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ORTHOGONAL ARRAYS WITH VARIABLE NUMBERS OF
SYMBOLS!

BY CHING-SHUI CHENG
University of California, Berkeley

Orthogonal arrays with variable numbers of symbols are shown to be
universally optimal as fractional factorial designs. The orthogonality of com-
pletely regular Youden hyperrectangles (F-hyperrectangles) is defined as a
generalization of the orthogonality of Latin squares, Latin hypercubes, and
F-squares. A set of mutually orthogonal F-hyperrectangles is seen to be a
special kind of orthogonal array with variable numbers of symbols. Theorems
on the existence of complete sets of mutually orthogonal F-hyperrectangles are
established which unify and generalize earlier results on Latin squares, Latin
hypercubes, and F-squares

1. Introduction. The concepts of hypercubes and orthogonal arrays were first
introduced by Rao (1946, 1947). They were applied in the construction of symmet-
rical confounded factorial designs, fractional replications, and so on. Generaliza-
tion to the asymmetrical case, i.e., an orthogonal array with variable numbers of
symbols, is obvious. This is discussed in some detail in Rao (1973).

The purposes of this paper are twofold. Firstly, using a tool recently developed
by Kiefer, we give a precise statement and a rigorous proof of the universal
optimality of an orthogonal array with variable numbers of symbols as a fractional
factorial design. Such a proof seems to be not available in the literature. In proving
this, we also use a recent result of Cheng (1978) concerning the computation of
generalized inverses of some special kind of matrices. Secondly, we define the
notion of mutually orthogonal completely regular Youden hyperrectangles which
is a special kind of orthogonal array with variable numbers of symbols and
is a generalization of the well-known combinatorial structures such as mutually
orthogonal Latin squares, F-squares, and Latin hypercubes. Two theorems on the
existence of complete sets of mutually orthogonal completely regular Youden
hyperrectangles are established which generalize and unify the earlier results on the
above-mentioned combinatorial structures.

We define a rectangular array, denoted by (N, r,s; X « -+ Xs,) as an r X N
matrix with entries in the ith row from a set S; of 5; elements, 1 <i<r. A
(N, r,sy X - -+ Xs,) array is said to be an orthogonal array (with variable numbers
of symbols) of strength d if for any selection of d rows, say the a,th, - - -, a,th, the
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number of times that the column vector (i), - - -,4), iy €ES,, - ,i, € Sop
occurs in the d X N submatrix specified by the d selected rows is constant for
all combinations i; € S,,- - - ,i; € S,. The constant may, however, depend
on the set of selected rows. We denote such an orthogonal array by
OA(N; 51,50, + *,5,;d). When s, =s5,=:-: =35 =35, we also write it as
OA(N, r, 5, d) and call it a symmetric orthogonal array. We will restrict ourselves to
orthogonal arrays of strength 2 in this paper.

2. Orthogonal arrays as universally optimal fractional factorial designs. Con-
sider a factorial design with n factors, the ith factor being experimented with at s,
levels (i = 1, - - -, n). Assume that the expected value of an observation taken on
the i th level of the first factor, i,th level of the second factor, - - -, and the i th
level of the nth factor is specified by

2.1 E(y;;....)=aP +a@ + - .. +a{™,
hiz L 1 2 n

where a,‘l'), e a,-f"‘), 1<i<s, 1<j<n, are unknown constants, and
all the observations are uncorrelated with common variance. A design with N
observations is a selection of N combinations of the levels of the n factors. Let
Dy be the collection of all such designs with N observations. For a design
d € 9y, the coefficient matrix of the normal equation for estimating

@ a® e a®s e, ) s
; 1 1 T
[ diag(r, - - - , 1) Ny e N
: 2 2
(2.2) Nax diag(r@, - - -, r@) " Np,
N N diag(rf,’?, cee ,‘(12)

where rg) is the number of times that the jth level of the ith factor appears in the
design, and N, is the incidence matrix between the ith and the jth factors, i.e., the
(s, w)th element of N, is the number of times that the sth level of factor i and
the uth level of factor j appear together in the design. Write C,, as the coefficient
matrix of the reduced normal equation for estimating (af’,- - -, ad, i=
1, - -, n. For example,

