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A STOCHASTIC ORDERING INDUCED BY A CONCEPT OF
POSITIVE DEPENDENCE AND MONOTONICITY OF
ASYMPTOTIC TEST SIZES

BY YOSEF RINOTT AND MOSHE POLLAK
The Hebrew University of Jerusalem

An ordering of distributions related to a concept of positive dependence is
studied and stochastic monotonicity with respect to this ordering is established
for a wide class of two-sample test statistics. Asymptotic conservativeness
of test sizes under certain departures from independence between samples is
discussed. For example, if the observations are paired and the joint density is
positive semidefinite then tests such as Kolmogorov-Smirnov, x? and Cramér-
von Mises, as well as a large class of linear rank tests, are shown to be
asymptotically conservative.

1. Introduction. Consider the following stochastic partial ordering:

DErFINITION. Let (X, Y) and (Q, R) be bivariate random vectors. We say that
X, Y are more positively dependent than Q, R (denoted by (X, Y) >,,(Q, R)) if
X,Y, Q0 and R have a common continuous marginal distribution and if
Cov[h(X), h(Y)] > Cov[h(Q), h(R)] for all functions 4 for which the covariances

exist.
For X, Y having a common continuous marginal distribution F, let Z*: 1

denote the Gaussian process in C[0, 1] with zero expectation and covariance
function defined for 0 < s < ¢ < 1 by

(1) c(s,t)=P(F(X) <s, F(Y)>1) + P(F(X) >1t, F(Y) <s).
Monotonicity of P(Z* " € A4) with respect to the ordering >, is established
(Theorem 1) for sets A in C[0, 1] which are essentially closed, convex and
symmetric. The main tool used in the proof of Theorem 1 is a generalization of a
well-known result of Anderson (1955). Theorem 1 is applied in the context of
testing the hypothesis H, that (X, Y) has equal marginal distributions, where
P(Z* V) € A) arises as the asymptotic acceptance probability of tests whose
statistics are essentially convex functionals of the difference between the marginal
empirical distribution functions based on a sample from (X, Y). The resulting
monotonicity property of asymptotic test sizes implies conservativeness (Theorem
2): if such a test is designed to be of asymptotic level « when X and Y are
independent then its asymptotic size will continue to be bounded by a when the
assumption of independence is replaced by the condition

@) Cov[ A(X), h(Y)] > 0
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for every h for which the covariance exists. Shaked (1974) formulated condition (2)
as a concept of positive dependence and proved its equivalence to positive
semidefiniteness of the joint distribution function. This and other conditions which
imply (2) are given in Theorem 3. See Lehmann (1966) and Jogdeo (1977) (and
references therein) for a discussion of other concepts of dependence.

The two-sample #-test is not contained in the class of tests under consideration.
However, it illustrates the relationship between conservativeness and positive
dependence and motivates the study of this relationship in nonparametric tests.
Denoting the sample means and variances by X, Y, 2, S2, consider t = [n(X —
YR/(S2 + SHP. If

6 1) ~ (e (7))

then (up to a constant) the denominator of #? is the trace of a Wishart matrix,
which is distributed as a weighted sum of two independent x(z,,_l) variables. It
follows that (under H,) #* is distributed as 2(n — DW/[U + V(1 + p)/(1 — p)],
where W ~ x(21) and U, V ~ x(z,,_l) are all independently distributed. Thus the size
P,,o(t2 > c,) of the two-sided #-test is monotonically decreasing in p. In particular,
if the test has size a under independence (p = 0), it will be conservative (size < a)
for p > 0.

In Section 3 we show that our approach applies to tests which are not asymptoti-
cally normal (x?, Kolmogorov-Smirnov, Cramér-von Mises). The same approach
applies also to tests which are asymptotically normal (e.g., Wilcoxon and other
linear rank tests) in which case the asymptotic size depends only on the asymptotic
variance. This fact was employed by Hollander, Pledger and Lin (1974) to obtain
asymptotic conservativeness for the Wilcoxon test. For linear rank tests the
asymptotic theory for dependent samples was developed by Sen (1967).

2. The order relation and its application to asymptotic test sizes. In this section
we study the ordering >,, and its relation to the process Z* ™ and discuss
applications to two-sample tests.

A functional T on CJ[0, 1] is said to be symmetric if 7(z) = T(—z) for all
z € C[0,1]. Aset A C CJO, 1] is said to be symmetricif 4 = — 4. (-4 = {z €
Cl[0, 1] : —z € A}.) The class of closed convex and symmetric sets in C[0, 1] will
be denoted by @.

