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ESTIMABILITY IN PARTITIONED
LINEAR MODELS

By JusTus SEELY AND DAVID BIRKES

Oregon State University

Some estimability facts for partitioned linear models with constraints are
presented. For a model E(Y) = X,m, + X,m, with constraints on =, and =, a
reduced model is derived that contains all information regarding the estimabil-
ity (and also regarding the blues) of parametric functions b’w,. For a model
E(Y) = Xymy + X7, + X,m, with constraints on g, 7, and m,, several neces-
sary and sufficient conditions are given for when estimability of b’'w, in the
original model is equivalent to estimability in the simpler model E(Y) = X,m,
+ Xym,.

1. Introduction and summary. Partitioned linear models occur in several con-
texts. Perhaps the most familiar place they arise is in the analysis of covariance.
They also occur naturally in a situation like a resolution IV design where the main
effects are of primary interest and the two-factor interactions are regarded as
nuisance parameters. Partitioning can also be used as a mechanism to simplify
estimability considerations in classification models. For example, if it can be
determined in an additive three-way model E(Y;,) = p + a; + B, + v, that all y
contrasts are estimable, then all « and B contrasts are estimable if and only if they
are estimable in the simpler model E(Yy,) = p + &; + B,. This particular result is
known (see Eccleston and Russell [3] or Raghavarao and Federer [4]), but in
Theorem 3.11 below it has been strengthened and generalized.

The earliest systematic investigation of partitioned models seems to have been by
Rao [5]. More recently Zyskind et al. [11] have considered such models. Also,
Searle [6] treats partitioned models but his treatment is applicable only to “true”
covariance models and not to arbitrary partitioned models. The above authors do
touch on estimability but it is not their main theme. Wynn [9], however, has
recently given a result for an unconstrained model that essentially says that if a
subset of parameters are estimable, then they can be dropped from the model in
further estimability considerations. This result is implied by our results.

Some known facts about constrained linear models are summarized in the next
section. In Section 3 a generalization of the usual error analysis of covariance is
given, which is then used to obtain the main results. In the last section some
examples are given to illustrate the results of Section 3.

The notation R(H), N(H), r(H), and H ~ is used for a matrix H to denote the
range, null space, rank, and an arbitrary g-inverse respectively. Two facts about
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matrices which should be remembered are that R(H)* = N(H’) where L denotes
orthogonal complement and that R(H, G) = R(H) + R(G), i.e., the range of the
partitioned matrix (H, G) is the sum of the individual ranges.

2. Linear model prerequisites. Suppose Y is an n X 1 random vector having
the linear model structure
2.1 E(Y)=Xm, Aa=0,
where X and A’ are known n X p and s X p matrices. Notice that the usual
unconstrained model is obtained by setting A = 0.

The vector space @ = {Xw : A'm = 0} is called the regression space and r =
dim Q is called the rank of the model or the regression degrees of freedom. A linear
parametric function of « is a linear functional defined on the parameter space N(4').
As is customary, a linear parametric function is denoted simply as ¢’w. A linear
parametric function ¢’w is said to be estimable if and only if there exists a linear
unbiased estimator for ¢’w. The vector space of all estimable linear parametric
functions is denoted by I and d = dim I'. A parametric vector L’# is said to be
estimable provided that each of its components is estimable.

There are several ways of characterizing an estimable linear parametric function
(e.g., see [8]). The one used here is that ¢’ is estimable if and only if ¢ € R(X", A).
Similarly there are various expressions for r (e.g., see [7] page 1728). In particular

(22) r=r(XT)=r(X,A)—r(A)=d
where T can be any matrix satisfying R(7") = N(A"). Notice, too, for such a T that

Q = R(U) where U = XT. Finally, note that = is estimable if and only if p =
r(X’, A) which by (2.2) is equivalent to r = p — r(d).

REMARK 2.3. A matrix T satisfying R(7T") = N(A’) has some additional interest-
ing properties. Set U = XT. Then ¢’= is estimable if and only if 7"¢ € R(U’). Also,
if Cov(Y) = 0?l, then # = T(U'U)"U’Y is such that ¢’# is the best linear
unbiased estimator (blue) for ¢’ whenever ¢’= is estimable. Computing a # in this
fashion requires basically two inverses—one to get T as indicated in Remark 2.4
below and one to get (U’ U)~. Oftentimes, however, the amount of work involved
will be less than with other methods for computing # because of the smaller
dimensions of the matrices involved.

