efron avoids making any general claims for the bootstrap, its name and Efron’s
examples may suggest to some that it is indeed a technique for “pulling ourselves up by our
bootstraps” in a data analysis, that is, for obtaining inferences insensitive to model assumptions.
Neither the bootstrap nor the Bayesian bootstrap presents a general panacea for avoiding
sensitivity to model assumptions.

2. The bootstrap and the Bayesian bootstrap. Suppose we have a sample of size n, say
X1, -+, Xn, which is viewed as n i.i.d. realizations of a random variable X. A statistic ¢ is
chosen to estimate a parameter ¢ of the distribution of X; x,, X, ¢, and ql; may be vectors, The
bootstrap distribution of ¢ is generated by taking repeated bootstrap replications from x;, - -
-, Xp. One bootstrap replication from x,, - - - , X, is a simple random sample of size n from x,

-, X with replacement, and one bootstrap replication of the statistic ¢ is the value of ¢
calculated on the bootstrap replicated sample. The bootstrapped distribution of ¢ is generated
by considering all possible bootstrap replications of ¢.

For example, consider the sample mean to be the statistic ¢, and let f, be the proportion of
times x, is drawn in a bootstrap replication, f; = 0, 1/n, ..., n/n. Then in each bootstrap
replication we treat the f; as if they were the proportions of sampled values equal to x, and so
calculate the bootstrap sample mean as Y1 fix;; the distribution of Y1 fix, over all bootstrap
replications (i.e., generated by repeated draws of the f,) is the bootstrap distribution of the
sample mean.

Note that this method of generating the sampling distribution of a statistic essentially
assumes that the sample cdf is the population cdf; that is, each bootstrap replication is drawn
independently from the sample cdf. More complicated estimates of the population cdf may be
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drawn from, and Efron considers some. Unless otherwise stated, we will use “bootstrap” to
describe the simple bootstrap that draws from the sample cdf.

The Bayesian bootstrap is analogous to the bootstrap. Each BB replication generates a
posterior probability for each x, where values of X that are not observed have zero posterior
probability, just as they have zero probability under the sample cdf. The posterior probability
for each of the n x, is centered at 1/ but has variability. Specifically, one BB replication is

generated by drawing (n — 1) uniform (0, 1) random variates uy, - - - , 4,1, ordering them, and
calculating the gaps g, = uw — to-1, i =1, -+-, n — 1 where u = 0 and u(,) = 1. Then g =
(g1, -+, gn) is the vector of probabilities to attach to the data values x,, .- -, x, in that BB

replication. Considering all BB replications gives the BB distribution of the distribution of X
and thus of any parameter of this distribution.

For example, with ¢ = mean of X, in each BB replication we calculate the mean of X as if
g were the probability that X = x,; that is, we calculate }'T g.x,. The distribution of the values
of 37 g.x, over all BB replications (i.e., generated by repeated draws of the g,) is the BB
distribution of the mean of X.

Operationally the bootstrap and BB differ only in how the probabilities attached to each x,
are drawn, and the methods of drawing the probabilities are really quite similar. It is simple
to show that (a) E(f) = E(g) = 1/n; (b) V() = V(g)(n + 1)/n = (n — 1)/n®; and (c) C(f,
) =C(g,g)=—1/(n— 1) where E( ), ¥( ), and C( ) refer to the expectation, variance, and
correlation over the respective replications.! Consequently, if the form of the estimator, @, is
chosen so that it mimics ¢, i.e., ¢ = ¢ when all /. = g, the BB distribution of ¢ will be similar
to the bootstrap distribution of ¢. However, the interpretations of the resulting distributions
will be different because the BB simulates the posterior distribution of the parameter ¢,
whereas the bootstrap simulates the estimated sampling distribution of a statistic ¢ estimating
¢. Thus, the BB has an inherent advantage over the bootstrap with respect to the resulting
inferences about parameters: the BB generates likelihood statements about parameters rather
than frequency statements about statistics under assumed values for parameters. Efron notes
this shortcoming of the bootstrap in Remark F. We will use the operational similarity of the
BB and the bootstrap and the inferential directness of the BB to criticize the BB and the
bootstrap as general inferential tools.

3. Examples; dichotomous X and bivariate X. Suppose X is dichotomous (0 or 1) where
the parameter of interest, ¢, is the probability that X is 1. Let n; be the number of x, = 1 and
n — n; be the number of x, = 0. A BB replication first obtains » probabilities from the n gaps
generated by drawing » — 1 uniform (0, 1) random numbers, and then assigns these
probabilities to the 7 observed values of X. Thus a BB replication assigns #, of the probabilities
to the x, = 1 observations (call the sum P;) and the remaining n — n; probabilities to the x;
= 0 observations; hence, the BB replication value of ¢ is P,. Another BB replication is obtained
by drawing n — 1 new uniform random numbers and calculating a new value of P;; continued
replications generate the BB distribution of ¢.