THEOREM 1. Let (X, Y) >,,(Q, R) and let A € @. Then
P(Z& YV € 4) > P(Z2R € 4).
ProoFr. The following lemma which is needed for the proof of Theorem 1 is a
generalization of Corollaries 3 and 4 of Anderson (1955).

LemMMA 1. Let Z,, Z, be Gaussian processes in C[0, 1] with zero expectations and

covariance functions c,(s, t), c,(s, t) respectively such that cy(s,t) — c/(s, t) is a
positive semidefinite function. Then for A € @ P(Z, € A) > P(Z, € A).
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The proof of Lemma 1 is relegated to the Appendix. We continue with the proof
of Theorem 1. For 0 < s < ¢ < 1, the covariance functions c¢; and ¢, of the
processes Z* ¥) and Z(@® are given by

e/(s, 1) = P(F(X) <s, F(Y) > 1) + P(F(X) > 1, F(Y) <)
ex(s, 1) = P(F(Q) <5, F(R) > f) + P(F(Q) > 1, F(R) <)

where F is the common marginal distribution of X, Y, Q and R. Let F and G be
the joint distribution functions of (X, Y), (Q, R) respectively, and let F(s, 7)
=1[F(s, 1) + F(t, 5)), G(s, 1) = 3[G(s, ©) + G(#, 5)] be their symmetrizations. By
Lemma 1 it suffices to prove positive semidefiniteness of the kernel c,(s, ) —
¢,(s, 1), or equivalently of the kernel F(s, 1) — G(s, 1), since cy(F(s), F(t)) —
¢(F(s), F(¥)) = 2[F(s, 1) — G(s, 1)]. Note that since X and Y have equal marginals,
Cov(h(X), h(Y)) remains unchanged when the joint distribution F is replaced by F,
for any function h. For measurable 4 of bounded variation

0 < Cov[A(X), i(Y)] — Cov[ A(Q), H(R)]

(3 = [Sh(s)h()dF (s, £) — [[h(s)h(1)dG(s, 1)
= [[[F(s, 1) — G(s, 1) ]dh(s)dh(t).

The latter expression is a quadratic form in the kernel K(s, 7) — G(s, 7) and it
follows that the kernel is positive semidefinite. []

. COROLLARY 1. It follows from (3) that (X, Y) > ,(Q, R) if and only if F(s, 1) —
G(s, t) is a positive semidefinite kernel.

We will now be concerned with testing the hypothesis H,, that the random vector
(X, Y) has equal marginal distributions (which are assumed to be continuous) and
with formulating the relation between Z*> 1) and two-sample tests. Under H, let F
be the common continuous marginal distribution of X, Y. We shall consider test
statistics 7, based on a sample (X;, ¥;), i=1,---,n of iid. random vectors
distributed as (X, Y). F¥ and FY will denote the empirical distribution functions of
the X; and Y, samples respectively. We consider the uniform (0, 1) variables
defined by X* = F(X,) and Y* = F(Y;),i=1,- - - ,n. Let F" and F}" denote
the smoothed versions of the empirical distribution functions of the X* and Y}
samples respectively in the same way as G,(¢, w) is a smoothed version of F,(¢, w)
in Billingsley (1968, page 104). For ¢ € [0, 1] consider the process Z,(¢) =
n3(EX*(1) = FY'(1)) in CI0, 1]. The following lemma can be proved by a method
similar to that of the proof of Theorem 13.1 of Billingsley (1968), or by Theorem 2
of Dudley (1966).

LEMMA 2. Under Hy Z,—>¢Z* ") (Z, converges weakly to the process Z** V)
in C[0, 1] as n > 0.
When X and Y are independent c(s,#) = 2s(1 — ¢),0 <s <t < 1, and the

process Z* ¥ (which in this case is 22 X a Brownian bridge) will be denoted by
ZIND.
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ASSUMPTION 1. A sequence (7,,, C,) of test statistics T, and acceptance regions
C, is said to satisfy Assumption 1 if, under H, for any common continuous
marginal distribution function F of X, Y there exists a set A € @ such that
4) P(T,€ C,) ——>,,_mP(Z(X' ") e 4p).

LemMa 3. Let T, be a sequence of test statistics satisfying: under H,, for any
common continuous marginal distribution function F of X, Y

(A) T, can be represented as T, = TF(n%(F,f"' — FY)) + 0p(1) where Ty is a
continuous convex and symmetric functional on C[0, 1] and op(1) — O in probability
(n - ).