23) ¢, = diag(r&lf, T, rgf = (Napp* + - Na)Ef(Nyp, - - -, Nain)s

where E,, is the matrix obtained by deleting the first s, rows and s, columns of
(2.2), and E, is a generalized inverse of E;,. C,,, - * * , C,, are similarly defined.
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If there is an OA(N; sy, 55, * * * , S, 2), then it defines a factorial design in D
for which the matrix of (2.2) is

i -1 —1,—1 L. —1,-1 1
sy NI sy sy NJg o sy 8, NJg
-1,-1 -1 L. —1,—1
Sy 8y NJSZ’ 5 S5 NI,2 S5 S, NJ_,Z, 5
(24)
—1,—1 -1
Sp S, NJs,.,S. s, NIs"

where I is the k X k identity matrix, and J; , is the k; X k, matrix consisting
entirely of 1’s.
We have the following optimality results:

THEOREM 2.1. Under the model specified by (2.1), if there is an
OA(N; sy, 85, * * * 5 S,3-2), then it defines a factorial design d* with N observations
which minimizes 7., ®(C,) over Dy for all functions ®;: B, §— (— o0, + 0]
satisfying

(a) @, is convex,

(b) for any fixed C € B, o, ®,(bC) is nonincreasing in the scalar b > 0,

(c) @, is invariant under each simultaneous permutation of rows and columns, where
By, o is the set of all s; X s; nonnegative definite matrices with zero row and column
sums.

PrOOF. We only have to show that d* minimizes ®,(C;) over %, for all
i=1,---,n Itis enough to prove the case i = 1.

By the same argument as in Lemma 2.2 of Cheng (1978), one can show that
N~V diag(syl,, s3I, — J, ., * * * 8,0, — J, ) is a generalized inverse of E,.,.
Accordingly,

Cpy = sy NI, — 5757 NI, (N 75,0, )(s7 55 'NU,, )

$2, 51,

— oy TN, [N (s, = T, ) ]IV,

% S8 Jts 5 5 3 55 8

= s; 'NI, — s7NJ,
since each 5,1, — J, , has zero row sum.

So C,, is completely symmetric in the sense that all the diagonal elements of
C; are equal, and all the off-diagonal elements are also equal. Therefore, by
Proposition 1 of Kiefer (1975), it suffices to show that d* maximizes tr C;, over
Dy

For any d € 9,, we have

Eq> ((diag(rs%- ) o),
0 0
where 4 > B means that A — B is nonnegative definite.
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Hence

diag(".(i?, cts r&',{) - Ndu[diag(rfff, T, rg-:)]_Na'uz > Car-
Now, /

. —rs 2
tr(Ndu[dlag(rfff, Tt rt(isz)] NdlZ) = Ef'LlEj'z-l[(Ndu):y] /’(4?’
where [(N,,,),I'/r$ is interpreted as zero if r$ = 0.
For each rQ) # 0, 251 ,(N,y),; = r$. Therefore,

2 _ 2
Sni[(Nay ] /7D > si(s7 DY /rP

= 1.2
=57 rQ.

Hence

tr(Cyy) < T rP — S s7 P

= tr Cpy. 0

Following Kiefer (1975), we say that an orthogonal array is universally optimal.

From the proof of the above theorem, it can easily be seen that for any i with
1<i<n,ifdisadesignin Dy st.r = N/s, forallj=1,2,---,s (ie., the
levels of the ith factor are equally replicated), then C,.; > C,. Hence, by a result of
Ehrenfeld (1955), d* is at least as good as d for the estimation of any contrast
among the main effects of the s; levels of factor i. Thus, if we restrict to equally
replicated designs, a much stronger optimality can be proved.

3. Mutually orthogonal completely regular Youden hyperrectangles. It is well
known that mutually orthogonal Latin squares and Latin hypercubes are special
cases of (symmetrical) orthogonal arrays of strength 2. It is also clear that a set
{Fy, F,,- - -, F,} of n mutually orthogonal N X N F-squares with constant
frequency vectors and sy, 5,, - - - , s, symbols respectively (as defined in Hedayat
and Seiden (1970)) is equivalent to an OA(N%; N, N, s, 55, * -, S5 2). All of
these can be generalized to the orthogonality of completely regular Youden
hyperrectangles.

