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ON ALMOST SURE LINEARITY THEOREMS FOR SIGNED RANK
ORDER STATISTICS!

By PRANAB KUMAR SEN
University of North Carolina, Chapel Hill

Almost sure asymptotic linearity of signed rank order statistic in shift
parameter is studied under suitable regularity conditions and the results are
extended to stationary ¢-mixing processes as well.

1. Introduction. Let {X,, i > 1} be a sequence of independent and identically
distributed random variables (i.i.d.rv’s) with a continuous distribution function (df)
F, defined on the real line R = (—o0, ). For every n(> 1), let X, =

(X5 - + +, X,) and consider the usual one sample (signed-) ranked order statistic
(1.1) T, = T(X,) = n~'S}.a,(R)sgn X,,

where R} = rank of |X;| among |X,|, - - -, |X,|, fori =1, - -, n, the scores a,(i)
are defined by

(1.2) a,(i) = E¢(U,) or ¢(i/(n+ 1)), i=1---,n
U, < ...<U,, are the ordered rv’s of a sample of size n from the uniform (0, 1)

df and the score function ¢ = {$p(u), 0 < u < 1} is assumed to be nondecreasing,
absolutely continuous and square integrable inside I = [0, 1]. For every n(> 1), let
1,=(,---,1) and based on the aligned observations X; — b, i=1,--- ,n,
define

(1.3) T,(b) = T(X, — b1,), beER.
Also, for every K(0 < K < o) and k(> 0), let
(1.4) ALK, k) = {b : |b| < Kn~Z(log n)*},

(15)  @,(8,(K, k) = sup{n?|T,(b) ~ T,(0) + bB(3, F)| : b € A,(K, K)},

where B(¢, F) (a functional of ¢, F) is a constant, to be defined later on.

When F has an absolutely continuous probability density function (pdf) f
(symmetric about 0) and certain other regularity conditions hold, following the
method of attack of Jureckova (1969), van Eeden (1972) has shown that as n — oo,

(1.6) w,(4,(K, 0)) — 0, in probability, for every (fixed) K;
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this is termed the (weak) asymptotic linearity of signed rank statistic in shift parame-
ter. Earlier, under more stringent regularity conditions, it has been shown by Sen
and Ghosh (1971) that for every s > 0 and k > 0, there exist positive constants
k,, k¥ and a sample size n,, such that for all n > n,,

(1.7) P{w,(8,(K, k) > k*n~3(log n)*} < k,n™,
and hence, on letting s > 1,

(1.8) w,(A,(K, k) = O(n‘%(log n)**) almost surely (a.s.), as n — oo.

For (1.6), the square integrability of ¢ suffices. But, for (1.7), Sen and Ghosh (1971)
used a more stringent condition that

(1.9) M(2) = [lexp{tp(u)}du < o0, Vt < t,, for some ¢, > 0.

In a variety of statistical applications (viz., Sen and Ghosh (1971, 1974), Steyn and
Geertsema (1974)), one actually needs a somewhat intermediate result, namely that

(1.10) w,(A,(K, k)) >0as., as n— oo,

and for this (1.9) may not be that necessary.

The object of the present investigation is to study suitable regularity conditions
pertaining to (1.10) and, in this context, we have not confined ourselves to the case
where F is symmetric about 0. A key to this investigation is a later paper of Sen
and Ghosh (1973) where an a.s. representation for 7, has been considered. Also,
certain basic results on the weighted empirical processes due to Ghosh (1972),
Csaki (1977) and others are incorporated in the derivation of our main results.
Along with the preliminary notions, the basic theorems are stated in Section 2, The
proofs of these theorems are presented in Section 3. The last section deals with
some general observations and a discussion on (1.10) for some stationary ¢-mixing
processes.

2. The main theorems. In the customary fashion, we assume that
2.1 ¢(0)=0 and ¢(u) »in u € (0, 1);

the theorems to follow hold even if ¢(u) is the difference of two monotone
functions. Also, we impose the usual Chernoff-Savage type condition (viz., Puri
and Sen (1971, Ch. 4) or Sen and Ghosh (1973)) that ¢ is twice differentiable inside
I = [0, 1], denote by ¢ (u) = (d"/du")¢(u), r = 0, 1, 2 and assume that there exist
positive constants C and & (both finite), such that

22) |6Pw)| < C[1 - u]"%"”, foreveryu € (0, 1) andr =0, 1, 2.