(B) The distribution function P(T(Z* V) < t) is continuous at t = k.

Let C, = {T, < k}. Then the sequence (T, C,) satisfies Assumption 1 with
Ap = {z € C[0, 1] : T(2) < k}.

PrOOF. Since T} is continuous Lemma 2 implies 7, —qT(Z* V). Therefore
by (B) P(T, < k) = P(TH(Z™* V) < k), implying (4). Ar € @ since T, is also
convex and symmetric. []

A variety of tests satisfying Assumption 1 will be discussed in Section 3.

ReMARK 1. By an argument similar to that of the proof of Lemma 1 (see
Appendix) we have T(Z* ) = sup,_, , . {L,(Z* ")} where L, are continu-
ous affine support functionals. L,(Z* ")) are jointly Gaussian and so by an
argument of Rinott (1976) Hp(f) = P(TH(Z* V) < ) is log concave. Hence condi-
tion (B) of Lemma 3 holds for all £ except possibly at the largest lower bound of
the support of H.

ReMARK 2. The asymptotic size of a sequence of tests (T, C,) satisfying (4) is
P(Z* 1) € Af) where A° = complement of A. Thus Theorem 1 can be interpreted
as monotonicity of asymptotic test sizes in the relation > ;. In particular we obtain
conservativeness under departure from independence:

THEOREM 2. Let (T, C,) be a sequence satisfying Assumption 1 and suppose that
P(Z™P € Af) < a (asymptotic level o under independence) for every continuous F.
Then P(ZX V) € Af) < a under H, for any joint distribution of (X, Y) having a
common continuous marginal F provided that under H,

(5) Cov(h(X), h(Y)) > 0
Jor any function h for which the covariance exists.

PrOOF. Let (X, Y) satisfy (5) and let (Q, R) be independent such that X, Y, Q
and R have the same (marginal) distribution F. Then by (5) (X, Y) >,,(Q, R)
implying by Theorem 1 that P(Z*' V) € Af) < P(Z@ R € Af) = P(Z™P € 45)
<a. [

The following theorem is useful for verifying the condition (5).

THEOREM 3. Let the random vector (X, Y) have a joint distribution F with equal
marginals and let F(x, y) = %[F(x, y) + F(y, x)] be the symmetrization of F. In order
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Jor Cov(h(X), h(Y)) > O to hold for all measurable h for which the covariance exists
any of the following three conditions is sufficient. Condition (i) is also necessary.
@) F(x,y) is positive semidefinite.
(i) F(x,y) has a density function §(x, y) which is positive semidefinite.
(iii) X and Y are conditionally iid. (i.e., there exists a random R such that
conditional on R the variables X and Y are i.i.d. R may be regarded as taking values
on the space of univariate distribution functions).

Proor. The equivalence to condition (i) is an immediate generalization of
Theorem 2.3 of Shaked (1974). If a density exists, equivalence to (ii) follows since
Cov(h(X), L(Y)) = [[ f(x, y)g(x)g(y)dxdy where g(x) = h(x) — Eh(X), and this is
a quadratic form in f. Note that if f is TP, (totally positive) then it is positive
semidefinite (Karlin (1968)). The sufficiency of (iii) is a special case of a result of
Dykstra, Hewett and Thompson (1973). A short proof is:

Eh(X)h(Y) = EE(h(X)h(Y)|R) = E[ E(h(X)|R)’]

> (E(h(X))* = En(X)Eh(Y). 0

ExampLE 1. Let (X, Y), (Q, R) have a bivariate normal distribution with a

common marginal F = N(u, %), and correlations p,, p, respectively, 0 < p, < p,
< 1. Then (X, Y) >,4(Q, R).

Proor. Let F, and f, be the joint distribution and density of

‘DL(( ”), 02( ! p)) By Corollary 1 it suffices to prove that the function F, (s, 7)

p 1

[ 1
— F, (s, 1) is positive definite.
For t; <t, < - - <t,let D, be the matrix D, = (F,(%;, ,)),x,- By a result of

Slepian (1962) dF (s, t)/dp = ozfp(s, 7). In matrix notation we thus have dD,/dp
= az(fp(t,., ))axn Which is totally positive (see Karlin (1968)) and hence positive
definite for 0 < p < 1. Thus for any x € R"

d
E;(x’Dpx) = x'(o’,(t, 1)), x>0 for x#0,

implying x'(D, — D,)x = x'D,x — x'D,x >0, so that D, — D, is positive
definite. It follows that F, (s, #) — F, (s, ?) is positive definite. []

From Theorem 1 it now follows that if (X, Y) ~ %(( Z), 02(:) ‘1) )) then the

asymptotic size P(Z* 1) € Af) of a sequence of tests satisfying Assumption 1 is
monotone in 0 < p < 1. Note also that for p > 0 conditions (i), (ii) and (iii) of
Theorem 3 hold. Conservativeness in the sense of Theorem 2 follows.

