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ADMISSIBLE DESIGNS FOR POLYNOMIAL MONOSPLINE
REGRESSION'

By NorMmAN T. BRUVOLD
The Procter and Gamble Company

Admissible designs for polynomial monospline regression are shown to be
a proper subset of the admissible designs for spline regression. Sufficient
conditions are given for designs for polynomial monospline regression to be
admissible, and examples are used to show that simply counting points in
intervals does not determine admissibility for monospline functions.

1. Introduction. Let f' = (f,, f;,* - -, f,) be a vector of linearly independent
functions on a closed interval [a, b]. For each x or “level” in [a, b] an experiment
can be performed whose outcome is a random variable Y(x) with mean value
’f(x) = 20f(x) and variance o independent of x. The functions f: i=
0,---,n are called the regression functions and are assumed known to the
experimenter while the vector of parameters 8’ = (6, - - - ,6,) and o? are un-
known. An experimental design is a probability measure p concentrating mass
Py * P, on the points x,, - - -, x, where p,N = m:i = 1,2, - -, r are integers.

For an arbitrary probability measure on [a, b], the covariance matrix of the least
squares estimator of the parameters 6, is given by (¢°/ N)M ~'(p) where M(p) =
(my(w), m(p) = fiq, 5 SifiA(), is the information matrix of the experimental
design p. For two probability measures p and » on [a, b], we say » > p or
M(») > M(p) if the matrix M(») — M(p) is nonnegative definite and unequal to
the zero matrix. A probability measure or design p is said to be admissible if there
is no design » > p. Otherwise, p is inadmissible.

For the case of ordinary polynomial regression where f' = (1, x,- -, x"),
Kiefer (1959, page 291) has shown that p is admissible if and only if the spectrum
of p, S(p), has at most n — 1 points in the open interval (a, b). Consider the

interval [a, b] and cho_ose h fixed points &, &, - - - , & such that a < § < §;
< - - - < § < b, with f(x) the vector of functions for x € [a, b]
(l.l) Lx,---,x" (x - gi):-ki ’ (x - gi):-_kﬁ-l s " T T (x - gi):.—l'

’ i=1---,h

where n — 1>k, > >0, and (x — &4 = (x — §F if x > § and equals zero
otherwise. When /, =0 for i = 1, - - , h, the admissible designs for polynomial
spline regression have been completely characterized by Studden and Van Arman
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914 NORMAN T. BRUVOLD

(1969). Their results show that a design p is admissible if and only if the spectrum
of u, S(u) has less than or equal to

(12) n—1+Z[(n+ kK +1)/2]

points on the open interval (§, &,,,,) fori=0,1,---,h—051=0,1,--- A
Here & = a, &,,, = b and [x] denotes the greatest integer less than or equal to x.
A linear function of the component functions of f(x) (1.1) when /, = 1 for each i is
called a polynomial monospline function of degree n. This concept was introduced
by Schoenberg (1946) and plays an important role in the problems of curve fitting
and the theory of approximation, Karlin and Studden (1966b). In this paper
sufficient conditions are given for designs for polynomial monospline regression to
be admissible and examples are given to show that counting points in intervals is
not sufficient to determine admissibility for monospline functions. It is also shown
that the class of admissible designs for monospline regression is a proper subset of
the admissible designs for spline regression.

2. Background results. Elfving (1959, page 71) states that any measure con-
centrated on a subset of the spectrum of an admissible spectrum is admissible, or a
subspectrum of an admissible spectrum is admissible. He also shows that if p is
inadmissible, a measure whose spectrum contains that of u is also inadmissible.
From these results we can classify admissible experimental design by their spectra.
Karlin and Studden (1966a, page 797) allow us to restrict attention to those
probability measures concentrating their mass on a finite number of points in the
sense that for each probability measure p there exists a p’ concentrating on a finite
number of points x; such that M(p) = M(p’). Since we may classify experimental
designs by their spectra we restrict our attention to those spectra with a finite
number of points. We shall need:

LEMMA. 2.1. Let u be an inadmissible design. There is an admissible design v
such that v > p. (Van Arman, 1968).