Cheng (1978) defined the notion of a completely regular Youden hyperrectangle.
Given an n-dimensional hyperrectangle of size N, X N, X - - - XN,, we can
coordinatize the II7_,N; cells by the n-tuples of integers (j,,/j, * * - ,j,) Wwith
1 < j; < N. An arrangement of s symbols into the II7_.,N; cells is called a
completely regular Youden hyperrectangle if s|I[,_;N,;, foralli =1, - -, n, and for
any fixed i = 1,- - - , n, each of the s symbols appears s ! ;«; ;) times in each
of the N; sets Hj, H;,- - -, Hy, where H; is the set of all cells with j as the ith
coordinate, 1 < j < N,. This apparently generalizes the notions of Latin squares,
F-squares, and Latin hypercubes. For convenience, we also call a completely
regular Youden hyperrectangle an F-hyperrectangle.
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We define two F-hyperrectangles of the same size to be orthogonal if, when
superimposed on one another, every ordered pair of symbols occurs the same
number of times. It is clear that a set of m mutually orthogonal F-hyperrectangles
with size N, X N X - -+« XN, and s, 8,5, symbols is an
OA(I}_iN;; Ny, Ny - -+ , N,y 51, * + * , 8,5 2). Thus, a set of mutually orthogonal
F-hyperrectangles is not only optimal for the elimination of multi-way heterogene-
ity, but also is optimal as a fractional factorial design.

Rao (1973) showed that if there is an OA(N; s, - ,8,;2), then N —1 >
27.1(s; — 1). Therefore, for a set of m mutually orthogonal F-hyperrectangles of

size N; X - - - XN, and the same number of symbols s, we must have
TNy — 13 250N, = 1) + m(s = 1)

Thus

G.1) m < (N, = 20, (N, = 1) = 1)/ (s = D).

This gives an upper bound for the number of mutually orthogonal F-hyperrect-
angles with the same number of symbols. When this upper bound is achieved, we
say that a complete set of mutually orthogonal F-hyperrectangles exists.

We have the following results concerning the existence of a complete set of
mutually orthogonal F-hyperrectangles.

THEOREM 3.1. If s is a prime power, and each N, is a power of s,i=1,- - - ,n,
then there exists a complete set of mutually orthogonal F-hyperrectangles of size
N, X Ny X - -+ XN, and s symbols.

PrOOF. By assumption, N; = s“ for some integer #. Write u = 3]_,4. Let
EG(u; s) be the u-dimensional Euclidean geometry based on the Galois field with s
elements. One can choose u independent pencils of (v — 1)-flats in EG(u; s) and
divide them into n groups B, B,,- - -, B, such that for each i, 1 <i <n, B,

contains ¢ pencils. If we take an arbitrary (¢ — 1)-flat from each pencil in B;, then
these ¢ (v — 1)-flats intersect in a (u — t,)-flat. Altogether, there are N, = s% such

(u — t)-flats. Denote these (u — £)-flats by F{?, - - -, F{). If we take an arbitrary
(u — t)flat from FP,. -, FQP, i=1,---,n, then the intersection of the n
chosen flats with dimensions (¥ — ¢,), - - -, (¥ — t,), respectively, is a point. So we
can use the set U7 ,{F{?, - - -, F{?} to set up a coordinate system for EG(u; 5). A
point has coordinate (i), - - - , i,) if it is the intersection of F(V, F®, - - ., and
F®.

Now, there are (s* — 1)/(s — 1) — S} (s" — D/(s = ) = ([}, N, — 2},
(N;=1) - 1) /(s—1) pencils of (u —1)-flats which are linearly dependent on none of
the B’s. For each of these pencils, we can label the s (u — 1)-flats in it by
1,2, - -,s and define an F-hyperrectangle of size N, X - - -+ X N, and s symbols
in the following way: for each cell (i), i« * *,i,), 1 <i; <N, if the point of
EG(u; s) with coordinates (i, i, - - - , i,) is in the jth flat of the pencil, then we
assign symbol j to the cell (i), - - -, i,).
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This clearly defines an F-hyperrectangle, and the (II}.,N, — Z7_,(N, — 1) —
1)/(s — 1) F-hyperrectangles obtained are mutually orthogonal. []

REMARK. In the above theorem,

(@) if n =2 and s = N; = N,, then it reduces to the classical result on the
existence of a complete set of mutually orthogonal Latin squares with a prime
power as the size;

(b)ifn>2,ands =N, = - - = N, then it reduces to Kishen’s (1949) result
on orthogonal Latin hypercubes; '

(c) if n = 2 and N, = N,, then it reduces to the result of Hedayat, Raghavarao
and Seiden (1975) on orthogonal F-squares.

