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CURTAILED AND UNIFORMLY MOST POWERFUL SEQUENTIAL
TESTS!

By BENNETT EISENBERG AND B. K. GHOsH
Lehigh University

The final decision of a fixed-sample likelihood ratio test is often de-
termined before the entire sample is taken. Such a test can be curtailed as soon
as the final decision becomes obvious. The construction and properties of these
curtailed tests are described. A particular class of such tests contains sequential
tests which are uniformly most powerful. The asymptotic efficiency of this class
is investigated.

.

1. Introduction. The Neyman-Pearson lemma shows that a fixed-sample likeli-
hood ratio test has the property that no other test based on the same information
can improve upon its error probabilities. The Wald-Wolfowitz theorem shows that,
under certain conditions, a sequential probability ratio test may be better than a
fixed-sample likelihood ratio test in the sense of having no worse error probabilities
but smaller average sample size. However, this improvement is achieved at the cost
of using more observations some of the time. Besides, a sequential probability ratio
test may not always be practical.

The purpose of this article is to discuss another type of improvement of a
fixed-sample likelihood ratio test, whereby one can achieve the same error proba-
bilities without using all the observations. Some definitions are needed.

Let (2, &) be an arbitrary measurable space, and P and Q be two mutually
absolutely continuous probability measures on & . The available observations X,
X, - - - are assumed to be &-measurable functions on §, and denote by &, the
smallest o-field generated by (X, - -, X,) for n > 1. A stopping time N is any
& -measurable function, taking positive integer values, such that the event N = n is
in &, for each n. Denote by &, the o-field of all events E € & such that
E N[N = n]isin &, for each n. A decision D under a given N is any &,-measur-
able function, taking values O or 1, where 0(1) represents the decision that P(Q) is
the true probability measure on & . Thus, D is determined by events up to time N,
and the events [D = 0] N [N = n]and [D = 1] N [N = n] are in &, for each n. A
(sequential) test is a pair (N, D), and a = P(D = 1) and B8 = Q(D = 0) are the
error probabilities of the test. A test (N, D) is called weakly admissible if there exists
no test (N’, D) having o’ < a, B’ < B and N’ < N as. P, with at least one
inequality strict. The inequality N’ < N a.s. P is considered strict if P(N’ < N) >
0. If N equals some constant m > 1, we call (¥, D) a fixed-sample test. Finally, the
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1124 BENNETT EISENBERG AND B. K. GHOSH

likelihood ratio (LR) for &, is the unique &,-measurable function A, which
satisfies Q(E) = [gA\y dP for all E € &,. (See [2] and [3] for more details on these
concepts).

Eisenberg and Simons ([2]) show that, under mild assumptions, any test (N, D)
has a weakly admissible improvement, called a curtailed version of (N, D). In
particular, a fixed-sample Jeve/ k LR test has a unique weakly admissible improve-
ment, provided only that P(A\, = k) = 0. (A level k LR test is defined by D =0
when Ay <k, and D = 1 when A, > k). This improvement, denoted by (N*, D*),
will be henceforth called a curtailed test. The decision of the curtailed test is
identical to that of the fixed-sample LR test, but the procedure uses only as many
observations as are needed to determine the decision. In this sense curtailed z-tests
are considered in [1] and [5]. It should be emphasized that a fixed-sample LR test is
optimal in terms of error probabilities alone, but it need not be weakly admissible
(PA)8

In Section 2, some preliminary results-about curtailed versions of LR test are
proved. It is then shown in Section 3 that curtailed tests possess two useful optimal
properties. In Section 4, the form of the curtailed test is completely described when
the observations are independent under P and Q. It is shown that, if the observa-
tions are also identically distributed according to the one-parameter exponential
family, then the curtailed test is also uniformly most powerful against one-sided
alternatives. Finally, in Section 5, the average sample size of the uniformly most
powerful curtailed test is compared with the sample size of the uniformly most
powerful fixed-sample test.

2. Preliminaries. Let N be an arbitrary stopping time, and (N, D) be a level k
LR test with P(Ay, = k) =0,0 < k < oo (then Q(A, = k) =0 by absol?te con-
tinuity of P and Q). We shall call (N, D) a k-regular (sequential) test. A k-regular
test with N = m is the classical Neyman-Pearson test based on a predetermined
sample of size m.

