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ON A PROBLEM OF REPEATED MEASUREMENT DESIGN WITH
TREATMENT ADDITIVITY

By P. J. Laycock' anND E. SEIDEN?

Michigan State University

We consider an experimental design problem in which n treatments are
applied successively to each experimental unit, and once applied their effects are
permanent. To examine all 2" — 1 treatment combinations, a minimum of

n
([g] ) experimental units is both required and sufficient. A linear model is
2

described and the first nontrivial case, n = 4, is examined in detail. It is shown
that there are 24 nonisomorphic designs which reduce to 13 under the assumption
of no interaction between the treatments. A serial correlation model is considered
and the D, A and E, optimality criteria evaluated for p = 0, 0.5 and 0.75. Possible
uses for the design automorphisms are then considered.

1. Introduction. This research was stimulated by a medical problem which was considered
in the Statistical Laboratory of Michigan State University. An orthopedic surgeon was
concerned with statistical evaluation of resultant laxity as caused by each of the possible
combinations of ligamenteneous injuries of a knee. Since the experimental units were human
cadaver joints it was decided that the number of them be as small as possible.

At each stage of the experiment ¢ < n he wishes to compare the effects of all ': treatment

combinations. It is assumed that the resulting effect of ¢ treatments applied at state ¢ does not
depend on the order in which they were applied. Clearly such an experiment requires at least

n . . - . .
maxy | experimental units for any n. Hence the minimum number of experimental units

n n n
willequal{n— 1| =|n+ 1] for n odd and | n | for n even. It can be shown using well
2 2 2

known theorems on systems of distinct representatives that such a design can in fact be
constructed for any n. The problem arises as to how many distinct ways such a construction
can be carried out.

Similar situations may arise in other fields of application, such as education, agriculture
and others. Suppose, for example, that students satisfied prerequisites for n future courses
which are unrelated in the sense that none of them is a prerequisite for another. Nevertheless
each course is beneficial for consecutive studies and makes a specific contribution to the
success of the student in his further studies. At each stage of the experiment it is desirable to
compare the combined effect of all possible courses taken by the students up to and including
this stage and to investigate which sequence should be preferred, if any.

In many fields of applications the major problem to be solved by the experimenter could
be how to formulate meaningful commensurate measures for the effects of each of the
treatments under consideration. It seems that the prospects of applying such types of designs
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to operations research are from this standpoint more promising. Suppose that some machine
has n components and the failure of each of them will affect the performance of the machine
in some specific way which does not depend on the performance of the remaining components.
Also the effect of failure of any subset of the components depends solely on the structure of
the subset. The experimenter is interested in finding a scheme for the order of checking the
components to insure the maximum reliability of the performance of the machine. He will

make the decision after investigating the performance of max, Z machines in which all n

components will be checked in accordance with a type of the design discussed here. In this
area of research it seems natural to introduce also a cost function and a probability of failure
for each component. Such ramifications may influence the choice among the designs described
here.

2. The combinatorial properties of repeated measurement designs for n = 4. We have

studied the case n = 4 principally because this is the simplest nontrivial situation. Since ;

= 6 is the maximum value of (‘:) , t < 4, it is clear that at least six experimental units are

required.

At the first stage of the experiment the problem is that the number of experimental units is
not divisible by the number of treatments. It seems therefore reasonable to assign at random
two treatments each to two and two to one experimental unit. We may therefore assume
without loss of generality that treatments 1 and 2 were assigned to two units, and 3 and 4 to
one unit only. At the second stage of the experiment we should assign the treatments to the
experimental units in such a way that the six unordered pairs occur. Now the problem is in
how many distinct ways this can be carried out. To enumerate all possibilities we first assume
that to one of the units we apply treatment 1 followed by treatment 2, and then see in how
many ways we can proceed in order to obtain the six distinct pairs. It is easy to see that this
yields twelve possibilities. By symmetry there will also be twelve possibilities in which we have
a unit with treatment 2 applied at the first stage and treatment 1 at the second. Hence in total
there are twenty-four possibilities for the second stage of the experiment. We shall exhibit next
the first twelve possibilities. The remaining twelve are clearly obtained by interchanging the
assignments of the treatments to the first and second stage of the experiment. To each of the
cases shown in Table 1 there will be a corresponding one obtained from it by interchanging
the first and second columns. We shall number the case corresponding to the ith possibility by
i’;i=1,2, ..., 12. Since the order of S, the symmetric group of degree four, is twenty-four,
it is clear that the enumeration could have been obtained by making any of the sets of six pairs
correspond to the identity, and using the elements of S to obtain the remaining sets. We shall
use hereafter an inverse of this function. We shall choose the first set as corresponding to the
identity of the permutations group of degree four, and from here on, associate with each of the
remaining sets that permutation which will change that set into the first set. This will yield the
results in Table 2. The problem now is how to proceed to the third and fourth stage of the
experiment.

