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INADMISSIBILITY OF THE BEST FULLY EQUIVARIANT
ESTIMATOR OF THE GENERALIZED RESIDUAL VARIANCE!

By KAM-WAH Tsul, SAMARADASA WEERAHANDI, AND JIM ZIDEK

Simon Fraser University, University of Sri Jayewardenepura, and University
of British Columbia

The estimation of the generalized residual variance is considered when an
observable Wishart random matrix is available. It is shown that when the loss
function is normalized squared error, the natural fully equivariant estimator is
dominated by an alternative. The latter uses either one of two estimators
depending on the result of a preliminary test of significance. This alternate
estimator has an everywhere smaller mean normalized squared error than the
natural estimator.

This paper is concerned with the estimation of the generalized residual variance.
To explicate the problem of interest we let Z = (Y, X) denote a 1 X (g + p)
multinormal random vector with unknown covariance matrix

2 = (Ell 212 )'

2 2p
Here Z,, denotes the covariance matrix of the random g-vector, Y, and so on. Then
S =2, — 2,,25'S,, is the conditional covariance of Y given X. The quantity
3,12 is commonly referred to as the residual covariance matrix because it repre-
sents the covariation of the residual error vector, ¥ — a — X, where 8 = 23'5,,
and a = E(Y) — E(X)B and hence a + X represents the best linear predictor of
Y based on X when the mean of Z is known. The generalized residual variance is
defined as o = |2, ,|. It is a numerical measure of the “size” of 2, , and is closely
related to the volume of the ellipsoid of concentration determined by X,,, (cf.
Cramér 1961).

Because o2 measures the efficacy of the multivariate regression of Y on X, the
problem of estimating it arises in a natural way. This is the problem at the basis of
the work presented here. The loss function adopted is the most mathematically
convenient one, namely normalized squared error:

L(6%3) = (6% — 0¥’0*.
We show that the natural (best equivariant) estimator is dominated by a pre-
liminary test estimator whether or not Z’s mean is known. Following the route

traced out by Brewster and Zidek (1974), one could obtain similar results for a
large class of potential loss functions.
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Our interest in this problem was stimulated by our work on a formally similar
problem which is much harder and as yet unsolved, namely that of obtaining an
improved estimator of |X|. More explicitly, let Z,,---,Z, be n independent
observations of Z ~ N,, (1, 2),Z = S, Z,/n, V* = 21_(Z, ~ Z)'(Z, - Z) and
V =3"(Z, — pY(Z; — p). The minimal sufficient statistic is V" or (Z, V'*) accord-
ing as p is known or unknown. The usual (best equivariant) estimator of |Z| is
(n+2)7'|V]or (n+ 1)7" |[V*| according as p is known or unknown. As Selliah
(1964) shows (and Kiefer’s theorem (1957) implies), the usual estimator of |Z| is
minimax whether or not the mean is known when loss is squared error. Shorrock
and Zidek (1976) do obtain a better estimator than the usual one when the mean is
unknown. Their new estimator utilizes the information about |Z| in the sample
mean on top of that in the sample covariance in‘order to achieve a mean
normalized squared error which is uniformly smaller than that of the usual
estimator. However, it is not known whether or not the usual estimator of |Z| is
admissible when the mean is known. This problem, because of its difficulty, is of
considerable interest even though the problem considered here would seem to be of
greater practical significance. '

Inference about 62 is to be based on V ~ W, (n,Z), i.e., an observable Wishart
random variable with n degrees of freedom. It will facilitate our analysis to employ
the familiar upper triangular decomposition of £ and V. Thus 2 = 77’ and

V = TT’, where
T, T,
T = ( 1 12)’
0 Ty
etc. Observe that ¥ = ;rVr’ where vV~ Woip(n, 1) and “=,” means “is identi-
cally distributed as.” Furthermore, V' = TT’, where (cf. Wijsman (1957), Kshirsa-
gar (1959))

Xn—(p+q—1) Z, e Zl,p+q—l
T = 0 Xn—(p+q-2) Zsp+q-2 ,
0 0 e X

X 3 has the chi-squared distribution with j degrees of freedom, and Z;; ~ N(0, 1). In
summary:

3 = 717, V =TT =L1'I7'r’, T = +T.

The best fully equivariant estimator is easily obtained. Let G denote the group of
all upper triangular matrices. Under the action of g € G the problem remains
invariant and T — g7, 7 — gr, and 0 — | g,/ Thus any equivariant estimator,
6% must satisfy the condition 6%(gT) = |g,,|’6*(T) which implies, as is easily
shown, that 6%(T) = ¢|T},|* = ¢|V;,,| for some constant ¢ > 0. Since G operates
transitively on the parameter space the expected mean squared error of such an
estimator is independent of =. Thus there is a best value of ¢, namely ¢ = ¢, =
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9_(n—p — g+ i+2)"", and a best fully equivariant estimator, 62, given by

(1 85 = ol Vial-
The content of this paper amounts to a demonstration that another estimator
. . N1
(2 61 = min{co| Vil ol Vul}, e = Moy(n +3 - 14)

has a uniformly smaller mean normalized squared error than 63. This superior
alternative is found by considering a larger class of estimators than those equi-
variant under G. Recognizing the need to restrict the scope of the search and hence
this class of potential alternatives, one is tempted to consider the class of estimators
equivariant under a subgroup of G. The choice H = {g: g € G, g, = 0} is the
natural one and this leads to estimators of the form

6> = |T1||2‘P1(R) = Ian%(R)’
where R = T,;'T;,. Even this class proves to be unduly large and technical
difficulties force us to consider the subclass of estimators of the form

€) 82 = [Vulw(D),

where D is a p X p diagonal matrix whose diagonal elements are the roots d of the
equation |RR’ — d(I + RR’)| = 0, or equivalently, the equation |7,,T7y,
— d(T,,T{; + T\,T{y)| = 0. In terms of T,;, T\, and T,,, (3) becomes

4) 6> = |1, T}, + Tp,TH|W(D).

Our goal is to find the estimator of the form given in equation (4) which
minimizes the risk function, R(6% =) = E[6% 2 — 1% To this end, observe that
T, T{, ~ W,(n, Z;,,) (a central Wishart) and given T,, Ty,T}, is a noncentral
Wishart. Now the mathematical results from Shorrock and Zidek (1976) can be
applied here by setting up the following mapping of their notation into that of this
paper:

S—>T,T, = Vu.z, p—q,
23, =mm, n—n-—p,
X—->T,, k—p,
g"""ltha y—>cp,

|Z] - a2, c—Cps
T—-D.

By conditioning on 7Ty,, and with 2 and 67 as given by (1) and (2), respectively,
the inequality
E(62672— 1)’ < E(63072 - 1)’
follows directly (compare ¢, and equation (2) with (3.20) and (3.22) of Shorrock
and Zidek).
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REMARK 1. 67 is a “testimator.” It is ¢,|V},| if a preliminary test accepts

S, =0, ie., if ¢; < co|Vy12lIVin| ™" This would be the natural estimator to use

were it known that =, = 0. Otherwise o} = 6.

REMARK 2. When the mean of the underlying normal law as well as its
covariance is unknown, a still better estimator of o2 than 67 may be obtained. Such
an estimator would use the information in the sample mean as well as that in the
sample covariance. However we have not carried out the details.

REMARK 3. A closely related problem which we have not considered is that of
estimating 1 — |Z,,,|/|Z,,| = 1 — IIZ_,(1 — p?) where the {p;} are the canonical

i=1
correlation coefficients. This is a natural measure of the efficiency of the best linear
predictor of Y from X. :
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