Theorems 2.1 and 2.2 below are closely related to results in Eisenberg and
Simons ([2]), but they are presented here in a more useful form that takes
advantage of the additional assumptions made in this paper.

THEOREM 2.1. Let (N, D) be a k-regular test. Let &' be a subfield of &, and N’
be the LR for &’. If D is &’-measurable, then

@@ PN <k<Ay)=0=PQN >k>A\),

(b) PN =k)=0,

© [D=0]=[N<kL[D=1]=[\ >k as. P.

Proor. If D is &’-measurable, then [Ay, > k] € &’. Hence
fx<k<)\~}" apP = QO‘I <k < AN) = f}\’<k<)\N>\N dP,

which implies that kP(\' < k < Ay) > QN < k <Ay) > kPN <k <Ay). The
contradiction P(\’ < k < Ay) > P(\" < k < Ay) can be resolved only if P(A" <k
< Ay) = 0. Similarly, we conclude that P\’ > k > Ay) = 0, which proves (a).
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Assertion (b) follows from (a) and the assumption P(Ay = k) = 0. Assertion (c)
follows from (a), (b) and the same assumption. []

Theorem 2.1 describes properties of an LR decision D which is measurable over
a smaller o-field than that over which D is defined. The following theorem
describes properties of stopping times over whose o-fields D is measurable.

THEOREM 2.2. Let (N, D) be a k-regular test. Let N* be the first n such that
A, =[PA\y > k|&,) = 0] or B, = [P(\y < k|b,) = 0] occurs for n > 1, and define
D* = 0 in the first case and D* =1 in the second case. Then

(a) D* is well defined, & \.-measurable, and equals D a.s. P,

(b) N* < N'as. Pif N < N as. Pand D is &,.-measurable,

(C) the test (N*, D*) is weakly admissible and the curtailed version of (N, D).

ProoF. Let C, = 4, N B, for n > 1. Then
P(C,) = fc’_[P(}\N > k|&,) + P(\y <k|&,)] dP = 0, n > 1

Hence D* is well defined. [D* = 1] N [N*‘= n] =B, N [N* =n] € &, for each n
so D* is & ,.-measurable. Moreover,

P(D*=1,D=0) < P(\y <k, UB,) < Zfz P(A, <k|b,)dP = 0,

and similarly P(D* = 0, D = 1) = 0, which proves the last part of (a). Next, if
N’ < N and D is &,.-measurable, then Theorem 2.1 shows that P(Ay. < k < Ay)
=0 = Py > k > Ay). In particular, P\, < k <Ay, N' = n) = 0 for each n,
which implies
f[)\,,<k]n[N'=n]P(}\n > klgn) dpP = 0.

Consequently, P(\y > k|&,) = 0 on the set [A, < k] N[N’ = n], and similarly
P(\y < k|&,) = 0on the set [A, > k] N [N’ = n]. Combining the two we conclude
that, if N’ = n, A4, or B, occurs. But N* is defined as the first » such that 4, or B,
occurs. Hence we must have N* < N’ a.s. P, which proves (b). Finally, suppose
that a test (N, D’) satisfies o’ < a*, B’ < B* and N’ < N* ass. P. Then o’ < q,
B < B and N’ < N as. P. But D is &,.,-measurable by the Neyman-Pearson
lemma (see [2]), and N* < N’ a.s. P from (b). Hence we must have N* = N’ and
D* = D’ as. P, which proves the assertions in (c). []

3. Optimum properties of curtailed tests. A weakly admissible improvement
(N*, D*) of an arbitrary test (N, D) has the property that there is no other test
(N’, D’) with o’ < a* and B’ < B* such that N’ < N* as. P. This does not
generally imply that N* < N’ a.s. P for all such tests (N’, D’) (see [2]). An
interesting result of this nature does hold if (N, D) is a fixed-sample LR test with
N =m and if the class of possible tests is restricted to N’ < m. The result is
essentially the weak admissibility property from a different viewpoint.