The aim is to apply to each experimental unit all four distinct treatments. Hence the two
treatments applied to each unit at the first two stages determine the pair of treatments to be
used in the last two stages.

Under the condition that in each column two treatments occur twice and two once, the six
pairs of the last two columns will be distinct. Thus the third and the fourth column could be
any of the twenty-four designs considered for the first two stages *ith a proper rearrangement
of each set so that each experimental unit receives all four treatments.

This gives 576 designs which consist of 24 equivalence classes. Since any design of the first
two stages can be transformed to design 1 by the corresponding permutation we may choose
a representative of these 24 classes by fixing the design at the first two stages and letting the
design at the last two stages run through all 24 distinct designs. Hereafter we choose the first
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design to be the design numbered 1 in Table 1. Hence the complete design consists of pairs
(1, j) where j assumes the values 1, -+, 12; 1’, -+ 12",

We turn now to the statistical aspect of the problem. Are these 24 designs equivalent for
statistical purposes although distinct structurally? Should we give the usual advice to the
experimenter to choose any of these designs at random? It seems that this advice was never
satisfactory because it ignored the information built into the specific design used which may
have been inconsistent with the problem considered by the experimenter. We shall make this
point clearer by examining the present case. It will emphasize that the choice between designs
having the same structural parameters should be made in accordance with the statistical model
and the statistic used as a basis for the decision.

We remark here that these 24 distinct designs could be used for problems of two-way
classification with four treatments, six rows and four columns. The designs constructed here
possess all but one property of GYD. The number of times two treatments occur together in
columns is not constant. If one intends to use these designs for eliminating two-way hetero-
geneity, then usually the decision regarding no difference between treatments is based on the
generalised variance statistic. This statistic is invariant under interchanging rows or columns
of the design. Hence it seems natural to introduce an additional identification of the designs
beyond fixing the first two columns. We may consider two designs the same if they are
obtained from each other by interchanging the last two columns. This gives only 12 distinct
designs. However, the generalised variance statistic is not sensitive to the different structures
of the last two columns. We find that the determinant of the corresponding information matrix
(computed under the standard “blocks plus treatment effects” model rather than the model we
describe in Section 3) assumes just two values. For four of the designs the value of the
determinant equals 192 and for eight of them 192%. The eigenvalues of these matrices are
proportional to 16, 18, 18 and 17, 17, 18 respectively. Hence using the D, A or E optimality
criteria, we would conclude that the designs of the second group are better. In fact, since f(16)
+ f(18) = 2f(17) for any convex function f, the second group dominates the first with respect
to a very wide class of criteria. In particular, since the information matrix is completely
symmetric (c.s.) for this model, the second group is “universally optimal.” See Kiefer (1975),
Proposition 1.

Examining closer the structure of the two groups, we find among the first group two designs
which have an additional symmetry beyond the one built into these designs by our construction.
These two designs have four pairs of columns consisting of six distinct pairs of treatments. The
remaining designs have just two pairs of such columns, a property imposed on these designs
by construction. Since there is no other obvious property separating the remaining designs one
could expect that a criterion of optimality would single out just these two designs from the
others. An explanation why this additional symmetry did not have any effect on the optimality
of those designs could be that one cannot expect that a model will bring out a property which
was not built into it. The model for eliminating two-way heterogeneity is not sensitive to the
relative structure of the columns.

In the next section we shall formulate a linear model for the type of designs considered
here. The invariance of the information matrix under the assumption of no interaction between
treatments will induce additional identification of the designs beyond the relabelling which
reduced the number of the equivalence classes to 24. The information matrix remains the
same if we interchange the first two columns with the last two columns or interchange the
order within the first two columns and the last two columns. Presently we shall express this
property with respect to the combinatorial structure of the designs. It is enough to express the
identification of two complete designs when both are in a standard form, i.e., (1, j). We shall
consider two designs the same, i.e., (1, @) = (1, b) in the following cases:

@) B'=4

(i) (B)' =A4[(14) 23)]

(iii) (14) (23) = A(B")!
where 4, B, B’ denote the permutations which change two columns of the form a, b, b’ into
columns of form | in accordance with Table 2. (i) expresses the property that we may
interchange the first two columns with the last two. (ii) means that we may interchange the
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order within the first two and the last two columns. (iii) means that in addition to operation
(i) we also perform operation (ii).