Let F be the class of all absolutely continuous df’s F (need not be symmetric about
0) admitting density function f and its first derivative f’ (both continuous) for
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almost all x (a.a. x) and, for every 8(> 0), let

(23)
Fs = {F € F : sup, f(x){ F(x)[1 - F(x)]}_%h' < oo for somen : 0 <7q <8}.
(24) Fg = {F € G5 : sup,|f(x)| < o0}.

For every b € R, let F,(x) = F(x + b), fy(x) = f(x + b), x ER aﬂd let Hy(x) =
F(x + b) — F(—x + b), hy(x) = f(x + b) + f(—x + b) and hf(x) = f(x + b) —
f(—x + b), x > 0. Let then
(25) (9 F) = [§o(H,(x))dF,(x) = [P$(F(x) — F(—x + 2b))dF(x), b € R.
Note that (3/3b){$(Hy(x))fy(%)} = f(xX)$(Hy(x)) + fo(x)¢(Hy(x))h¥(x) is con-
tinuous in x(> 0) and b(E€ R) and, by (2.2),

[5(x)sCH)A ()| < C[1 = Hy()] 7 R (0)[ fi(x) + fi(= )]
(2.6)
< C[1 = F(x)]72*%2(x) + C[1 = Fy(x)] " () [ Fo(=x)] 727U (— )
<1~ F(x)] ™ %(){2 sup S {FOo[1 - F)])#777)

as 1 — Hy(x) =1— Fy(x) + F,(—x) > [l — Fy(x)]V F,(— x). Hence, for every
¢ > 0, [LOV(H,(x)hF(x)f,(x)dx converges uniformly in b : |b| < ¢ when F € F;.
Similarly, by (2.2) and (2.3), |[p(H,(x))fp(x)| < Cf(x)[1 — F,,(x)]‘%*'s, so that by
partial integration, it follows that for every ¢ > 0, [§o(H,(x))f;(x)dx converges
uniformly in b : |b| < ¢, when F € ;. Hence, for every ¢ > 0, under (2.2) and
(2.3),

2.7) &(9/3b){(H,(x))f,(x)}dx converges uniformly in b : |b| < c.
Therefore, by (2.7), for every F € %5 and ¢ > 0,
(2.8) (9, F) = — (3/3b) (9, F)
= 2[oV(F(x + b)— F(—x + b))f(x + b)f(—x + b)dx
exists and is continuous in b, for all b : |b < c. Further we define,
@9 p(8,(K ) = sup{nHT,(8) = T,(0) — 2p(s. F)
+ 2pg(6, F)|:|b] < Kn~7(log n)*}.
Then, we have the following '
THEOREM 1. Under (2.1) and (2.2), for every F € %5 and finite K, as n — oo,
(2.10) w,(A,(K, 0)) = 0 a.s., where B($, F) = 2y4(¢, F).

THEOREM 2. Suppose that (2.1) and (2.2) hold for some & > 3. Then, for every
finite K, k, there exists positive numbers a, B, d, q and a sample size n* (all possibly
dependent on 8, K, k), such that for every F € F,

(2.11) P{w¥(A,(K, k)) > dn~*(logn)} < qn™'7, Vn > n*.
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If, in addition, F € g, then, (2.11) also holds for w}(A,(K, k)) being replaced by
w,(A,(K, k), where B(¢, F) = 2y, F), and hence, (1.10) holds.

The proofs of these theorems are considered in Section 3. In the remainder of
this section, we present some results on the empirical df which will be used in the
sequel. Let {U;, i > 1} be a sequence of ii.d. rv’s with the uniform (0, 1) df and let
c(t) be equal to 1 or 0 according as ¢ is > or < 0. For every n(> 1), let
G,(t) = n7'27_,c(t — U), t € I be the empirical df. Then, we have the following
result due to Ghosh (1972): for every # > 0, there exist K(0 < K < ), 7(= (1 +
0)/2(2 + 08)) and n, (all dependent on #), such that for every n > n,

(2.12)  P{sup,/|G,(1) — 1/ {H(1 — )77 > Kn"3(log n)} < 2n~'~".
By (2.12) and the Borel-Cantelli lemma, we obtain that as n — oo,
(213) n3(log n)~'sup,e,|Gy(2) — #l/ {#(1 — £)}777 = 0(1) as. (for 7 >1).