THEOREM 3.1. (Optimum Property I). Let (N, D) be a k-regular test with
N =m, and (N*, D*) be the curtailed test (i.e., the curtailed version of (N, D)). If
(N',D)has o’ < a, B’ < Band N' < m, then N* < N’ as. P.
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Proor. This is a special case of Theorem 2.2, part (b). []

The theorem above shows one way that curtailed test are preferable to truncated
(at m) sequential probability ratio tests (see [4], page 221). It does not follow,
however, that the only test to be used in every situation, where at most m
observations are available, is the curtailed test. The reason is that the possible error
probabilities of curtailed tests are limited to those generated by the fixed-sample
LR test. If a is given and m is large, 8 would ordinarily be very small. There could
very well be other tests based on at most m observations with preferable sample
size at little additional cost in terms of 3. Indeed, a fixed-sample LR test based on
fewer than m observations could be such a test.

We next consider a second optimum property of curtailed tests. Let P, be a
family of probability measures on &, indexed by a real-valued parameter 8. A test
(N, D) is called uniformly most powerful (UMP) for § = 6, against alternatives
0 > g, if, for all tests (N,D") with the same stopping time N, « < a implies
Py(D = 0) < Py(D’ = 0) for all 9 > 6,.

THEOREM 3.2. (Optimum Property II). If (N, D) is a UMP test for = 6, against
0 > G, with P, all equivalent, then its curtailed version (N*, D*) is also UMP.

Proor. If (N*, D*) is the curtailed version of (N, D), then any & ,.-measurable
decision is also &,-measurable. But D* = D a.s. P, and D is UMP against all
&y-measurable decisions. Hence D* must be UMP against all &,.-measurable
decisions. [J

It is well known that, if P, yields a monotone likelihood ratio family (see [7]}, the
fixed-sample LR test based on m observations is UMP for § = 6, against § > 6.
Theorem 3.2 shows that the curtailed test will then be UMP, too. The curtailed test
in such situations is often sequential with N* nonconstant (see the examples in the
following section). This conclusion is remarkable in that, as a general rule, most of
the common sequential procedures are not UMP for 8 = §, against 8 > 6,. For
instance, a sequential probability ratio test or its truncated version is not UMP.
Not only does the construction of the stopping time of such tests depend on the
actual choice of 8 > §,, so does the construction of the decision.

4. Curtailed tests in the independent model. The stopping time N* and the
decision D* of a curtailed test can be described in a simple form when the
observations X, - - - , X,, are independent under both P and Q.

Assume that the X, are independent with distribution F; under P and G, under Q
(and dG; and dF, are equivalent for each i). Let

(4.1)  1,, = esspinf 7L, h(X)), Sum = esspsup II7., 4 1 A(X)),
where
h(x) = dG(x)/ dF(x).
Then A, =1II_ 4 for 1 <n <m, A, =AII7_, b for 1 <n<m,and A1, , <
A, <AS, ,asP.
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THEOREM 4.1. If (N, D) is a k-regular test with N = m in the independent model,
the curtailed test is a generalized sequential probability ratio test with upper boundary
B, =k/1, ,, and lower boundary A, = k/S, , for 1 <n < m. That is, N* is the
smallest n such that A, > B, or A\, < A,, and D* = 1 in the former case and D* = 0
in the latter case. Moreover, B, is nonincreasing, A, is nondecreasing, and A,, = k =
B

The proof of the theorem is rather technical and is left to the Appendix.

COROLLARY. If essp inf h,(X,,) = 0 and essp sup h,(X,,) = oo, then the k-regu-
lar test with N = m is itself the curtailed test.

PrOOF. In this case, 4, = 0 and B, = oo for 1 < n < m. Since P(0 < A, < o)
=1= Q0 <A, < o) for n < m, it follows that the generalized sequential proba-
bility ratio test does not stop before time m. []

We shall now apply Theorem 4.1 to derive curtailed tests which are UMP for a
wide family of distributions. Assume that the X; are independent with a common
density :

4.2) fr(x) = A(0)B(x)e"®c™

with respect to a o-finite measure for some §, where @ lies in some open interval
and #(#) is an increasing function of 4. It is well known that, under (4.2), P, and P,
are equivalent for all 8 # 8.

