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DISCRETE-TIME SPECTRAL ESTIMATION OF
CONTINUOUS-TIME PROCESSES—
THE ORTHOGONAL SERIES METHOD'

By E. MAsrY
University of California, San Diego

Let {X(t), —o0 < t < o0} be a stationary time series with spectral density
function ¢(A). Let {¢#,} be a stationary Poisson point process on the real line.
The existence of consistent estimates of ¢(A) based on the discrete-time
observations {X(¢,)};.,, when the actual sampling times are not known, has
been an open question (Beutler). Using an orthogonal series method, a class of
spectral estimates is considered and its uniform and integrated uniform con-
sistency in quadratic mean is established. Rates of convergence are established
and are compared with the optimal rates of the available (Brillinger, Masry)
kernel-type estimates based on the observations {X(,),1,}}\ .

1. Imtroduction. There is an extensive literature on the subject of spectral
estimation of continuous and discrete parameters time series. Here we are con-
cerned with the estimation of the spectral density function ¢(A) of a time series
X = {X(t), —0 <t < o} based on the discrete-time observations {X(¢,),t,},
where the sampling process {¢,} constitutes a stationary point process on the real
line. Brillinger (1972), in his fundamental work on the spectral analysis of sta-
tionary interval functions, discussed the consistency and asymptotic normality as
T — oo of kernel-type spectral estimates ¢(A) based on the modified periodogram

W) L) = g (e XN — [FXA(1)dN())

where N(t) = N((0,¢]) is the counting process associated with {z,}. Considering
¢r(A) as an estimate based on discrete-time observations, it clearly employs a
random sample size N(7'). Assuming a deterministic sample size N, kernel-type
spectral estimates y/,(\) based on the observations (X(2,),t,)}Y_,, where N is a
positive integer and {z,} is a stationary Poisson point process, have been consid-
ered by Masry (1978) where their pointwise consistency in quadratic mean as

N — oo is derived; \ﬁN(}\) is based on the modified periodogram
1 —i
(12) Iv(A) = m{lzﬁl- e X (e,)|? = 21 X3(1,) )

For a Poisson sampling process {¢,}, the second order statistics of Jy(A) and I(A)
are distinct but the second order statistics of the corresponding kernel-type esti-
mates @N(}\) and ¢, (A) are virtually identical, as shown in [5].
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The above estimates require the knowledge of the actual values of the sampling
instants {z,}_, (to evaluate e”~*) in addition to the data sequence {X(,)}"_,. This
paper investigates the estimation of ¢(A) on the basis of the data sequence
{X(2,)}_, alone, i.e., when the actual sampling instants are not known. (Such a
situation may arise in randomly-sampled data systems where the actual sampling
times are not transmitted. See also Gaster and Roberts (1975) for examples in fluid
mechanics.) Clearly, the periodogram approach (1.1)-(1.2) is no longer applicable.
In fact, the existence of consistent estimates of ¢(A) under these circumstances has
been an open question as noted in Beutler (1970). This paper resolves this question
when the sampling process {¢,} is Poisson: By employing an orthogonal series
method, a class of spectral estimates qASN(}\) is introduced and its uniform con-
sistency and integrated uniform consistency in quadratic mean is established. The
approach is similar to the one used by Cencov (1962), Schwartz (1967), Watson
(1969) and Rosenblatt (1971) for probability density estimation. However, unlike
these works, the complete orthogonal set in £, used for the representation of ¢(A),
cannot be arbitrary and is, in fact, generated by the statistics of the sampling
process {t,}. ,

In Section 2, the series representation for ¢(A) is introduced and some pre-
liminary results are given. Conditions for the consistency of qASN(}\) and bounds on
the two types of errors are established in Section 3. These results are compared in
Section 4 with the optimal convergence properties of the estimates based on the
periodogram (1.1) or (1.2). The comparison indicates that the orthogonal series
estimate &N(}\) has appreciably slower rates of convergence. The proofs are
collected in Section 5. The question of whether these rates are the best possible
remains open.

2. Preliminaries. Throughout this paper, X = {X(¢), —o0 <t < o0} is a real
stationary measurable fourth order process with mean zero, continuous covariance
function C(¢) € £,, spectral density ¢(A) = 27)~'f* C(¢)exp[ — itA]dt and fourth
order cumulant function Q(u,, ¥,, u3,). The sampling process {¢,} is assumed to be
a stationary Poisson point process on [0, o0), independent of X, with known mean
intensity B, ie., t,=0 as, t,=t¢t,_;+ 7T, n=1,2,---, where the T,’s are
independent identically distributed random variables with exponential distribution
F(x) = [1 — exp(—Bx)].