REMARK 2.4. The conditions required for R(T) = N(A’) are A’T = 0 and r(T)
= p — r(A). An appropriate T can often be found by inspection. Alternatively,
T=1- AQA’A)"A’ or, as suggested by a referee, T = I — (AA™) will suffice.
Another alternative is the following. Suppose the rows of A’ are linearly indepen-
dent. This can always be achieved by eliminating redundant rows. For notational
convenience suppose further A’ = (4, B) where 4 is s X s and nonsingular. Then
T=(—-(47'B), I,_,) satisfies R(T) = N(&). This last 7 has the added feature
that its columns are linearly independent which makes U’U in Remark 2.3 of
minimal dimensions.
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3. The partitioned model. Consider the linear model in (2.1) when E(Y) can
be expressed in the partitioned form

(3.1) E( Y) = Xlﬂl + Xzﬂz, A’l‘”l = 0, A&‘Trz = 0.

That is, X = (X, X,) and A" = diag(A], A3). The only requirement on (2.1) for such
a partition is that the constraints on 7, be independent of those on a,.

Our first objective is to characterize the estimable linear parametric functions
b'w, which involve only 7,. Let T', denote the vector space of all such parametric
functions and let d, = dim T',. Our second objective is to use information about I,
to simplify the procedure of checking whether or not a parametric function a’, is
estimable.

We need to consider several linear models that are derived from model (3.1).
Two such models are

model Mk : E( Y) = kak’ A;C‘”k = 0,

for k =1, 2. Let r, and £, denote the rank and regression space of model Mk.
Models M1 and M2, like all of the derived models we consider, have the form (2.1)
so that the ideas and results in Section 2 can be applied to these models. For
example, we can apply (2.2) to model M2 to obtain r, = r(Xj;, A,) — r(A,). In this
regard, the important thing is to identify the proper design matrix (X) and
constraint matrix (A’). Hereafter, the term estimable will always be taken to mean
estimable with respect to (w.r.t.) model (3.1) whereas estimability w.r.t. any of the
derived models will be explicitly indicated.

For a linear estimator #'Y to have an expectation b’w, for some vector b, it is
necessary and sufficient that #'X,;7, = 0 for all #; € N(A]) or equivalently that
t € Q. Set Z = W'Y where W is any matrix satisfying R(W) = Qi". The model
for Z is

(3.2) E(Z) = W’Xz'ﬂ'z, A;‘Trz = 0.

Since the class of estimators 'Y, ¢ € Q;", is the same as the class of #’'Z, h € R?
(where g is the number of columns of W), we can state

THEOREM 3.3. A parametric function b'w, is estimable if and only if it is estimable
w.r.t. model (3.2).

The importance of this theorem is that the results in Section 2 can be applied. In
particular, it follows that b’ is estimable if and only if & € R(X;W, A,) and that
d, is the rank of model (3.2).

REMARK 3.4. The condition {#'Y :¢t€Qi'} ={WZ:h € R} also trivially
implies that blues for b’7, under models (3.1) and (3.2) are identical. Also, an error
contrast f'Y satisfies f € Q;* so that the residual sum of squares is the same under
both models. For computations it must, of course, be remembered that Cov(Z) =
W’'Cov(Y)W. From these comments it can be seen that (3.2) can be regarded as
the model which, in the analysis of covariance, leads to the usual error analysis.
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REMARK 3.5. Note that if R(T}) = N(A)), then the condition on W is R(W) =
N(Uj) where U, = X, T,. One could use Remark 2.4 to compute T, from A, and
then to compute W from U,. In connection with Remark 3.4 the choice W = I —
U,(U{U,)"Uq has an advantage when Cov(Y) = ¢*I because then Cov(Z) = o*W
and Wh = h for all h in the regression space of model (3.2). By Theorem 2.8 in
Zyskind [10] this means that blues and least squares estimators coincide under
model (3.2).

If b'm, is estimable, then it is estimable w.r.t. model M2. It sometimes happens
that the reverse implication is also true, which is convenient because estimability in
model M2 is generally easier to check. By Theorem 3.3 this occurs when
R(X,; W, A)) = R(X3, A,). Applying (2.2) to models (3.2) and M2 one can write
(X, W, Ay) = d, + r(A,) and r(X;, A)) = r, + r(A,). This shows the equivalence of
() and (b) in Theorem 3.6 below. The rest of the proof is omitted since Theorem
3.11 is a more general version.

THEOREM 3.6. The following statements are equivalent:
(@) b'm, is estimable < b'w, is estimable w.r.t. model M2.
®) r,=a,

Cr=r+r,

@ 2, n 9, = {0).

(e) a'm, is estimable < a’w, is estimable w.r.t. model M 1.