In this simple example, we can calculate the BB distribution of ¢ analytically: since the
n — 1 variables in each replication are i.i.d. U(0, 1), the gaps follow the n — 1 variate Dirichlet
(1, - - -, 1) distribution (see Wilks, 1962, page 238). Consequently, P; which equals the sum of
n gaps, is distributed as beta(n;, » — n;) and the BB distribution of ¢ is beta(n;, n — n;). Note
that beta(n;, n — n;) is the Bayesian posterior distribution of ¢ from this sample with prior
distribution of ¢ proportional to [¢(1 — ¢)]"". The BB has simply simulated the posterior
distribution of ¢ under the model x; i.i.d.

P(X=k|p)=¢ if k=1 and P@)x[p(l —¢)]"' if0=<¢p=1
=1-¢ if k=0 o< 0 otherwise.
=0 otherwise,

'In a private communication regarding an earlier draft of this paper, B. Efron pointed out these
relations as a possible justification for the bootstrap procedure; the remarks of Section 5 offer a more
guarded interpretation.
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As Efron shows, the bootstrap distribution of ¢ = “proportion of sampled x; equal to 17 is
1/n X binomial(n, ni/n), so that the mean of both ¢ and ¢ is n1/n, the variance of ¢ is ni(n —
m)/[n?(n + 1)] and the variance of ¢ is ny(n — n;)/n®.

Now consider a more complicated example, specifically, the correlational example presented
in Efron (1979), where x, = (y;, z,) is bivariate and n = 12. Each BB replication is as follows:
draw 11 U(0, 1) random variables, create the 12 gaps g, - - - , g12, and calculate the correlation
between Y and Z assuming gy, -« - , 812 are the probabilities of xi, -« - , x12; that is, calculate

i gyz, — (X1 gyl)(Zi"’ 8i2,)
([T gy’ — Clgp) Tt gzl — OF gz’

The result of 1000 BB replications of ¢ — é*, where $* is the observed sample correlation, is
displayed in Figure 1. Notice the general similarity of our Figure 1 to Figure 1 in Efron (1979)
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F1G. 1. Histogram of 1000 Bayesian bootstrap replications of ¢ — ¢* for the nine data pairs from Miller
(1974); ¢ = population correlation, §* = observed sample correlation = 945. Dashed lines represent histogram
of 1000 bootstrap replications of the sampling distribution of ¢ — ¢* from Efron (1979), é = sample
correlation.

giving the bootstrap distribution of ¢ — ¢*, but also notice our Figure 1’s smoother character
due to its smoother choices of g, (i.e., the bootstrap correlation is (3.1) with f, in place of g;
where the possible values of f; are 0, %2, -.., 1). The BB has simulated the posterior
distribution of ¢, the correlation between Y and Z under a rather odd model that leads to the
posterior probability for X spread equally among the observed values of X. The fact that
Figure 1 is simulating the posterior distribution of the correlation under a specific model is
proved in the next section.

4. Theory. Letd = (dy, - -+, dk) be the vector of all possible distinct values of X, and let

8= (0y, ---, Ok) be the associated vector of probabilities
(41) P(X=dk|0)=0k, 29k= 1.
Let xy, «++, x, be an i.i.d. sample from (4.1) and let n, = the number of x, equal to dj. If the

prior distribution of § is proportional to

42 X0 (OifY6#1,
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then the posterior distribution of @ is the K — 1 variate Dirichlet distribution D(n; + I; + 1,
.-+, ng + Ig + 1) which is proportional to

4.3) I, 6% (0 if x, # dj for some i, k or if ¥, 6 # 1).

This posterior distribution can be simulated using m — 1 independent uniform random
numbers, where m = n + K + ¥ ¥ I Let uy, -+, thm—y be iid. U(0, 1), and let gy, + - - , gm be
the m gaps generated by the ordererd u,. Partition the g, - -, gn into K collections, the kth
having ny + I, + 1 elements, and let P be the sum of the g; in the kth collection, k =1, - .,
K. Then (P, .-, Pk) follows the K — 1 variate D(n; + Iy + 1, - - - , ng + Ix + 1) distribution
(Wilks, 1963, page 238). Consequently, the BB which assigns one gap to each x; is simulating
the posterior distribution of § and thus of a parameter ¢ = ®(6, d) under the improper prior
distribution proportional to [~ 65"