However, (2.13) is not sharp and tl;e following result (due to Csaki (1977)) is worth
mentioning: for every ¢ > 0, as n — oo,

(2.14) n%(log log n)_%sup,e,|G,,(t) -t/ {e(1 - t)}%_"' =0(1) ass.
Both (2.12) and (2.14) are useful for our manipulations.

3. Proofs of the theorems. Note that sgnx = 2¢(x) — 1 for every real x.
Hence, if we let

(B1)  Tr=T*X,) = n7'Sc(X)a,(R), THb) = T*(X, — b1,), bER,
then,

32) T,(b) = 2T*(b) — a,, Vb € R, where a, = n~'37_,a,(i).

Also, under (1.2) and (2.1),

(33) TX(b) and p,(¢, F) are both \yinb € R.

Thus, for everya < b <,

(34) Tx(c) = po(, F) < T3(b) — mp(9, F) < T3(a) — p(o, F).

Moreover, by (2.8), for every K(< oo) and n(> 0), there exist positive integers

m(= m(K, n)) and n, and a set of numbers b,j=0=x1,---, £m, such that
‘ 1

b_, < —K<b_,4p b,y <K<b, and on letting b, =n"2p,j =

0,+1,---, £m,
(35) 0< p, (6 F) =, (6 F) <imni, V-m<j<m—1,n>n,

Thus, by (2.9), (3.2), (3.3), (3.4) and (3.5), for every n > ng,
wr(A,(K; 0))

(36) < 2maxy,{n2TH(b,) — THO) + wol(é F) — (6 )|} + /2
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Further, by (2.8),

(3.7) sup{n?| p(d, F) — pold F) + bro(¢, F)| : [b] <n" 2K} —0asn— oo
Hence, to prove Theorem 1, it suffices to show that for each j : |j| < m,

(38)  ni|TH(b,) — T0) + po(9, F) — py (¢, F)|—>0a.s., as n - co.

The subscript j in (3.8) will be omitted in the sequel for notational convenience. We
now appeal to Theorem 4.1 of Sen and Ghosh (1973) and obtain that for the
special case of i.i.d. rv’s, for every real b € R, their (2.10)-(2.13) simplifies to

(39) A {TH(bn73) — w36 F)) = Bou(b) — B(B) + R,(b),
where
(3100  B,(b) = fgon%[F,,(x + n_%b) — F(x + n_%b)](p“)(F(x + n_%b)

- F(—x + n_%b))dF(—x + n‘%b),
(A1) Bu(b) = [fni[ E(=x + n738) = F(=x + n735) [§(F(x + n™30)

— F(=x + n"3b))dF(x + n"1b),
(3.12) R, (b) = 0(n~") as., as n — oo, for some n > 0,

and F,(x) = n~'27_,c(x — X;), x € R. It may be remarked that though Sen and
Ghosh (1973) considered the case of a fixed F, their treatment remains valid for the
translation case considered here. In fact, (3.9) through (3.12) hold uniformly in b in
any bounded interval. For simplicity of proof, we assume that b > 0; a similar
proof holds for b < 0. We may rewrite

(313) By(b) = =, 33| F(Y +2n73) — F(y + 2n3b)
X 9O(F(Y + 2n73b) = F(~y))dF(~y).

Note that by (2.3), F(x) — F(—x + 2n‘%b) = F(x) — F(—x) + O(n‘%), for every
x € R. Hence, defining {x,} by F(x,) — F(—x,)=1— n~'/5, we obtain from
22) (r = 1) and (2.14) with ¢ = §/2, where 8(> 0) is defined by (2.2), that as
n— oo,

gn[ F(y + 2n778) = F(y + 2n725) |6O(F(y + 2n77b) — F(—y))dF(-y)|
<[0(Gog tog m)¥) sz F(» + 2n728)[1 = F(y + 2n=38) ]}~
(314)  [1- F(y +2n715) + F(—y)]‘”’”dp(—y)
< [0((10g log m)?) |y [ F(~»)] ™ ***dF(~y)
=[0((tog log n)?) [ F(=x,)]>  [as F(=x,) <n=1/*]

= 0(n=%"(log log n)%) a.s.
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Further, by (2.1), (2.2), (2.3) and (2.14),

(3.15) 2,4 F,(y +2n730) = F(y + 2n775)]
$O(F(y +2n72b) — F(~y))dF(~y)

= 0((log log n)%).O(n‘%) = O((n“log log n)%) a.s., as n — o.