The k-regular test (N, D) with N =m of § = 8, against § = 6,, 8§, > 8,, is also
UMP for 0 = 6§, against alternatives 8 > 6, (see [7]). The decision of this test is
defined by D = 0if Y,, <cand D = 1if Y,, > ¢ provided Py(Y,, = c) = 0, where
(4.3) Y, = Z7.,C(X).

It is easily verified that the condition Py(Y,, = c¢) = 0is equivalent to the k-regular-
ity condition Py (A,, = k.) = 0 if one identifies k. = [4(6,) /A" exp[c{#(8,) —
1(6,)}]. We may call this test the fixed-sample UMP test of @ = 0, against § > 4,
Let

44 a = essp inf C(X;), b = essp sup C(X)).

THEOREM 4.2. If (N, D) is the fixed-sample UMP test with N = m, then the
curtailed test (N*, D*) is UMP, where N* is the smallest n such that Y, < ¢ — (m —
n)b or Y, > ¢ — (m — n)a, and D* = 0 in the first case and D* = 1 in the second
case. If a or b is infinite, then 0 - oo is interpreted as 0 so that N* < m.

ProOOF. Applying Theorem 4.1 we note that the curtailed test stops the first
time A, > k. /I, ,, or A\, <k./S, ,, where

L, =[A(8,)/A(89)]" " exp[ {1(8,) — (8p) }(m — n)a],
Sum =[A4(8,)/A4(85)]""" exp[ {#(8)) — #(80) }(m — n)b].

Substituting for k, this yields the rule given in the statement of the theorem. The
curtailed test is UMP by Theorem 3.2. []
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The description of the stopping rule in terms of Y,, instead of A,, makes it clear
that the form of the UMP curtailed test does not depend on the actual choice of
0 > 6,. We give below some applications of Theorem 4.2.

ExaMpPLE 1. Suppose that the X; are independent normal variables with zero
mean and variance §2. To test § = 8,(6, > 0) against § > 6, using m observations,
the fixed-sample UMP test rejects § = 6, if Y,, > ¢ and accepts 8 = 0, if Y, < ¢
for some ¢ > 0, where Y,, = 3™ X2 Here, Py(Y,,=c)=0forallc,anda =0, b

co. Hence the UMP curtailed test rejects if Y, > ¢ for any n < m and accepts if
Y, < c.

m

EXAMPLE 2. Suppose that the X; are independent normal variables with mean 6
and variance 1. To test § = 6, against § > 6, the fixed-sample UMP test rejects if
Y,, > c and accepts if Y,, < ¢, where Y,, = Z7_,X,. Here, Py(Y,, = ¢) = Ofor all c,
and ¢ = — o0, b = 0. Hence the UMP curtailed test is the same as the fixed-sam-
ple test.

ExAMPLE 3. Suppose that the X, are independent Bernoulli variables with mean
6. To test § = 6,0 < §, < 1) against § > 8, the fixed-sample UMP test rejects if
Y,, > ¢ and accepts if Y,, < ¢ for some 0 < ¢ < m, where Y, = Z7_,X,. Here
P,(Y,, = c) = 0if ¢ is not an integer, and a = 0, b = 1. Hence the UMP curtailed
test rejects if Y, > ¢ and accepts if Y, < ¢ — m + n for any n < m.

ExaMPLE 4. Suppose that the X; are independent Poisson variables with mean
0. To test 8 = 0,(0, > 0) against § > 6,, the fixed-sample UMP test rejects if
Y,, > c accepts if Y,, < c for some ¢ > 0, where Y,, = 27_,X,. Here Py(Y,, = ¢) =
0 if ¢ is not an 1nteger anda =0,b = . Hence the UMP curtailed test rejects if
Y, > c for any n < m and accepts if Y,