This identification reduces the 24 equivalence classes to 13 with the classification shown in
Table 3, where design (1, j) is denoted ().

3. Formulation of the linear model. Let y; = (yui, i, - -+ Yai)” be the column vector of
observations on the ith experimental unit, and consider the case n = 4, with design specification
“1234” for the ith unit. Then, omitting the interaction terms, we shall suppose that the mean
vector is defined by E(yi) = i + a1, E(yu) = pi + a1 + a2, E(y3:) = pi + a1 + a2 + a3 and
E(ysi) = + au + a2 + a3 + as. With obvious modification for alternative design specifications,
we see that the principal property of this model is its order invariance for given mean. For
example, the designs “1324,” “2134,” “2314,” “3124” and “3214” will all give the same value
for E( y3:) as given above. Interaction terms can be introduced in an obvious manner, and
hence for general n we can write our model in the form

yi=pl + Xua + XoiBo + XsiBs+ -+« + Xuiffn + €55 i=1,.,m,
where p; corresponds to a “row effect” in the design layout, a = (a1, -+, ax )T is a vector of
main effects for the treatments. 8; is an | '. |-vector of order invariant j-way interactions (j =

2, «++, n), 1 is an n-vector of I’s, Xj; is an n by n design matrix of 0’s and 1’s as determined

J
by the additivity assumptions and the order in which the treatments are applied (j =1, ---,
n
n), e; is a random n-vector with zero mean and variance matrix 2, and m = [ n is the
3]

number of experimental units. This model is related to the standard “Repeated Measurement”
model with residual effects.

It is clear that this model is heavily over-parameterised, even with the usual constraints on
the main effects and interaction terms. One appropriate simplification for the interactions
would be to assume invariance under relabelling for terms of a given order. So that we can
write 8, = 3,1, and hence

Yi=wl + Xjia + X358 + e;; i=1...,m,

where B is now an n-vector equivalent to a “column effect” in the design, and X% isann X n
matrix of 0’s and 1I’s. Note that this model will differ from the standard model for two-way
heterogeneity in that X,; will be some column permutation of the matrix whose jth column
Gg=1---,mis@©, ---,0, 1, --- 1)"—that is (j — 1) 0’s followed by (n — j + 1) I's—as
opposed to being some column permutation of the identity matrix.

An alternative restriction on the interaction terms in the original model would be simply to
omit those of third order or higher. This alternative would place greater emphasis on balancing
the design with respect to pair selection, but at the expense of increasing the dimensions of the
X3 matrices. And for this latter reason we have concentrated on the first proposal for
simplification in our search for an optimal design.

We shall now assume that for the purpose of selecting an optimal design the parameter of
interest is a. Then, assuming observations on distinct experimental units are uncorrelated, the
variance matrix, V, for the usual least-squares estimator of a is defined by

oV =Y (XTPT'Xy) — R XTPT'X )T X5PT'XE) (TR X5 P Xy)
= Cy, say,
where £ = ¢® and to avoid manipulations with generalised inverses we have reduced the
dimensions of pu and B respectively, by 1, via the side constraints Zu; = 2, = 0, altering X%
(i=1, .-+, m) correspondingly. We have assumed that X is known. In practice 2 could be

estimated from the data, but since this paper is concerned with design selection before
observing the data, we must choose some value “a priori.”
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For appropriate restrictions on £ = {o,,} we turn to the closely related topic of “split-Plot”
desighs, and assume a “serial correlation” model, for which o,, = 6% "/ (r, s =1, - - -, n). See,
for instance, Cochran and Cox (1957) page 294. This matrix has a simple tri-diagonal form for
its inverse. See Graybill (1969) page 182.

An alternative form for 2 would come from a “nearest neighbour” (NN) model, for which
o = 0, |r — s| > 1 otherwise as for the “serial correlation” model. This matrix does not
however have a simple form for its inverse. Kiefer and Wynn (1979) use this model but restrict
attention to small p, which gives them a justification for using unweighted least-squares and
hence no requirement for the inversion of Z. Either model seems reasonable for our problem,
and we have used the first, or “serial correlation” model, in the numerical calculations of
Section 4. Note that ¥ can be converted into a variance matrix (W say) of estimable contrasts
for the a’s by setting W = BVBT where B is the (n — 1) X n matrix whose jth row is (0,
0,..-,0,1,0, ---, —1), with a | in the jth position.