This lemma also tells us that we get best linear unbiased estimation results by
staying in the admissible design class.

The following theorem gives sufficient moment conditions for admissibility. It
was motivated by and gives a slight generalization of a theorem of Studden and
Van Arman (1969, page 1559-1561). All the integrals in the following will be over
[a, b] unless specified otherwise.

THEOREM 2.1. Let f(x) consist of the vector of regression function (1.1) and let
g(x) consist of the vector of regression functions

Lx,---,x¥! where 8, = I, when I, # 0
(2.1) (x=g)7h, o (e — g = 1whenl =0
i=1,2,--,hk,l,h ¢ same as in f(x).

Then v > p (or M(v) > M( ), v and p designs for f(x)) if and only if (1) [g(x)d(v —
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W =0and () 0+ [x7d(v — p) > [(x = §)Vdv — p) > - -+ > [(x — & )7d(»
— ) > Owherer,,j=1,- -, mis the ordered set of i’s for which [, = 0,0 < m
< h.

ProoF. In proving sufficiency first, let M = M(») — M(p). Following the
argument of Studden and Van Arman, we see that M has all diagonal elements = 0
except possibly the elements [x*d(y — p) and [(x — £)%"d(v — p) when [, =0,

i=1---,h Let r = smallest i for which /, = 0, r, = next smallest i for which
;=0,---,r, =lugestifor which /; = 0 and define 4, as 4, = [(x — £)¥d(v —
p,forl=1---,mA, = [ x¥d(v — w), for I = 0. The element correspondmg to

the r, row and r, column of M,s <t,is [(x — §)i(x — §)idlv — p) = [x"(x —
£).d(v — p) = [(x — £)d(v — p) = A,. Thus the conditions of Lemma 2.2 of
Studden and Van Arman (1969) are satisfied which implies condition (2).

In order to prove necessity, we note that if conditions (1) and (2) hold and
M = M(v) — M(p), then M > 0 by Lemma 2.2 of Studden and Van Arman
(1969).

3. Admissible designs. In this section we will be concerned with classifying the
admissible experimental designs relative to regression on the functions f(x), given
by (1.1). First the class of admissible designs for f(x) are restricted to a subclass of
admissible designs for regressions on the functions f,(x) which are defined the same
as f(x) when all , =0,i=1,---,h. f(x) is a general form of monosplines and
fi(x) are the polynomial splines whose admissible designs are given by (1.2).

LemmA 3.1.  If p is admissible for (), then p is admissible for f1(x), given by 1.1
withl,=0,i=1,---,h

PROOF. Assume p is admissible f(x) and inadmissible f,(x). Since p is inadmissi-
ble f,(x), there exists a » admissible f,(x) such that M(») > M(p), by Lemma 2.1.
Let M’(v) and M’(p) represent the submatrices of M(») and M(p) corresponding
to f(x). Since p is admissible f(x), we have that M’(v) = M’(p). By Theorem 2.1
this implies that [x2" dv = [x?" du which in turn implies that M(v) = M(u), the
desired contradiction.

This lemma tells us that if u is inadmissible for fl(x) then p is also inadmissible
for f(x). In order to completely classify the admissible designs for f(x), we need
only list those designs that are (i) admissible f,(x) and (ii) inadmissible f(x) since
the admissible designs for f,(x) are given by (1.2).

The remainder of the section is devoted to the solution for several general cases.

LemMaA 3.2.  Given a design p such that (1) S(p) has <n — 1+ 2Ll |[(n + k;
+ 1)/2] points on the open interval (§,%,.,,,) for i=0,1,--- h—1 I=
0,1, - -, h, we can always add a set B of points in [a, b] such that (2) B N S(p) =
¢, and (3) S(p) U B has <n—1+ 2’,,+1[(n + k; + 1)/2] points on the open
interval (§, &4, fori=0,---,h—1,1=0,1,-- -, h, where equality holds for
I = hwheni=0.
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ProOOF. The proof will be by induction on the number of knots. Let p be a
design satisfying (1) for which the number of knots A = 1.