Examples of distributions satisfying condition (ii) can be found in Karlin (1968).
Further examples of distributions which satisfy conditions of Theorem 3 are listed
by Shaked (1974, 1977). These examples include bivariate versions of the F, x2,
logistic and exponential distributions.

We now provide a simple example of the order relation >, designed to illustrate
the underlying concept of dependence.
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win

W
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ExaMPLE 2. Consider the bivariate density f,(x,y) 0 < x,y < 1 having values
0 <y <3,3- v,and 0, as described in Figure 1. Let (X, Y) have density 5%, )
(note that f (x, y) is not symmetric, i.e., X and Y are not interchangeable) and let
(Q, R) have density f,. Then y > y’ implies (X, Y) >,4(@; R).

Proor. First note that the marginals are all uniform (0, 1). For a given function
h denote b, = E(h(X)|(i — 1)/3 <X <i/3) i=1,2,3. Then Eh(X)h(Y) =
(v/9)B} + b} + bd) + ((3 — v)/9)(b,b, + b,bs + b,bs) which is increasing in y.
Therefore y > vy implies Cov(h(X), h(Y)) > Cov(h(Q), h(R)). []

REMARK 3. Replacing 0, 3 — y in Figure 1 by n > 0, £ > 0, respectively, where
n+ £ =3 — y we obtain a family of densities associated with random variables
which are equivalent to (X, Y) with respect to the order relation >4+ In particular
the case n = £ corresponds to the symmetrization of Sy

3. Kolmogorov-Smirnov, Cramér-von Mises, Pearson x%, Wilcoxon and linear rank
tests. In this section we depict the class of tests considered in Section 2 by
specifying some examples of well-known tests for which Assumption 1 holds. The
notation used below is defined in Section 2.

The Kolmogorov-Smirnov test. This test rejects H, when T, =
SUP_ 0y <wn%|F,;"(t) — FY(9)| > k. This statistic is invariant in the sense that
Ty K Yio oo, Y) = T(8(X), - -, 8(X,), g(Y), - - -+, 8(Y,) for ev-
ery increasing function g. Therefore T, = sup,,.,nz|FX"(t) — EX(t)] + op(1).
Thus (A) of Lemma 3 holds with Tp(Z) = sup,,;|Z(?)|. (Here T, does not
depend on F because of invariance.) Since P(T(Z* ¥’) = 0) = 0 condition (B)
holds here (and in the following examples by a similar argument) for all k by virtue
of Remark 1. By Lemma 3 Assumption 1 holds.

Cramér-von Mises-type statistics. Set C, = {T" < k} where

X Y
70 = (1A ) - Eo) o O30,
When X; and Y, are uniform (0, 1) then by a lemma of Kiefer (1959, page 424)
TV — f(‘,(n%|F;,X(t) — FJY(0|ydt converges to zero in probability as n — oo.
(Although Kiefer’s lemma is formulated for the case of independent samples, it

r>1.
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remains valid with essentially the same proof for any joint distribution of (X, Y)
with uniform (0, 1) marginals.) Therefore, since 7 is invariant, TV =
fé(n%IF,;"'(t) — FY'(9)|ydt + op(1) implying Assumption 1 by Lemma 3.

Pearson x*. This is an example of a test which is not invariant under monotone
transformations of the observations.