The basic idea of the paper is to employ an appropriate orthogonal series
representation for ¢(A) whose coefficients can be estimated from the data sequence
{X(2,)}_, alone. Note that if {U,(A)}>., is an arbitrary complete orthonormal set
in £,(— 00, ), then ¢(A) = Z2_,5,U,(N) in £,, b, = [© ¢(A)UF(A)dA and, as in
probability density estimation by orthogonal series [3], [9], [12], one could estimate
b, by b(N) = (1/B)[® . Jn(AN)U*(N)dA, where J, () is given in (1.2). Then

b(N) = (1/2'”,3N)2?:k=1;j;ekX(tj)X(tk)“:(tj —4)
where u, (1) = [Z_exp[itA]JU,(A)dA. Thus, b:,(N ) requires the knowledge of the
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sampling instants {z,}1_, in addition to the data sequence {X(z,)}Y_,. Hence, the
basis {U,(A)} cannot be arbitrary for our purposes. Next we note (Shapiro and
Silverman (1960)) that the discrete-parameter process {X(#,)} has mean zero and
covariance sequence {c,}

2.1) ¢y = E[X(1e,)X(1)] = [eC)f()at, n=1.2,---,

where f,(¢) = BI(Bt)" ' /(n — 1)!]exp(—Bt), n = 1,2,- - - . The set {f.(8)} is com-
plete in £,(0, o) and its orthonormalization yields

(2:2) 8.(1) = QBYL,,(2Be ™ 1o 0ft),  m = 1,2,
where L,(¢) is the nth Laguerre polynomial. Note that [10] g,(¢) = 2310, .+ fi(2)
where

23) b = @/B)(-2(7 2 1),

Since C(t) € £,(— o0, o0), we have the £, expansion C(¢) = =°_,a,8,(|¢|) where

(2.4) a, = [°C(t)g,(t)dt = Z;_,0, (k-

Hence

(2'5) (P(A) = 2:Q=lanGn(>\)

in £,(— o0, o0) where, by direct Fourier transform of (2.2),
(2,8) cos[(2n — l)tan"(k/,B)]

(¥ + B2):
n=12,-

26) G() = 52w g, (It =

{G, (M)}, is complete and orthogonal in £,(— o0, c0) with respect to even func-
tions on (— 00, ). The series expansion (2.5) has been considered by Shapiro and
Silverman (1960) in connection with a concept of “alias-free” sampling.

The approach: given the data sequence {X(,)}._, estimate c, by

Q.7 & (N) = —2 PX(te 0 )X (1), 1<n<N
‘ = O, N < n.

Then, via (2.4), estimate the expansion coefficient a, by

(2.8) a,(N) = EZ=10n,kék(N)’
and finally, estimate ¢(\) by
(2.9) én(A) = Zp 1(N)a,(N)G,(A)

where {v,(N)} is an appropriate averaging sequence to be specified below.
A bound on the rate of decay of {a,} is needed and is given below; AC"[0, o)
denotes the set of functions which are r-times absolutely continuous on [0, o).
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LEMMA 2.1. Fort > 0, let C(t) € AC"'[0, o) such that
(2.10) 172CW(1) € £,(0,00) fork = 0,1, -, r.
Then for n = 1,2,- - -

|an| < Al(r)n_r/2
where

A(r) = @BY 1% 2 [ C(1/28)e™ "l 0,y

REMARK. The hypothesis of Lemma 2.1 does not require the differentiability of
C(t) at the origin. Thus, the spectral moments of ¢(A) need not exist. For example,
C(t) = e~ "l satisfies the hypothesis of Lemma 2.1 for every integer r > 1. Simi-
larly, if ¢(A) is a rational function in A, then Lemma 2.1 holds for every integer

r> 1.
In investigating the convergence in quadratic mean of the estimate (2.9) for a
fixed A, the pointwise convergence of the £, expansion (2.5) is needed. We have

LEMMA 2.2. Assume C(t) satisfies the hypothesis of Lemma 2.1 for some r > 2.
Then

(2’11) ¢(>\) = 2:’;:’-lanGn(A)
uniformly on (— 00, o).

3. Consistency and rates of convergence. We first consider the consistency of
the estimates é,(N) and 4,(N ). The following assumption is needed.

AssUMPTION 3.1. The process X satisfies

(i) tC(¢) € £,(— 0, )

() |Q(uy, uz,us)| < h(uy, uy,u3)
where A is even and nonincreasing on [0, c0) in each variable such that
2 h(0,u,0)du < oo.