It is clear that a sufficient condition for statement (3.6a) to be true is that =, is
estimable. For an unconstrained model, Dahan and Styan [2] recently gave the
conditions that &, N @, = {0} and X has full row rank as necessary and sufficient
for m, to be estimable. The generalization to model (3.1) is that =, is estimable if
and only if =, is estimable w.r.t. model M2 and any one of the conditions in
Theorem 3.6 is true. Another condition given as (b) in the following proposition
can be obtained by applying the paragraph containing (2.2) to model (3.2).

ProposITION 3.7.
(a) If m, is estimable, then the statements in Theorem 3.6 are true.
(b) Suppose m, is p, X 1. Then , is estimable if and only if d, = p, — r(A)).

One can compute d, by applying (2.2) to model (3.2). This is probably unsatisfac-
tory unless the W matrix is desired for additional purposes such as indicated in
Remark 3.4. There are, however, other .possibilities for determining d,. Some
illustrations of this are given in the examples of the next section. Another formula
for d, is given in Proposition 3.9 below.

LemMa 3.8. Suppose G = (G,, G,) is a partitioned matrix. If H is any matrix
satisfying R(H) = N(GY), then x(G) = 1(G,) + r(H'G,).

ProoF. This is obtained from equation (2.2) by setting A = G,, X’ = G,, and
T=H. |
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PROPOSITION 3.9. r = r, + d,.

Proor. Let U = (U,, U,) where U, = X, T, and R(T;) = N(A)). Note that U =
XT where T = diag(T), T,) and that R(T) = N(&"). By (2.2) we get r = r(U),
r, = 1(U,), and d, = x(W’U,). Since N(Uj) = Qi, the result follows from Lemma
38. 00

There are several conceivable ways the above results could be utilized. We
comment on three of them. If interest is only in ,, then consideration should be
given to using model (3.2). This is particularly so in light of Remark 3.4. If interest
is in =, and/or m,, one needs to compute r to determine the residual degrees of
freedom. By calculating r in a judicious manner, one should be able to get r, and r,
with little additional work. If r = r, + r,, then Theorem 3.6 is applicable. Even if
r #ry; + r,, one can still use Proposition 3.9 to determine d, = r — r, (and d, = r
— ry), which is the numerator degrees of freedom for testing the null hypothesis
that all estimable b’m, are zero. Also, d, would tell one how many linearly
independent estimable b', to look for in further estimability investigations. Alter-
natively, one might first consider determining 4, via model (3.2) or directly from
model (3.1) via the estimability definition of d, and then determining r,. This is
particularly appealing when an upper bound is known a priori on r, so that if d,
attains the upper bound one can conclude d, = r, without calculating r,. Then if
d, = r), statement (3.6e) would be useful and, depending on how d, was de-
termined, statement (3.6a) might also be useful. Even if d, # r,, one can still
calculate r =r, + d, (and d, = r — r,) by only calculating r,. A natural case
where this last approach is taken is in the analysis of covariance. That is, if 7,
denotes the covariate coefficients, then 4, is the rank of the error normal equations.
If d, = r,, then estimability considerations for the classification part of the model
can be ascertained by disregarding the covariates. Actually, in this situation
Proposition 3.7a is usually applicable since, typically, the error normal equations
are nonsingular implying that =, is estimable.

When Theorem 3.6 is not applicable, a generalized version can sometimes be
used. For this, additional notation is needed. Suppose E(Y) has the partitioned
form

Consider the two reduced models

model MO1: E(Y) = Xymy + Xym,, Aymy =0, Ajm, =0,
model M02: E(Y) = Xomy + X,my, Aymy =0, Aym, =0.

Let ro; and £, denote the rank and regression space of model MO1. Let rq,, 2y, 7,
and £, be similarly defined w.r.t. models M02 and E(Y) = X,m,, Aym, = O, respec-
tively. Also, let df denote the dimension of the vector space of parametric
functions b'w, that are estimable w.r.t. model M02. Let d, be similarly defined
w.r.t. the full model (3.10).
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THEOREM 3.11. The following statements are equivalent:

(a) b'm, is estimable < b'm, is estimable w.r.t. model M02.

(®) d, = a3.

©r=ry+ry—r,

@D Q1 N Qo = Ly ¥
(e) a’'m, is estimable < a’w, is estimable w.r.t. model MO1.