Given X,,- - -, X, and Y, - -, Y,, N* = n[F}(t,,,) — EX(1)] is the number
of X’s observed in the interval (%, f;,,]. Define N,” analogously. If the data are
categorized into cells (4, 4,.,], i =1, - -, k, where —o0 <1, <1, <+ <t

< oo then the x? statistic can be expressed as

(¥ - N)

€

Tn = 2le=1

where ¢, = N + N;*. (Empty cells are allowed by the convention 0/0 = 0. See
Remark 4 below.) H; is rejected when 7, > c, where c, is the (1 — a)-percentile of
the x% _, distribution. Note that

T, =3k n{[FX (1) = FX@)] = [F () - FF @)Y
g =t FX(t1) — FEX(t) + FY(1,4,) — FX(t)

Let X,, Y; have a common continuous marginal F. Then

T =

n

- {m[EX(F(4.1) = FI(F(1,))] - ni[FX(F() - EFe)])
FX(t41) = FX(8) + FX(t4,) — FX(t)

+ 0p(1)

(a term is understood to be zero if its denominator is zero). Since under H,, the
denominator of the ith term in this sum converges a.s. to O/ = 2[F(¢,,,) — F(¢)),
it follows that Lemma 3 holds with

TH(Z% 1) = B8, [ 2% (F(1,,.)) — Z% D(F(1) Y/ OF.

REMARK 4. Unlike the previous examples the x> test cannot under indepen-
dence attain asymptotic size a for all F. If F(¢,),i =1, - -,k + 1 are not all
distinct then some of the cells will be empty, and the statistic will in reality have
fewer degrees of freedom than k£ — 1. In this case the actual asymptotic size will be
strictly less than « and in general P(Z™P € 4f) < a.

Linear rank tests. In order to define general linear rank statistics let £, - - - , §,,
denote combined ordered sample of X’s and Y’s and set n; = 1 or —1 if £ belongs
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to the sample of X’s or Y’s respectively. A linear rank statistic is defined by

= 2n ! . 1
Tn [2i=l‘]( 2n + 1 )"h]/”’
where J is a function defined on (0, 1). J(¢) = ¢ corresponds to the Wilcoxon
statistic; J(f) = ®~'(¢) where ® is the normal cdf corresponds to the Van der
Waerden statistic. One can obtain under certain conditions on J (for details, see
Theorem 5.1 of Sen (1967)) that, under H,, as n — oo.

T, —>ofZ% Y)N)dJ(t) ~ N(0,6?)  where

(6) 0? =4[ _ pcxaycaF (X)(1 = F(»))dJ(F(x))dJ(F(y))

=2 Cov(J(F(X)), J(F(Y))),
where (under H,) F denotes the common marginal distribution of X and Y. Hence
Assumption 1 holds with C, = {|T,| < k}. (Note that when J is not of bounded
variation the functional 7(z) = [}z(£)dJ(¢) is not continuous and therefore Lemma
3 does not hold.)

REMARK 5. When (6) holds it follows that a necessary and sufficient condition
for conservativeness is that Cov(J(F(X)), J(F(Y))) > 0.

APPENDIX

Under the conditions of Lemma 1, Corollary 3 of Anderson (1955) states that for
any t,, - - -, 4 in [0, 1] and any convex and symmetric (with respect to the origin)
set 4 in R¥
@) P((Zy(1), - - -, Zi() € 4) > P((Z5(1)), - - - » Zy(1)) € A).

An extension of this result to some special infinite-dimensional sets is given in

Corollary 4 of Anderson (1955). Lemma 1 of Section 2 is a generalization of (7) to
any closed, convex and symmetric set in C[0, 1].

Proor oF LEMMA 1. Since CJ0, 1] is separable and 4 is closed and convex it
follows that 4 = N,;.,C, where C, are half spaces, ie., C, = {z € C[0, 1]:
f42(1)dg, () < A,} where g, is a function of bounded variation. Since 4 is symmet-
ric we also have 4 = N, D, where D, = {z € C[0, 1] : |f}2(t)dg, ()] < A,}. We
first show that for 4, = Nn%_,D,

@®) P(Z, € 4) > P(Z, € 4,).

Consider the Gaussian variables V" = [4Z (Ndg(f),m=1,2;j=1,-- -, k.
We have

) P(Z,, € 4) = P(V{™, - - -, V(™) € By), m=1,2
where B, = ;‘_l[—kj, >\j]gR". Fori,j=1,:---, kset

¥, = Cov(V, V) — Cov(ViD, Vi) = [3f§[ex(s. 1) — e1(s, )] dg.(s)dg,(1).
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Since cy(s, £) — ¢(s, ?) is positive semidefinite it follows that the matrix (¥ ), is
positive semidefinite. By Corollary 3 of Anderson (1955)

PV, -, V™) € B) > P(V®,- - -, V@) € B,).

Now (9) implies (8). Since the sequence 4, decreases to A we have P(Z,, € 4,) —
P(Z, € A) as k - o0 and Lemma 1 follows. [J
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