THEOREM 3.1.  Under Assumption 3.1, the estimate ¢, (N ) is consistent in quadratic
mean with

@ E[é,(N)=(@1 - (n/N))c,

(ii) Var[¢,(N)] < 4,/N
where A, is a constant independent of n and N.

Before considering the consistency of the estimate 4,(N), we note that the
mapping (2.4) of {c,} to {a,} is unbounded in / , since Z}_,6, , = 2/B)i(—1)""!
but 37_,16, .| = (2/8)#3"~'. Thus, since Var[d,(N)] = =;,_,0, b, ,
Cov[é,(N),é,(N)], a small variability in the estimate é,(N) is likely to produce a
large variability in the estimate d,(N) for large n. A simulation study in [4] appears
to confirm this observation. We have

THEOREM 3.2. Under Assumption 3.1 the estimate 4,(N ) is consistent in quadratic
mean with
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@) E[4,(N)] = a, - (1/N)[na, - (n~ Da,_,]
(i) Var[d,(N)] < 45(3*"/N)
where Ay = 2A4,/98.

Consider now the class of spectral estimates ¢, (\) defined by (2.9), where the
averaging sequence {y,(/N)} is of the form

(3.1) v,(N) = h(e*"/N®), o > In3,0 < b < ﬁg
and A(u) is a real even function on the real line satisfying

@) |A(u)| < h(0) =1 for all u,
32) (i) |uh(u)| < K, for fu| > 1,

Gii) 1 — A(u) < K,|u| for all u.

The kernel {y,(N)} is then of the exponential type as defined by Parzen (1958).
The choice of exponential-type kernel (rather than algebraic) and the conditions on
the parameters o and b are necessitated by the variance expression of d,(N).

THEOREM 3.3. Assume X satisfies Assumption 3.1 and the hypothesis of Lemma 2.1
for some r > 1. Then the estimate (2.9) is integratedly uniformly consistent in
quadratic mean with

Ef®,|én(A) = #(M)%d\ < B,[1/lN]"7'(1 + o(1))
where
B, = 443(r)2a/b)""/ (r = 1).
Next we have

THEOREM 3.4. Assume X satisfies Assumption 3.1 and the hypothesis of Lemma 2.1
for some r > 2. Then the estimate (2.9) is uniformly consistent in quadratic mean with
Elgn(A) = $(VI? < B[1/InN]7X(1 + o(1))

uniformly in \, where

B, = (32/7%B)A}(r)(2a/b) X (r—2)72.

4. Discussion. We first establish the optimal convergence properties of the
kernel-type estimate i/, (A) based on the periodogram (1.2). yy(A) is of the form

[215]
(4.1) In(A) = (1/B)f 2 (X = w)Jy(p)dp
where Wy (A) = My K(MyA), My — o0 and My/N — 0 as N — oo and the kernel
K(M) is a real even continuously differentiable function on (— o0, 00) satisfying
(l) sup—oo<)\<oo|K(>\)| < oo (11) sup_w<>\<°°|K’(}\)| < o
4.2)
(i) fZ,|K(A)|dA < o @(iv) [ K(A)dA =1.



SPECTRAL ESTIMATION BY ORTHOGONAL SERIES 1105

Aside from the conditions on the fourth order cumulant Q(u,,u,,u;) we have by
[5], Theorems 1 and 3 (or [2], Theorem 4.3), that if tC(¢) € £,(— o0, ) then

E[4y(N)] = 12 Wy (A = p)o(p)dn + O(1/N)

Var[ $y(V)] 2wB(MN/N)[¢(A>+ “}(Hs“)fw K2(u) du

X (1 + O(My/N)).

To find the optimal convergence properties of x[:N(}\) we proceed as in Wahba
(1975). Assume that for some integer r > 1, K()) satisfies in addition

W) [P NMKA)A =0, . =1, =1
4.2)

V) [ A" K(A)|dA < o0
and that
(4.3) t'C(t) € £,(— o0, ).

Expanding ¢(A + p) in a Taylor series, and using (4.2) (iv)-(vi) in f°_K(—u)
(A + u/My)du, we find b*[{(N)] < B;My?'(1 + o(1)) where

l <] r
——— [ /2o ul | K(u)|adu]’[ [2,]¢|"|C(2)|dr ],
[27r!]
Thus, ignoring a factor (1 + O(M,/N)) in the variance and (1 + o(1)) in the bias,
we have

(4.4) E|yy(X) — ¢(M)|* < ByMy* + B(My/N)

where

B3=

co |
27B
Then choosing My, = [2rB,/B,]"/?"*DN'/@™*D which minimizes the right-hand
side of (4.4), we have finally

(4.5)  Elgn(A) = ¢(N)[* < BsNT2CI(1 + o(1))

where

= 4nB| = |C(1)|dt + —— | [° K*(u)du.