If there were < [(n + k, + 1)/2] points in [£,, b), we would add distinct points
to [§;, b) until equality would hold. If £, = n — 1, then one of the points in [£,, b)
either contributed or present in S(u) would be &,. If in the remaining piece (a, §,)
there were less than n — 1 points, we would add distinct points until there were
exactly n — 1 points in (a, §;). Let B be the set of points added. It is easily seen
that (2) and (3) hold.

If there were r > [(n + k; + 1)/2] points in [£,, b), we would let s = r — [(n +
k, + 1)/2] and note that (1) requires that we have < n — 1 — s points in (a, §,). If
there were < (n — 1 — s) points in (a, §;), we would add distinct points until
equality held. Let B be the set of points added. We have now shown (2) and (3) for
the case of one knot.

Let p be a design for which the number of knots A = m + 1. If there were
< [(n + k,,., + 1)/2] points in [£,, , ,, b), we would use the induction hypothesis to
require S(p) U B’ to satisfy (2) and (3) for the interval (a, §,,.,) and add necessary
points to the interval [£,, ., b) to have the interval total = [(n + £, , + 1)/2]. If
k,.1=n —1, then £, ., would be a counted point. Let B be the set of all points
added. B’ C B and again (2) and (3) hold.

If there were r > [(n + k,,,, + 1)/2] points on (£,.,, b), we would use the
induction hypothesis to require S(p) U B’ to satisfy (2) and (3) on (a, £, ). Let
s=r—[(n+k,,; +1)/2] and note that B’ has at least s points, otherwise
assumption (1) would be contradicted. We now remove the largest s points of B’
and call the remaining set B. All that remains is to check the requirement (2) on
subintervals that contain [§, , ;, b). Let (§, b) be any interval that contains points in
B. Since (¢, §,+)) has <n — 1+ Z7_,, [(n + k; + 1)/2) — 5 points, we have that
(¢,b) has <n—1+ 32", [(n + k; + 1)/2] points. If (£, b) does not contain
points of B, the subinterval requirement is a part of our assumption (1).

This completes the discussion since (2) and (3) hold. Remark: We can delete any
number of points from B and condition (1) would hold for S(u) U (B deleted).

In the next two lemmas we develop properties of spectra that when used with the
preceding lemmas and Theorem 2.1 will give a large class of admissible designs.
Essentially we can classify as admissible those designs for which the moments
[&(x) dp. prohibit the existence of a » admissible f,(x) such that » > p. The results
will be stated in Theorems 3.1 and 3.2.

LemMAa 3.3. If a design p is such that S(p) has <n —1+ Z}tiﬂ[(n + Kk +
1)/2] points on the open interval (§,&.,.,.1) for i=0,1,-- - h—1 [=
0,1, - -, h, where equality holds for | = h when i = 0, and p is such that k, = n —

1,1 < p <h,then § € S(p).

Proor. The number of points in (a,§) is <n—1+ 2220 + k +1)/2]
The number of points in (§,, b)is <n — 1+ Ej.’_l,ﬂ[(n + k; + 1)/2]. The number
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of points in (a, g,) U (g,, b)yis <2(n—1)+3 -1[(” + k; + /21— [(n + k, +

1)/2]=n—-2+ 2,,,[(1: + k; + 1)/2] since [(n + k, + 1)/2] = n. The number of
points in (a, b) — [(a, §,) U (§P b)] = 1. This 1mphes that §, € S(p).

LEmMMA 34. Let f2(x) consist of the vector of regression functions (a subset of

those in fi(x)); fo(x) = Lox,« « +,x" (x — &5 - o, (x — £ i =
1,2, - -, h where for each i, k, is such that n + k; is even or k; = n — 1. Let g,(x)
consist of the vector of regression functions g(x)=1,x, -+, x*" ! (x —
Eyvk e (x — £~ Vi=1,---,h where the & and k; are the same for f-z(x)
above.

If w and v are admissible designs relative to f,(x) with supports S(u) and S(v), then
any design relative to g,(x) with support S(p) U S(v) is admissible g,(x).

(In applying this lemma, we are more concerned with the placement of points in
their spectra than with admissibility with respect to g,(x).)