5. Asymptotic relative sample size of UMP curtailed tests. Consider the UMP
curtailed test, defined in Theorem 4.2, for testing # = 6, against § > 6§, in the
family (4.2). For present purposes, it will be more appropriate to denote N* by N*.
We shall call
(5.1) en(0) = Ep(Ny;)/m
the relative sample size of the UMP curtailed test with respect to the fixed-sample
UMP test. Clearly, e,,(6) < 1 for all m > 1 and 0, and e,,(8) represents the fraction
of the m available observations that one would require, on the average, under the

curtailed procedure.
For a sequence of fixed-sample UMP tests and the corresponding UMP curtailed

tests, the asymptotic relative sample size at level o is lim, . e,(8) when

lim,, ., Py(D,, = 1) = a. We shall now compute this asymptotic relative sample
size. Let
(52) t = Ep(C(X)), of = Var(C(X)),

and denote Py by P, py by u, and o, by o. It is well known that y, and o, exist for
all 4, and that y, is an increasing function of 8 (see [4], page 25, [5], pages 51, 58).
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THEeOREM 5.1. The asymptotic relative sample size of the UMP curtailed test is
given by
(5.3) lim,,,.e,(8) = (n—a)/ (ng—a) if 6> 6
= (b-p/(b—ny it <8,

Sor all levels a,0 < a < 1, where a and b are defined in (4.4). If a = — o0 or b = 0,
the ratio in (5.3) is interpreted as 1. Moreover, as m — oo, N}/m converges to
lime,(8) in probability under P, for all 6.

PROOF. Let c, = mp + z,mio for 0 < a < 1, where z, is defined by
Q7)) 3f% exp(— 1x?)dx = 1 — a. Then P(Y,, > c,,) — a as m — oo, where Y, is
defined in (4.3). For any r,0 < r < 1, the stopping rul€ in Theorem 4.2 yields

(54) Py(Nz/m>r) = Pyc,,— (m—[rm])b < Yy < Cpp— (m— [rm])a)
= Pa(um < (},[rm] - [rm]tu‘ﬁ)aﬂ_l([rm])_% < Dm)’

where

u, {m(u—b)-—[rm](ug—'b)+zaom%}09_l([rm])_%,

0, {m(,u— a) —[rm](py — a) + zaomzl}ao"([rm])—%,

and [rm] denotes the largest integer < rm. Suppose first that § = 6, and —o0 < a
<b < 0. Then a < p = py < b and, as m — o0, u,, » — oo and v,, > oo for all
0<r< 1 It follows from (54) and the central limit theorem that, as m —
o0, P(N}Y/m >r)—1for all r < 1. Since P(N}/m < 1) = 1, N} /m converges to
1 in probability under P. Moreover, since N}/m < 1, we also conclude that
e,(0,) > 1 as m — co. Suppose next that 8 > 6, and —o0 <a < b < oo0. Then
a<p<pu<b, so that 0<pu—a<py —aand 0<b— py <b— p. If one
chooses r < (u — a)(py — @)~ !, it is easily verified that u,, — — oo and v,, — © as
m — oo, and therefore Py(N*/m > r) — 1. If one chooses r > (n — a)(py — @)~ ',
then v,, > — oo and therefore Py(N}/m > r)— 0. The assertions of the theorem
now follow. The proof for the case § <6, and —o0 <a <b < oo is similar. If
a = — oo(b = o0), the stopping rule in Theorem 4.2 implies that v,(u,,) in (5.4)
should be replaced by co(— o0). Then using the same technique as above for cases
0 =26,0 >0, and 8 < 8, separately we conclude that the present theorem holds
with proper interpretation when a = — o0 or b = co. To complete the proof,
suppose that c;, is another sequence satisfying P(Y,, > c,) — a as m — co. Then,
for any € > 0 and sufficiently large m, we have mu + zaﬂm%a <e¢, <mp+
za_im%o. Since the terms of order m? play no role in our proof, these sequences
also lead to the assertions of the theorem. []

As applications of Theorem 5.1, consider the four examples in the preceding
section. In Example 1, C(X,) = X2 u, = 07 and the asymptotic relative sample
size of the UMP curtailed test is 1 if 0 < @ < 6, and (6,/0)* if § > 6,. In Example
2, C(X;) = X,, up = 0, and the asymptotic relative sample size is 1 for all 8, as it
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ought to be since the two tests are identical. In Example 3, C(X,) = X, yy = 6, and
the asymptotic relative sample size is (1 — 6,)/(1 — ) if 0 <@ < 6, and §,/0 if
6, < 6 < 1. In Example 4, C(X;) = X,, py = 0, and the asymptotic relative sample
sizeis 1 if 0 <8 < 6, and 6,/0 if § > 6, The first and last examples show that,
when 6 is much larger than 6, the UMP curtailed test will achieve a considerable
saving over the fixed-sample UMP test. The third example shows that this can be
true also when @ is much smaller than 6,