(2r+1) [ B,B2]"/%"*D,

Bs = 304
(2r)2r/(2r+ 1)

The parameter r of (4.3) and Lemma 2.1 represents a degree of smoothness of
¢(A). For the same value of r, the hypothesis of Lemma 2.1 is generally more
restrictive then (4.3), even though (4.3) implies (2.10) with k = 0. For the same
value of , the mean square error of the estimate y(A) is O(1/N2"/@r+D) whereas
for the series estimate <2>N(}\) itis O(1/[In N]"~?) by Theorem 3.4. Thus, \ﬁN(}\) has
an appreciably higher rate of convergence—this at the expense of requiring a
record of the sampling instants.
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Comparison on the basis of mean integrated square error cannot be made since
the kernel-type estimate (4.1) has not so far been shown to be consistent in this
sense (see [2][5]).

The proofs of Theorems 3.3 and 3.4 indicate that the logarithmic convergence
rates of the series estimates %N(A) are due to the exponential growth in n of
Var[d,(N)] as given by the bound in Theorem 3.2. The discussion preceding
Theorem 3.2 provides evidence for such a rapid growth. It remains an open
question whether the convergence rates of the series estimate obtained here are the
best possible.

Finally, we note that when the sampling process {z,} is not necessarily Poisson
but “alias-free” in the sense of [1], [10], an orthogonal series estimate of ¢(A) of the
form (2.9) can be considered in a similar fashion. However, the analysis becomes
more complex since the basis {g,(?)}~, is generated by the statistics of the point
process {¢,}. (In the Poisson case, we have the Laguerre functions (2.2), whose
properties are well known.)

5. Proofs.

Proor OoF LEmMMA 2.1. The following relationship for generalized Laguerre
functions is easily verified.
d t’
— | —=L_ (1) |.
dt (n + v — 1) n—l( )}

By repeated substitution of (5.1) and integration by parts in the integral below, we

have
(5.2)

(5.1 i) =

( l)ktk+1Lk+l(t) dk A

n(n+1)-- (n+k)a'"

J§'C(t/2B) L, (t)e™"%dt =Zi_} [C(t/2,3)e"/2]}

0+

P _) {d,r[C(t/2ﬁ)e"/2]}t’L;_,(z)dz.

n(n+1)---(n+r
Each term in the sum vanishes at infinity by the hypothesis of Lemma 2.1. Finally,
by

(et

2 -t/2 =
¢772L;(1)e Il £500, 00) [ P

the dominated convergence theorem and the Cauchy-Schwarz inequality

_<___1>!_r'<m

|an| l( ) ( + 7 — 1)’ nr/2 '

ProoF oF LEmMMA 22. By (2.6) and Lemma 2.1, Z2_,|a,||G,(A)| <
(2/7*B)iZ2,|a,| < . Since G,(A) is continuous, the series in (2.11) converges
uniformly to an even continuous function, say, y(A). Since =2_,|a,|? < oo,
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Y(A) € £,(— 0, ©0) by the Riesz-Fischer theorem and hence [®_[¢o(A) —
Y(A)]G,(A)dA =0, n=1,2,---. Finally, since {G,(A)}~, is complete in
£,(— o0, c0) with respect to even functions, we have ¢(A) = y(A) a.e. and the result
follows by the continuity of ¢(A) and Y(A).
ProoOF oF THEOREM 3.1. (i) is clear. For (ii), we have
Var[&,(W)] = BiT, (N) - E2[6,(N)]
where

1
T, (N) = FYERt R IZE[C(tyn = 1)C(t1, — 1) ],

1 —n
T, (N) = _22;:,,1=1E[C(t1 — 4)C(tn = tirn) ]

T,s(N) = 2k 2E[C(t — 1)C(tyn — 1)],

1
T, 4(N) = 2k, NI E[Qthsn = Gty = oty — 1) ]

By a bounding argument similar to the one employed in [5], it can be shown that if
tC(t) € £5(— o0, 0) then [T, (N) — E*[¢(N)]| < (Ay))/N, if C@) €
£,(— 00, ) then |T, (N)| < (Azj)/N J=2,3, and if Q(u,,u,,u;) satisfies As-
sumption 3.1, then |T’4(N)| < A,4/N, where 4, ;, j=1,2,3,4 are constants
independent of n and N. The result (ii) follows.