Proor. S(p) and S(v) each have <n —1 + 2'1{+,[(n + k; + 1)/2] points in
the interval (§, §,,,)) fori=0,1,---,h—1;1=0,1,- h where we may
assume equality holds for / = h when i = 0 for S’(u) and S’(v). S’( w=S(puB
from Lemma 3.2 and S’(») is defined similarly. An admissible design for g,(x)

would have

(3.1) <2n =2+ 3, \[@r—1+n+k+1)/2]

points in the interval (§, &,,,) fori=0,1,--- , h—05;1=0,1,---,h S'(p)
U S’(v) has

(32) <2An—-1+3Zt, [(n+ K+ 1)/2]) =

distinct points in (£, &, ;). 7; is the number of indexes j such thati + 1 < j <i
+ [ for which k; = n — 1. To see this we note that by Lemma 3.3, §; € S’(u) and
§ € S'(v) k; = n — 1. The subtraction of r; eliminates the counting of § twice in
S(p) U S(»). It is easily seen that (3.2) =2n — 2 + 2}'1’,-+,(n + k;) with the re-
strictions on k;. Since (3.2) < 2n — 2 + 2}:‘;“(” + [(n + k;)/2]) = (3.1), we have
the S(p) U S(») is admissible g,(x).

THEOREM 3.1. Let f;(x) consist of the vector of regression functions in f(x) with
I, = 0or 1 for each i. A design . is admissible fy(x) if S(u) has <n — 1 + 2’_,+l[(n
+ kj)/2]points on (¢, &, ) fori=0,1,--- ,h—11=0,1---,h

PROOF. Assume p is inadmissible f;(x). Then after consideration of Lemmas 3.1
and 2.1, there exists a » admissible with respect to fi(x) (with the same k,, &, h, a
and b as in fy(x) above) such that » > p.
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Now S(») has <n — 1+ Z't], \[(n + k; + 1)/2] points on (§, &, ,,.,) for i =
0,---,h—151=0,1,---,h And S(») U S(p) has

3.3) < 2(” -1+ 2je[i+l,i+1],n+k,o:vom(n - kj))
+%(Eje[i+l,i+ll,n+kjodd(n + k; — 1)
+%(Eje[i+l,i+11,n+k,odd(n + k + 1))

= 2” + 2 + 2;:1""1(” + ch) pOintS on (gi’ £i+1+1)
fori =0,1,---,h—05L1=01,-:-,h

Now S(u) U S(») is admissible with respect to g,(x) =1, x,- - -, x>" 1 (x —
gk, e (x — £)7 Y n, &, k; the same as in f(x) dbove, i = 1, - - - , h, by the
previous lemma. Without loss of generality, we may assume the equality holds in
(3.3) for / = h when i = 0 by Lemma 3.2. Note that the exact number of functions
in g,(x) is 2n + Zj?_l(n + k).

Since » > u we have by Theorem 2.1 that [gy(x)d(v — p) = 0. This can be
written as M’(t, &v=M (1, 8)p where »(2,) = v,, i(2,) = u, are the weights
assigned to the vector ¢ of the m = 2n + Zf,,(n + k;) ordered points of S(u) U
S(») U {a} U {b}. We define M(t, g,) to be the matrix with the vector g,(¢,) in the
ith row. If ¢ values coincide, then the successive rows are replaced by successive
derivatives taken from the right. M’(t, g,) is the transpose of the matrix M(t, )
and is nonsingular by Lemma 3.1 of Studden and Van Arman (1969), since
t, <& <ty414,_, Where v, = Si_\(n + k). M(%, g,) being invertible implies » =
u, and we have the desired contradiction. The following theorem is closely related
to Theorem 3.1 but does describe some additional admissible designs.

THEOREM 3.2. Let f4(x) consist of the vector of regression functions in f3(x) with

the restriction that n + k; is even or k; = n — 1 for each i = 1,2, - - - , h. If S(p)
has <n—1+Z28 [(n+ kK, + 1)/2] points in (¢, &4p)) i=0,1,- -+, h = p;
p=0,1,- -+, h, then p is admissible f(x).