THEOREM 3.2. If there exist orthogonal arrays OA(N, n;, s,2) fori =1, - - k,
then there exist m mutually orthogonal F-hyperrectangles of size N, X N,
X «++ XN, and s symbols, where m = II*_,(n, + 1) — 1 — Sk,

ProOF. Denote the s symbols by 0, 1, 2, - - - , s — 1, i.e., the integers modulo s.
To each OA(N,, n;, s,2), add a row consisting entirely of zeros. Designate the
augmented array by D,. Let D be the Kronecker product of D,, D,, - - -, and D,.
Then D is an II¥_ (n; + 1) X II¥_,N, array. Each entry of D is a k-tuple of integers
modulo s. These II¥_,N,(n, + 1) entries can be coordinatized in the following way.
Label the rows of D by the k-tuples of integers (i}, - - -, i), 1 <i, <nm + 1, and
the columns by the k-tuples of integers (jy, - - - ,ji), 1 < j; < N,. Then for each A
with 1 < A <k, the hth coordinate of the entry in the (i), - - - , i;)th row and the
(s * * * »Ji)th column of D is the element appearing in the i,th row and the j,th
column of D,. The (i}, * - - , i;)th row of D is said to be obtained from the i,th row
of Dy, ith row of D,, - - -, and i.th row of D,. Now delete those rows of D which
are obtained from at least £k — 1 augmented rows (rows consisting entirely of
zeros). Altogether, there are m = I[I*_,(n; + 1) — 1 — 2*_ », remaining rows. Re-
placing each entry (a k-tuple) of the remaining array by the sum of its coordinates
modulo s, we get a new array D of the integers 0, 1,2, - - ,s — 1. Keeping the
coordinates of the II¥_, N, columns of D as the coordinates of a hyperrectangle of
size Ny X N, X - - - XN, each of these m rows defines a hyperrectangle of size
N, X N, X - - - XN, and s symbols. It can easily be seen that these m hyperrect-
angles are F-hyperrectangles and are mutually orthogonal. []

When s = 2, the upper bound for the number of mutually orthogonal F-hyper-
rectangles of size Ny X N, X « ++ XN, is IIX*_ N, — (S%_ N, — 1) — 1. If there
exist Hadamard matrices of orders N,, N,, - - - , N, then there exist k orthogonal
arrays OA(N, N; — 1,2,2),i =1, - - , k, and hence by Theorem 3.2, there exist
%N, — 1 — =*_ (N, — 1) mutually orthogonal F-hyperrectangles of size N, X
N, X - - - XN, and 2 symbols. This achieves the upper bound. That is, we have
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COROLLARY 3.2.1. If there exist Hadamard matrices of order Ny, Ny, - + - , N,
where N\, Ny, - - -, and N, are multiples of 4, then there is a complete set of mutually
orthogonal F-hyperrectangles of size Ny X N, X - -+ X N, and 2 symbols.

REMARK. In the above corollary, if n = 2, and N, = N,, then it reduces to the
result of Federer (1977) on orthogonal F-squares.

REMARK. An easy method to construct an orthogonal array with variable
numbers of symbols is to identify different symbols in some rows of a symmetric
orthogonal array. But not all orthogonal arrays with variable numbers of symbols
can be obtained in this way. For example, by Corollary 3.2.1, there is an
OAG8; 4, 2,2, 2, 2; 2). This can not be obtained by identifying different symbols in
a symmetric orthogonal array since such a symmetric orthogonal array must have
at least four symbols and hence the size N must be at least 16. One more example.
Corollary 3.2.1. implies the existence of an

OA(16; 4,42, 9 ,2;2)

accommodating 11 factors. Again it can not be obtained by identifying different
symbols in a symmetric orthogonal array since such a symmetric OA must have 4
symbols and hence can only accommodate at most 5 factors.
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