It can be seen that in the notion of asymptotic relative sample size a is fixed
between 0 and 1, but Py(D,, = 0) —» 0 for any 0 > §, as m — oo. This is related to
the notion of efficiency proposed by Hodges and Lehmann ([6]) to compare two
fixed-sample tests. A second way to compare the UMP curtailed test with the
fixed-sample UMP test is to hold both a« and 8 = Py(D,, = 0) fixed between 0 and
1 0<a<1-pB<1),and then compare Ey(N}) with m = m(0) as 8 —6,. We
define the local asymptotic relative sample size of the UMP curtailed test with
respect to the fixed-sample UMP test as lim,_, e, (), where e, (8) is given by
(5.1) and m(0) is the sample size required by the fixed-sample test to achieve the
error probabilities a and B. This notion is closely related to the well-known
Pitman-efficiency of fixed-sample tests. Our final result shows that there is no
advantage in using a curtailed test in the sense of local asymptotic relative sample
size.

THEOREM 5.2. The local asymptotic relative sample size of the UMP curtailed test
isoneforall0 < a<1—-B8<1.

PrOOF. We shall use the notations of Theorem 5.1. Observe first that m(6) =
(2,8 = z;_405)*(pg — p)~* asymptotically, so that m(8) — co as 6 — 6, for any
0 <a<1-p8<1((the condition « < 1 — B implies § > §,). For any 8 > 6, and
r<l,

= Po(“m(a) <(Y[rm(0)] [rm(0)]ug)o; ([rm(8)]) 2 <y (a))

Given any § > 0, one can choose 8 sufficiently close to 8, such that (u — a) — r(u,
—a)>34. But m(0)>o0 as 66, Hence u,, — — 00, 0,4 —> 0, and
Py(Nyie)/m(8) > r) -1 for all r < 1, as 8 — 6,. Since Ny, /m(8) < 1, we find

limg_,g Eo(Npo)/m(8) = 1. ]

Note that, if « > 1 — 8, we must have 8 < 6, m(8) = 1, and the local asymp-
totic efficiency is trivially one.

APPENDIX

PrOOF oF THEOREM 4.1. Let C = [A,S, ,, < k], and denote by C the complement
of C. Then

JeP(A,, > k|&,)dP = P(A,, > k,\,S, ,, <k)=
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Hence P(A,, > k|&,) = 0 on C. Let D € &, be a subset of C with P(D) > 0. Then
P(D,\,>k/S,,) >0 and therefore P(D,A, > k(S, ,,— €)") > 0 for some
€> 0. Now II;Z,, . A, is independent of &,, and P(IZ, ., h; > S, ,, — €) > 0 for
all €> 0. Hence

P(D9>‘n > k(Sn,m - E)_l’ ;n-n+lhi > Sn,m - E) >0,

which implies P(D,A,, > k) > 0. Since [, P(A,, > k|&,)dP > 0 for all D in &,
which are included in C, it follows that P(A,, > k|&,) > 0 as. P on C. We have
thus shown that

[P(A, >k|&,)=0] =[A, <k/S, ,.]as.P,

and similarly one gets
[P(A, <k|&,)=0] =[A, > k/I, ,]as.P.

It follows from Theorem 2.2 that the curtailed version of (N, D) with N = m stops
the first time 4, = [A, < k/S, ,]or B, =[A, > k/I, ,,] occurs, and D* = 0 in the
first case and D* = 1 in the second case. This is identical to the rule of the
generalized sequential probability ratio test stated in the present theorem. The last
part of the theorem follows from the fact that 7, ,, = esspinfh, I, ,, < L4y,
and Sn,m = esspsup hn+lsn+l,m > Sn+l,m' D
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