Proor. Note that n + k; is even if and only if » — k; is even. The “only if” part
follows from Lemma 3.1. The “if” part follows that of Theorem 3.1 with some
modification. We would have the » and p with similar assumptions and notice that
(3.2) for this theorem equals 2n — 2 + 2%}, ,(n + k;) which is the case in Theo-
rem 3.1 for S(p) U S(»). The remainder of the proof follows that of Theorem 3.1
word for word.

The following development leads to a relationship between admissible designs
and the existence of a nontrivial polynomial in its regression functions.

Let ¢(x) denote the set of functions 1, x,- - -, x>, (x — )k (x =
£Yr~'i=1,.--,h where £ and k; are the same as in fy(x) and x € [a, b]. Also
let ¢0(x) =1, ¢1(X) =Xttt ¢2n(x) = x2n, ¢2n+1(x) = (x - gl)’-li-_kl’ s d, =
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(x — &)~ where m = 2n + Z%_\(n + k). Let

= {5= (e emle, = Jo(x) du(x),p€P,t=1,- - ’m}
where @ is the set of probability measures on [a, b]. 9N is a closed convex set in
m-space since the functions in ¢(x) are continuous and defined on a compact
space. Theorem 2.1 states that a des1gn u is admissible fs(x) ( f(x) with /; = 1 for all
i) if and only if, for fixed ¢, t = 1, - -, m, ¢ % 2n, p maximizes ¢,, = [x?" dv(x)
for all probability measures » defmed on [a, b] with ¢, = [¢(x) du(x) =
Jé,(x) dv(x) for all ¢ # 2n. Roughly speaking, p is admissible if and only if it
corresponds to an “upper” boundary point of 9. Since 9N is closed and convex,
there must be a nontrivial supporting hyperplane at any boundary point of M.

LeMMA 3.5. Any admissible design p. for fs(x) (f(x) with I, =1 for all i) has an
associated nontrivial polynomial P(x) in the ¢(x) such that: (1) P(x) =0 for
x € S(p), Q) P(x) > 0 for x € [a, b], and (3) the coefficient of x*" in P(x) is < 0.

ProOF. Let c® be the point (c?,- - -, c2) in O where ¢ = [¢,(x) du(x) for
=1,---,m. In constructing a supporting hyperplane at ¢ there exist real
constants {a, ™_o Dot all zero, such that

(34) Zmac +ay >0 and ZTac)+ ay=0 forallc € IM.

Now Z7.,a,¢, + ag = 27 0a,[¢,(x) dv(x) = [(ZT=ea,9,(x)) dv(x) > 0, for all »
€ 9. Let P(x) = 37 qa,6,(x). Note that P(x) >0forx € [a, b] and thus P(x) =
0 for x € S(p). The point ¢, = (¢, + =, o _1, € + A Oy, = =+, o) for all
A > 0 lies in the half space complementary to that of (3.4) so that ET_oa,c,o + Aa,,
< 0 for all A > 0. This requires that a,, < 0. A lemma which is a partial converse
of the preceding follows.

LEMMA 3.6. A design p is admissible for fs(x) if there exists a nontrivial
polynomial P(x) in the (x) such that: (1) P(x) > 0 for x € [a, b], 2) P(x) = 0 for
x € S(u), and (3) the coefficient of x in P(x) is negative.

PrOOF. Let » be a probability measure on [a, b] such that M(v) > M(p). By
Theorem 2.1 we have that [x?"d(y — p) > 0. Also by Theorem 2.1 we have that
[P(x)d(v — p) = [ar,x*"d(v — p) where a,, is the coefficient of x> in P(x).
[P(x)d(v — p) = [P(x) dv > 0 by conditions (1) and (2) of the lemma. Combining
the above inequalities, we have [a,,x*"d(v — p) = [P(x)d(v — p) = [P(x) dv > 0.
This implies that [x*'d(v — p) < 0 by condition (3). This is the desired contradic-
tion.

4. Examples. The preceeding section provided sufficient conditions for poly-
nomial monospline regression designs to be admissible. The following examples
show that the conditions are not also necessary.

ExAMPLE 4.1. Consider the regression functions {1, x, x%, x°, x*, (x — 1), (x
— 12, (x — )%, (x — 2>, }x € [0, 3]. The following design is admissible by Theo-
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rem 3.2 but not covered by Theorem 3.1. The points {0, 1, 3} with three points in
both (0, 1) and (1, 2) and two points in (2, 3).