4. Optimality Investigations. For numerical comparisons between different designs, the
expression for Cy can be written in the form

apC(l = Zz"’il X17;'KpX1i - (Z:’il Xu')TDp =1 Xli)

where a, can be chosen so as to make all entries in the n X n matrices K, and D,, integers. In
particular for p = 0 we put ap = mn which gives Ko = mnl, — mJ,, Do = nl, — 2J, and U; =
XT/koXy; has entries

Us=Us=m—r+ (s— 1) r=s rs=1...,n

when the ith row in the design is 12 - - . n. All other U; terms are coordinate transformations
(row-column permutations) of this particular U;.

When n is odd, n divides m and we can restrict attention to designs where all treatments
occur equally often in each column of the design. We then find that

(T2 X1) DT Xii) = =Y%em*(n + 1)(n + 2) 5, n odd

and hence trace Cs = constant, over all such designs. For completely symmetric Cs matrices,
this is a sufficient condition for all such designs to be universally optimal in the sense of Kiefer
(1975), where this criterion is called ®*,-optimality. However, this class of designs does not
appear to be (uniformly) optimal for any other @} and hence optimal designs must be selected
by direct numerical investigation with specific criteria. This is also the case for n even. Note
that our designs for n odd are all regular GYD’s and hence they are universally optimal for
the standard “two-way heterogeneity” model. See Kiefer (1975) page 342.

Now, for n = 4 we have established in Section 2 that there are just 24 nonisomorphic
design types. We have evaluated Cy for these 24 designs and ranked them according to their
values on the following three criteria:

D-optimality: det V'
A-optimality: trace V'
E-optimality: maximum eigenvalue of V,

the “best” designs in each case being those with smallest scores on the chosen criterion.

For p = 0 the structure of the thirteen (reduced) equivalence classes was preserved, but
with some further grouping. The rankings for each reduced class on each criterion are given
in Table 4, with the rankings on A being used to order the table, as this criterion produced the
finest mesh. We see that (reduced) equivalence class 8 is uniformly optimum. This result
cannot be strengthened to “universal optimality” in the sense of Kiefer (1975, pages 336-338)
as the ordered vector of eigenvalues for the Cs matrix of equivalence class 8 does not dominate
those for the other classes.

Table 4 is little altered if W rather than V is used for the calculations. In particular,
equivalence class 8 is optimum on the three given criteria but is not universally optimal.

For p = 0.5 and p = 0.75 the full set of 24 equivalence classes was required, with 20 distinct
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TABLE 4
A rank 1 2 3 4 5 6 7 8 9
D rank 1 3 = 4 2 7 6= 5 8
E rank 1 3 2 S= S= S= 4 6= 6=
classes 8 6,7, 11 12 2,5 1 9 3,4 10 13

groups emerging for p = 0.5 and 10 for p = 0.75. For p = 0.5 the prime (') designs were
uniformly better than the nonprime designs, with 8 and 12’ (a member of the previously
optimal reduced equivalence class 8) coming out first and second respectively. Since 8’ was
only 0.4% more efficient than 12’ at this value of p whilst it was 6% less efficient than 12" when
p = 0, the design 12’ would seem a good one to select. This is confirmed by the results for p
= 0.75 when (reduced) equivalence class 8 again came out to be uniformly optimum.

We now ask whether design 12’ (or equivalence class 8) has any distinguishing combinatorial
properties, as this may act as a guide in selecting optimal designs for larger values of n. For
this, we note the following theorem, due to Kiefer and Wynn (1979, Theorem 5.1).

THEOREM (Kiefer and Wynn). 4 BIBD is weakly universally optimum for the NN model if
all the quantities

;i +kN,‘," l?él,

are equal.

In our context, kK = n, e;; is the number of rows in the design for which i/ occurs at one or
other end plus the number in which i’ occurs at an end, whilst N;;- is the number of times i and
i’ are adjacent in a row. Of course, for n = 4 our designs are not BIBD nor are any of them
(weakly) universally optimal. However, it is in fact easy to verify that the condition of this
theorem is satisfied by all the designs in equivalence class 8.