PrROOF OF THEOREM 3.2. (i) By (2.8), Theorem 3.1 and (2.4), E[d,(N)] = a, —
(1/N)Z% kb, ,c,. Thus the bias b[d,(N)] is

(5.3) b[a,(N)] = — (1/N)[5°C(t)q,(t)dt
where

4(0) = SL_k6, . f(0) = CRYSIzb (M (- 2pnytes

Using the properties of the Laguerre functions [7, page 299] it can be shown that
q,(t) = ng,(t) — (n — 1)g,_,(¢) and the result follows by (5.3).

(i) We have Var%[é,,(N N < 2i-1l6,, k]Var%[ék(N )] and the result follows by
Theorem 3.1 and 37 _,]6, .| = (2/8)*3"!

ProOF OF THEOREM 3.3. We have
Ef%lén(A) — s(M)dA = 12,67 dy(A)]dN + 12 Var[ dy(X)]aA

where by Theorem 3.2
(5.9

paplbn]an = tsz a1 - )]+ 2 (na, - (n - a1}

(k+1)
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and
(5.5) J= Var[ dy(A) ]\ = n-m(N)Var[a (M)].

The truncated sum in (5.5) at M, the integer part of (b/a) InN, is O(N?),
p=1—(2b/a)ln 3, by Theorem 3.2 and (3.2i); and by Theorem 3.2 and (3.2ii) the
tail sum is also O(N 7). In fact,

Aqk, L

© " -p. = /3
(56) f—oovar[qu(}\)]d}‘ < DlN ’ Dl ‘n’(l _ e—2(a—ln3)) 87

Next (5.4) is bounded by (1/7)(S, + S, + S;)* where

S12 = 2:;103[1 - Yn(N)]z’ Sz2 = _Zw 1 YZ(N)"
S3 zn-ln y,,2+1(N)a,2,.

S, is the dominant term in the integrated bias, for with M as before, we have by
(3.2i) and (3.2ii) and an argument similar to the one above that S2 <
GXb/)? (| Clle(ln N/N)Y*(1 + o(1)), k = 2,3. Now for any integer m > 1, we have
by (3.2i), (3.2iii)) and Lemma 2.1 that

amy—26 , 3I(r) 1

Slz < (%)K22||C||§Qe2 N~26 + —;—_—l —rF

The optimal m which minimizes the right-hand side is then the solution of a
transcendental equation and cannot be found explicitly. However, m is essentially
logarithmic in N and upon choosing m — 1 to be the integer part of (b/2a)ln N, we
have

The result follows by (5.6) and (5.7).
PrOOF OF THEOREM 3.4. By Lemma 2.2 and Theorem 3.2, the bias of &N()\) is
Blov(N)] = —=2,14,[1 = v,(N)]G,(A) = (1/N)Z2v,(N)
[na, — (n = 1a,_,]G,(A)
and by (2.6) b[éy(N)] < (2/7*B)i(Z, + Z,) uniformly in A, where
Z, = Z2la,l[1 - v(M)],
= (1/N)Z5 in|a|[14(N)] + [ (N)I]-

Z, is the dominant term in the bias, for with M the integer part of (b/a)In N, the
truncated series at M in Z, is O(In N/N) by (3.2i) and Lemma 2.1, and the tail sum
is O(N(In N)'~"/2) by (3.2iii). Next, for any integer m > 1, we have by (3.2i) (3.2iii)
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and Lemma 2.1 that
Zl < KZAl(r)r'N—beam + 4Al(r) .m|_(,/2)’
(r—2) (r—=2)

and, by an argument similar to the one employed for S? of Theorem 3.3, we find

(5.8)
bl dn(A)] < Dy(InN)E"VX(1 + o(1)); Dy = 44,(r)(b/a)' "2/ (r - 2).
For the variance we have by the Cauchy-Schwarz inequality and (2.6) that

Var[dy(V)] < /mB)[Z2ln(N)IVari[a,(M)]]

Again, with M the integer part of (b/a)ln N, the truncated sum at M is O(N ~7/2),
p = 1—(2b/a)ln 3,by Theorem 3.2 and (3.2i); whereas the tail sumis O(N ™~ v 2)by
Theorem 3.2 and (3.2ii). Hence uniformly in A,

(5.9) Var[¢y(A\)] = O(N?),p = 1 = (2b/a)ln 3.
The result follows by (5.8) and (5.9).
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