ExaMPLE 4.2. For the regression functions {I,x,- - -, x5 (x — D3, (x —
D%, (x = 1)3}x €0, 2] the following design is admissible by Theorem 3.1 but not
covered by Theorem 3.2. The points {0, 2} and 5 points in (0, 1) and 4 points in
a,2).

ExaMPLE 4.3. Let P(x) be the polynomial —1(x + 1)(x + 2)*(x + 2)’(x + })?
(x — 2) for x €[—1, 0] and the polynomial —1(x — I)(x — 2)*(x — 2)’(x — 1)?
(x + %) for x €[0, 1]. P(x) can be written in the form Z%_oa,x’/ + £7_;bx/,
where g = — 1 and the > has been chosen to make the coefficients of 1, x and x?
identical in both [—1,0] and [0,1]. If p is such that S(w)={-1, -3,
-3, —3. % 3,2, 1) then p is admissible for the regression functions {1, x, x?,
x3, x% x3} by Lemma 3.6 and is not covered by either Theorem 3.1 or 3.2.

3

ExampLE 4.4. Consider the regression function {1, x, x2 x3, x4 x3}. In this

example a nontrivial polynomial in the functions {1, x,- -, x% x3, - -, x7}
does not exist for which P(x) > 0 on [—1,1] and P(x) =0 for x €
(-1, -3 —% —1,% % % 1}). If we first assume that the coefficient of x® in

P(x) is nonzero then there is one remaining root for the polynomial part of P(x) as
defined on [—1, 0) and one remaining root of the polynomial part of P(x) as
defined on (0, 1]. These roots must be chosen so that the coefficients of 1, x and x?
agree on both [—1, 0] and [0, 1]. This leads to a system of 3 linear equations in 2
unknowns. In order to have a solution the determinant of the augmented matrix
must be zero but it is nonzero. If the coefficient of x® were zero, Lemma 3.1 of
Studden and Van Arman (1969) implies that P(x) must be trivial (= 0). The design
is inadmissible by Lemma 3.5.

Theorem 3.1 states for the preceding two examples that a design would be
admissible if S(p) has at most 3 points in (— 1, 0) and two in (0, 1). Both the above
designs have 3 points in each interval with one admissible and one inadmissible.
Thus a simple counting argument cannot guarantee admissibility.

ExampLE 4.5. For the regression functions given in Example 4.4 it can be
shown that symmetric designs { —1, —x;, —x,, — X3, X3, X5, x;, 1} are admissible
and that there are some nonsymmetric designs with 3 points in both (—1, 0) and
(0, 1) that are admissible by Lemma 3.6.

ExXaMPLE 4.6. For the regression functions {1, x, - - -, x% x3, (x — 1)} the
design with S(p) = {1, =2, =2, -1, 2/ 2 /41 2 3} is inadmissible since it is
not subadmissible on (— 1, 1) by Example (4.4). However let P(x) = (x — 1)} —
Sx— DY + B(x— 15 —2(x = D& + (x — 1), which is equal to (x — 1)}
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(x —2y(x — 3)* for x €[1, 2]. The conditions of Lemma 3.5 on P(x) are satisfied
but p is inadmissible so the converse of Lemma 3.5 is not true.

5. Conclusion. Polynomial monosplines that share the same fixed points as
polynomial splines have as their set of admissible designs a proper subset of the
admissible designs for the polynomial splines. An admissible design for a mono-
spline (/; = 0 in Theorem 3.1) differs from one of splines by at most / points on
(&, &40 Also, if n + k; is even or k; = n — 1 for all i, then a design admissible
for splines is also admissible for monosplines. For the monospline case
{1, x, - - -, x* x3 } symmetric designs with three points in both (— 1, 0) and (0, 1)
are admissible. There exist nonsymmetric designs with three points in each open
interval of which some are admissible and some are inadmissible. Thus, one must
consider the placement of points in an admissible monospline spectra as well as
their number, for a counting argument will not give a sufficient condition for
admissibility.
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