Let § = (6, - - -, Ox) be the statistic giving the proportion of values equal to each dx in a
sample of size n, and let §* = (%, - .-, §%) be the observed value of §, 6 = ny/n. The BB
posterior distribution of (§ — §*) is quite similar to the distribution of (§ — ) assuming 6 =
6* (i.e., the bootstrap distribution of (§ — §)). Specifically, the means of both distributions are
0, the variances of the kth components of the distributions are §#(1 — 8¥)/(n + 1) and #(1
— @%)/n respectively, and the correlation between the kth and k’th components is — {(§#6%)/
[(1 — é¥)(1 — 6%)])'/* for both distributions.” Hence, in practice the BB inference about ¢ =
®(8, d) will be similar to the bootstrap inference about ¢ based on the statistic ¢ = ®(4, d).
Because of this similarity, criticisms of BB inferences are criticisms of bootstrap inferences.

5. Discussion of model specifications. The model specification (4.1) is no real restriction
because all data as observed are discrete. However, the choice of all [, = —1 in the prior
distribution for the simple BB is very questionable, and even the more general prior specifi-
cation for the distribution of 6 in (4.2) is questionable. These doubts about the appropriateness
of the prior distribution of f address the important issue of sensitivity of inferences to model
specifications and the attempts of the bootstrap and BB to avoid this issue.

First, is it reasonable to use a model specification that effectively assumes all possible
distinct values of X have been observed? Both the BB and the bootstrap operate under this
assumption. In some cases inferences may be insensitive to this assumption but not always.
For an extreme example, consider the probability that X > C where C is larger than the largest
observed X (or the probability that 4 > X > B where 4 and B are between two order statistics).
The simple BB and bootstrap estimate such probabilities as 0 with zero variability, which is
clearly inappropriate if X can take many more than » values.

If the bootstrap and the BB can be so obviously inappropriate, what guidance do we have
for when they are appropriate? Even commonly estimated parameters like the mean and
variance are sensitive to model specifications. More explicitly, we expect the probability that
X is greater or equal to x, to be about (n + 1)”"; inferences about population moments will
be different if we assume all this probability is concentrated at x(, than if we assume the
probability is spread uniformly from x(, to seme very large number. Because the observed

* Simulations corresponding to other prior distributions with integer /x can also be performed; for
example, with a uniform prior distribution on 6, (i.e., all I, = 0) generate n + K — | uniform random
variables, form n + K gaps, add the first (n; + 1) gaps together to yield the simulated value of 4,, add the
second (nz + 1) gaps together to yield the simulated value of 6, and so on. However, when using a proper
prior distribution, all a priori possible values of X must be specified because they have positive posterior
probability.

? Furthermore, the predictive distribution of (§ — ) found by averaging the distribution of (§ — 6)
given @ over the BB posterior distribution of 6 (instead of conditioning on 6 = §* as with the bootstrap)
has the same first two moments as the BB posterior distribution of (¢ — §*). This predictive distribution
for (@ — 0) is the basis for frequency inferences for 8 using the statistic 6 and the full Bayesian specification.
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data cannot distinguish between these two assumptions, inferences about moments will be
sensitive to the model specification of tail probabilities.

Second, even assuming all distinct values of X have been observed, is it reasonable to
assume a priori independent parameters, constrained only to sum to 1, for these values? If two
values of X are “close” isn’t it often realistic to assume that the associated probabilities of their
occurrence should be similar? Shouldn’t the parameters be smoothed in some way? Both the
BB and the bootstrap effectively make the assumption that these parameters are unrelated.
Efron discusses more complicated versions of the bootstrap that in effect smooth the proba-
bilities attached to values of X. The smoothed probabilities are implicitly based on some kind
of model more complicated than the K distinct parameter model of the simple bootstrap. Of
course there exist Bayesian analogues to the bootstrap under such models (e.g., the normal
distribution, mixture models), and these models are in fact the more standard tools of Bayesian
inference (cf., Box and Tiao, 1973). The trick of simulating posterior distributions of parameters
by simply using gaps may no longer work, but other methods for summarizing posterior
distributions are certainly available. In any case, inferences for parameters will in general
change as different methods are used to smooth the probabilities attached to values of X, and
neither the bootstrap nor the Bayesian bootstrap can avoid this sensitivity of inference to
model assumptions.

Serious data analyses should always include serious consideration of model constraints;
although knowledge of the context of a data set may make the incorporation of reasonable
model constraints obvious, and although the bootstrap and the BB may be useful in many
particular contexts, there are no general data analytic panaceas that allow us to pull ourselves
up by our bootstraps.
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