PROOF. Let U (resp., U*) denote the set of vectors b such that b'm, is
estimable (resp., estimable w.r.t. model M02). Similar to the paragraph following
Remark 3.5, write dim U = 4, + r(A,) and dim UW* = d¥ + r(4,). Since W C
U*, we get (a)< (b). From Proposition 3.9 we can write r = roy + d, and
roa = ro + df which gives (b) < (c). Using @ = Q,; + Q, and @, C ;,, N Q,, one
can get (¢) < (d). The symmetry of (d) and (a) < (d) then gives (d) < (e). []

Notice that the above theorem reduces to Theorem 3.6 when X, = 0. Also,
notice that the comments following Proposition 3.9 are applicable (with minor
adaptations) to the above theorem. Finally, statement (3.11d) sometimes provides
insight as how to partition E(Y) before attempting to utilize the theorem; e.g., in
classification models it is often obvious that one reduced model regression space is
in the intersection of two other reduced model regression spaces.

4. Examples. To illustrate some of the results in Section 3, consider first the
unconstrained model
(4.1) E(Yp,) =pn+a+ B+ v
wherei=1,---,a,j=1,---,bk=1,---,c,andp=1,- - - ,n,jk.Heren,j,c
is the number (possibly 0) of replications at levels (i, j, k) of the factors.

Theorem 3.6 will not be useful for any of the natural partitions because (3.6d)
cannot be true. If it is known a priori that the model is of maximal rank
a+b+c—2(eg, all ny #*0 or the n, have a Latin square pattern), then
estimability facts are known so there is no need for Theorem 3.11. When the rank
of the model is unknown, however, Theorem 3.11 (and Proposition 3.9) can
sometimes be useful. Clearly Theorem 3.11 cannot be applied without some
preliminary work. The work required, however, is work which must eventually be
done to completely analyse the model. Thus, it is suggested that an analysis of the
model begin with a check of one of the conditions in the theorem. If the theorem is
found applicable, then later work is simplified; and if the theorem is not applicable,
nothing has been lost. For example, consider the reduced models

model MO1: E(Yy,) = p + o, + B

model M02: E(Yy,,) = p + .
Let d, = d, and r,5 = r;,. A spanning set for T, can be obtained as in Example
10.1 of Birkes et al. [1]. So d, can be determined by extracting a basis from the
spaniung set. If d, = ¢ — 1, then Theorem 3.11 implies (since d, < df <c — 1)
that estimability of & and B contrasts can be determined via model MO1. In any
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event, Proposition 3.9 implies r = 1,z + d,,d, =r — rg,,and dg = r — r,, can be
determined by calculating 7,4, 7,, and rg,, which are straightforward to obtain; e.g.,
see Section 4 of [1].

As a second example, consider (4.1) with an af interaction term, that is,

(4.2) E(Yy,)=p+a+B+0;+7

where i, j, k, p are as before. Consider the reduced models
model MO1: E(Y,,) = p+ 0; + v,
model M02: E(Yy,) = p+ 0; + a; + B,

It is immediate to see r = r,, and ry, = ry. Thus, Theorem 3.11 implies estimability
for the y, can be ascertained from model M01. Because model MO0l is an ab X ¢
additive two-way model, the estimable functions involving the y, and the dimen-
sion d, of the vector space of such estimable functions are straightforward to
determine; e.g., see Section 4 of [1]. Then r = ry, + d, can be determined since ry,
is the number of nonzero n; = X, n;,. Next consider the reduced models

model MO1: E(Y,,) = p+ o, + B, + 6,
model M02: E(Yy,) = p + v.

Now d, = d, can be determined as above so that d, = df can be checked to see if
estimability for the a, 8 and @ contrasts can be deduced from model MO01.

As a final example consider model (4.2), which is the same as model (4.2) except
that the parameters are constrained by a.= .= y.=0and §, = §, = 0 for all i, /.
Let d, be defined in the obvious manner. Because of the constraints, it is possible
that Theorem 3.6 is applicable. Consider the partition leading to model M2:
E(Y;,) = Vi v-= 0. Proposition 3.7b implies y = (yy, - - - , v.) is estimable if and
only if d = ¢ — 1, in which case Proposition 3.7a would imply that Theorem 3.6
could be invoked. To check this d, must be determined. One possibility is to
compute d, as in model (4.2) since d, is the same for models (4.2) and (4.2),. (This
is also true for r and d, but not for d, and dp.) Other partitions are also possible.
For example, consider model M2: E(Y,) = 0; 6, =08; =0. Proposition 3.7b
implies 8 = (8, - - , 8,,) is estimable if and only if dy=ab—(a+ b —1) =
(a — 1)(b — 1), in which case Theorem 3.6 can be used. A possibility for comput-
ing d, is to compute the ranks for models (4.2) and (4.1) as previously described
and then take the difference of these ranks.
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