Hence,

B,,(b) — B,,(0) = nz[F (y + 2n'ib) F,(y) - F(y + 2n'%b) + F(y)]
><4>(‘)(F(y + 2n'5b) - F( —y))dF(—y)
(3.16) + fgn3[ Fy(y) - F(»){¢®(F(y + 2n~1b) - F(-))
- (F(y) — F(—y))}dF(-y)
+0((n‘8/2(log log n)%) + 0((n"log log n)%) a.s., as n — o0.
Since, by (2.2), [¢@(u)| <C[1—u)” /248 for every u € (0, 1), F(x,) = F(-x,) =
1—n-Vs and sup{|n2[F (x + 2n"5b) F,(x) — F(x + 2n'5b) + F(x)]| : x €
R} =0(n" 4log n) a.s. as n— oo (cf. Sen and Ghosh (1971)), by using (2.2), (2.3)

and (2.14) for ¢ = /2, the right-hand side of (3.16) can easily be shown to be
bounded by

3.17) 0((n“('+‘”/6[(log n) + n~Y2(log log n)%])) + 0((n~**(log log n)%)

1
+O((n"log log n)z) = 0((n~*(log n)) a.s., as n — oo, where p > 0.

A similar case holds for B,,(b) — B,,(0). Hence, the proof of Theorem 1 follows
from (3.8), (3.9), (3.10), (3.11), (3.12), (3.16), (3.17) and the above argument.

For Theorem 2, in (3.5)-(3.6), we replace m by m, = n*(log n)* and note that
(3.6) holds with K being replaced by K(log n)*. In this case, we show that for every
Ji |Jl < m,, for every & > 0, there exist positive numbers a, b and a sample size n,,
such that for n > n,,

(3.18)

P{nHT3(b,) = TO) + o F) = 1ty (8, F)| > dn=*(log m)*} < an™1-2,

For this purpose, we appeal to (2.2) with § >} and to (2.12), under which, there
exist positive numbers 7, ¢, and c,, such that for all n, sufficiently large,

(3.19) P{|R,(b)| > e;n™ "} < c,n~'7%, for some § > 0,

where R,(b) is defined by (3.9) and (3.12). The proof of (3.19) is implicit in the
proof of Theorem 4.1 of Sen and Ghosh (1983); an explicit proof of (3.19) is also
contained in Miiller-Funk (1977). Also, in the treatment of (3.13) through (3.17), we
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replace everywhere the use of (2.14) by (2.12), whereby, we replace the a.s.
statements by a statement with a probability greater than 1 — 2n~!~% for some
b > 0. This will lead to (3.18) where b < b’. Since m, = 0((log n)*) for some
k > 0, (3.6), (3.18) and the Borel-Cantelli lemma insure that (2.11) holds. For the
rest of the theorem, it suffices to show that (3.7) holds for K being replaced by
K(log n)* when F € $. For this purpose, we make use of (2.8) and hence, it
suffices to show that for n sufficiently large,

(3.20) sup(v,(¢, F) = ¥o(#» F)| : |b| < Kn~%(log n)*} < n~¢
for some ¢ > 0. Defining {x,} as in after (3.13), we write
15($, F) = [5 + [30P(F(x) — F(—x + 2b))f(— x + 2b)f(x)dx
(3.21) = I,,(b) + I,(b), say.
Note that by (2.2) and (2.3),
[L,,(6)| < Cf2[1 = F(x) + F(—x + 2b)]7*>**f(x)f(— x + 2b)dx

(322) < C{sup Ax){F()[1 - F(x)]}"%*"}f;g[l - F(x)]™"**""aF(x)
=0o([1- F(x,)]°7") = 0(n~@=/5),
Similarly, for every b : |b| < Kn~2(log n)*,

(323)  Jee™(F(x) — F(=x))f(— x)f(x)dx = O([ F(b) — F(0)]*™")

= 0((n"%(log n)")a_").
Hence, by (3.21), (3.22) and (3.23), for n sufficiently large,

Y(®, F) = 1o(9, F) = [3{¢P(F(x) — F(—x + 2b)) — ¢(F(x) — F(—x))}

(324) X f(— x + 2b)dF(x) + [3$"(F(x) — F(—x))

[f(—x + 2b) — f(—x)]dF(x) + 0(n~%), where £ > 0.