We now turn to the case n = 5, for which Seiden (1979) has shown that there are 304
nonisomorphic designs, and hence searching for a design which satisfies the condition in this
theorem is difficult. Further results in this case must await the results of an extensive numerical
investigation.

For n = 6 there is every indication that the number of designs is extremely large.
Furthermore, unlike the n = 4 and n = 5 cases, we cannot have either e;;- or Ny; separately all
equal, making the search for a design which satisfies the condition of the theorem doubly
difficult.

One can easily formulate a computer program which will enumerate all nonisomorphic
designs and compare them using some optimality criteria. It is easy to show that even if one
assumes p = 0, one cannot identify two designs which are obtainable from each other by
interchanging two columns. We constructed six distinct designs for n = 6 by trial and error.
All of them satisfy the basic conditions of the designs considered here, i.c., that at each stage
of the design for t < n each of them includes all possible ¢-tuples. The idea of the construction
was to achieve the distribution of the N;;’s or e;;”’s as symmetric as possible. It turned out, as
expected, that the design with the N;;’s as equal as possible was uniformly best on all the
criteria considered. A little distortion of it to achieve more symmetry with respect to the
distribution of e;;’s yielded a design of much lower rank. For n = 6 one could still enumerate
all nonisomorphic designs and find the best one. For n > 6 the number of designs will
probably be too big to make the enumeration worthwhile. It seems therefore that for n > 6 one
should impose more additional symmetry conditions and search for a “best” design within a
narrower class in accordance with criteria relevant for the intended applications.

The somewhat anomalous results for nonzero p need not surprise us, as can be seen by
examining the case n = 2 with the further simplification a; = a, so that m = 1 is sufficient.
The BLUE for p; + au(= p say) when p = % is then just ' y,, which completely ignores the
first observation. Such results will clearly have design implications.
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We finish with a remark on the possibility of using design automorphisms to guard against
experimental unit-treatment-combination interactions. The conventional approach required
replication of the design, using blocks of experimental units, but suppose we can group the
treatments; and that this grouping can be matched (by choice of labels) to one or more of the
design automorphisms. For example, suppose (1, 2) forms one group of treatments and (2, 3)
is a design automorphism, then we relabel the treatments so that the group becomes (2, 3).
Since an automorphism implies that the specified treatment relabelling is equivalent to a
reallocation of treatment-combinations to experimental units, we see that automorphism(s)
can generate an equivalence between the homogeneities of the treatment group(s) and certain
of the experimental unit-treatment-combination interactions. At the very least this should help
to reduce their impact, if present, and may well leave some of them estimable without
replication of the design. On this first point, we hope to show in a forthcoming paper that
randomisation over the design automorphisms, in this context, will eliminate the unwanted
interactions; whilst on the second point it is easy to see, for instance, that an unbiased estimate
for the contrast y;; — y;-: (Where y;; is the interaction between the jth experimental unit and the
ith treatment, and j’ is the corresponding experimental unit under the automorphism) is given
by yjir = yjir-1 — yjir + yji-1, where i’ is the sequence number for the ith treatment on the jth
experimental unit.

Acknowledgment. We wish to thank J. Kiefer for stimulating discussions and reference 4.

REFERENCES

[1] CocHRAN, W. G. and Cox, G. M. (1957). Experimental Designs. 2nd Ed. Wiley, New York.

[2] GRAYBILL, F. A. (1969). Introduction to Matrices with Applications in Statistics. Wadsworth, Belmont.

[3] KIEFER, J. (1975). Construction and optimality of generalised Youden designs. In 4 Survey of
Statistical Design and Linear Models. (J. N. Svrivastava, Ed.) North-Holland, Amsterdam.

[4] KIEFER J. and WynN, H. P. (1979). Optimum balanced block and latin square designs for correlated
observations. To appear in Amer. Statist.

[5] ROTMAN J. J. (1973). The Theory of Groups. Allyn and Bacon Series on Advanced Mathematics,
Boston.

[6] SEIDEN, E. (1979). A problem on repeated measurement design. To appear in Proc. Symp. Combin.
Math. Opt. Design. Colorado State Univ.

INSTITUTE OF SCIENCE AND TECHNOLOGY DEPARTMENT OF STATISTICS
UNIVERSITY OF MANCHESTER FACULTY OF SOCIAL SCIENCES
MANCHESTER M60 1QD, ENGLAND THE HEBREW UNIVERSITY OF JERUSALEM

JERUSALEM, ISRAEL