Using (2.2) (for » = 2), (2.3) and the fact that 1 — F(x,) < n~'/%, it follows
that the first term on the right-hand side of (3.24) is [0(n ~2(log n)*)J[0(n ~3*+7/6)]
= O(n~¢), where £ > 0. Similarly, by (2.2) (for » = 1) and (2.4), for F € %2, the
second term on the right-hand side of (3.24) is [0(n~2(log n)*)|[O(n‘z ~%/6)] =
0(n %), where £ > 0. Hence, (3.20) is proved and the theorem follows.

4. Some general remarks. We may note that if F is symmetric about 0, then
F(x) — F(—x) =2F(x) — 1, x > 0, so that if we let ¢(u) = ¢*((1 + ¥)/2),0 < u
< 1 where ¢*(u) + ¢*(1 — u) = O for every u € I and assume that f has a finite
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Fisher information I(f) = [(f’/f)’dF, then
Yo(#, F) = [5¢*P(F(x)(— x)dF(x) = [§¢*(F(x))[ — f(x)/f(x)]dF(x)

1) = 3(/2®*(FO)[ —f'(x)/f(x) |dF (x) = 3(fo9* (u)¥(u)du)

where Y(u) = — f'(F~'(w)/f(F ~'(u)), u € L. In this case, the results are in agree-
ment with van Eeden (1972), though we have a.s. convergence under slightly more
stringent regularity conditions. On the other hand, (2.2), even for § >} and the
other regularity conditions of Theorem 2 are less stringent than the ones in Sen and
Ghosh (1971).

One of the important uses of the asymptotic linearity theorems is the estimation
of y4(9, F) from the aligned statistics 7,(a). Almost sure convergence of such
estimates follows readily from Theorem 1. It may be of interest to note that the
current Theorem 1 throws light on the behavior of such estimates when the
underlying df F is not necessarily symmetric.

One advantage of using Theorem 4.1 of Sen and Ghosh (1973) lies in its
flexibility for adaptation for certain stationary stochastic processes. Actually, Sen
and Ghosh (1973) considered stationary ¢-mixing processes, and, under diverse
mixing-conditions, studied the feasibility of (3.9) through (3.12), under conditions
parallel to (2.2) and (2.3). For mixing processes, we may not have a strong result as
in (2.14). Nevertheless, certain a.s. orders for the sup-norm of empirical processes
are studied in Lemma 3.1 of Sen and Ghosh (1973) and these may be used with
advantage for the study of results parallel to (2.10) for such processes. Let
{X;, —0 <i < oo} be a stationary ¢-mixing process, defined on a probability
space (2, @, P). Thus, if OM* _ and O, , be respectively the o-fields generated
by the X,,i < kand X, i > k + nand if E, € O~ and E, € M, ,, then for all
k(—o0 < k < o0) and n(> 1),

(42) |P(E,|E,) — P(E,)| < o(n),  é(n) \ 0asn— oo.

Consider the following mixing conditions:

(4.3) (i) for some k > 0, A, (¢) = == ,n*p2(n) < oo,

44) (ii) for some ¢t > 0, I_,e"p(n) < oo.

Parallel to (2.2), let us assume here that

(4.5) 6Pw) < C1—uw)™ ™%  0<u<l,r=01,2,

where a and & are positive numbers. Then, we have the following

THEOREM 3. Suppose that (2.1), (2.3) and (2.5) hold and either one of the following
three conditions holds:
(i) for some k > 1, A, (¢p) < oo and (4.5) holds with a = 2k — 1)/2(2k + 1),
(i) for some k > 3, Ai(¢) < oo and (4.5) holds with a = (k — 2)/2k, or
(iii) (4.4) holds and (4.5) holds with a = 1.
Then, (2.10) holds.
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The proof is quite analogous to that of Theorem 1 in Section 3. Wherever, in that
proof, we have used (2.14), we may use Lemma 3.1 of Sen and Ghosh (1973) and
noting that by virtue of Theorem 4.1 of Sen and Ghosh (1973), the representation
in (3.9) through (3.12) remains valid under the hypothesis of Theorem 3, the rest of
the proof may practically be repeated with minor variations. Hence, the details are
omitted.
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