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DYNKIN’S IDENTITY APPLIED TO BAYES SEQUENTIAL
ESTIMATION OF A POISSON PROCESS RATE

By C. P. SHAPIRO AND ROBERT L. WARDROP'
Michigan State University and University of Wisconsin-Madison

Conditional on the value of 4,8 > 0, let X(#), ¢t > 0, be a homogeneous
Poisson process. Sequential estimation procedures of the form (o, 8(0)) are
considered. To measure loss due to estimation, a family of functions, indexed
by p, is used: L(6, ) = 8 ~P( — ), and the cost of sampling involves cost per
arrival and cost per unit time. The notion of “monotone case” for total cost
functions of a continuous time process is defined in terms of the characteristic
operator of the process at the total cost function. The Bayes sequential proce-
dure is then derived for those cost functions in the monotone case with
optimality proven using extensions of Dynkin’s identity for the characteristic
operator. Finally, the sampling theory properties of these procedures are
studied as sampling costs tend to zero.

1. Introduction. Conditional on the value of 4, § > 0, suppose that X(?), ¢t > 0,
is homogeneous Poisson process. Sequential estimation procedures of the form
(0, 6(0)) will be considered where o is a stopping time with respect to {F(¢), ¢t >
0}, with %(¢) the sigma algebra of events generated by {X(s), 0 < s < ¢}, and é(o)
is an % (o) measurable function, with % (o) the sigma algebra of events prior to o.

A family of functions, indexed by p, 0 < p < 3, will measure loss due to
estimation:

(1.1) L,(9,8) =0672(6 - 6).

The effect of the p is to measure loss in units of # ~?. The case of p = 0, squared
error loss, has received the usual attention. Dvoretsky, Kiefer, and Wolfowitz
(1953), and Hodges and Lehman (1951) have suggested p = 1. Using p = 2 causes
the decision problem to be invariant under the group of scale transformations
(Ferguson, 1967). The restriction of p to [0, 3] is for mathematical tractibility, and
the inclusion of noninteger p values usually increases the computational difficulty
only slightly.

The cost of sampling will involve two components: ¢, the cost of observing one
arrival, and ¢, the cost of observing the process for one unit of time.

In Section 2, the notion of “monotone case” for continuous time problems is
defined in terms of the characteristic operator of X(#) at the total cost function.
Then with a gamma prior distribution on 6, the Bayes sequential procedure is
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172 C. P. SHAPIRO AND ROBERT L. WARDROP

derived when the total cost is in the monotone case with optimality proven by
using extensions of Dynkin’s identity. As will be seen in the section, two familiar
stopping times (types I and II censoring) are Bayes for appropriate choices of p and
the sampling costs. The results obtained for p = 1 or 2 indicate that stopping rules
suggested by El-Sayyad and Freeman (1973) are in fact optimal. Also, Novic (1977)
has derived these stopping rules using a different technique.

In Section 3, the asymptotic properties of the Bayes sequential procedures are
studied.

2. The Bayes sequential procedures. Assume that @ has prior density
B; ag, Bo) = T(ag) ™' B30 =™ le™F#

for @ > 0, where 8, > 0 and a,y > p, p the loss function index in (1.1). For >0
fixed, there exists a version of the posterior density of 8 given %(¢) of the form
A(8; ag + X(©), Bo + ?). It is easy to show that for all countably valued stopping
times o, the posterior density of 4 given % (o) has version A(#; oy + X(0), By + 0).
To extend this result to arbitrary stopping times, note that X(¢) is right continuous,
and, for each 8, A(8; x, ) is continuous in ¢ and x. Since an arbitrary stopping time
can be approximated by a decreasing sequence of countably valued stopping times,
the continuity above and the countability result imply that the posterior density of
8 given % (o) has version A(6; a,, B,), with a, = ay + X(0) and B, = B, + o, for an
arbitrary stopping time o.
The Bayes estimator of 8 given % (o) is

(2’1) 0;(0) = (ao - P)ﬂo_ 1,
and the posterior expected loss is
(22) E[L,(8,,(0))|%(0)) = B2 ™T(e, + 1 = p)T(,) .

The total cost of observing the process for o units of time is defined to be
(23) @p(o, X(0)) = BrM(a, +1— p)I‘(azc,)_1 + ¢, X(0) + cro.

The Bayes sequential procedure (BSP) minimizes E(C,(o, X(0))) over all stopping
times o.

Candidates for the BSP will be infinitesimal look-ahead rules derived from the
characteristic operator of X(7) at C,(¢,x). Such rules can be shown to be Bayes if
the characteristic operator changes sign at most once and if the expected cost of
using procedure (o, 0;,(0)) can be expressed in terms of the operator for a large
class of stopping times o.

Let f(#, x) be measurable and finite on [0, c0)?. Define

E[f(t + h, X(t + m)|(2, X(2)) = (¢, x)] — f(t, x)
h

and consider only those functions f such that D({, x, k) is uniformly bounded in
h > 0 and the limit of D, exists as h decreases to zero. For such f define the

24)  Dft,x h) =
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characteristic operator at f as
(2.5) Af(t, x) = lim,,oDJ(1, x, h).

Of particular interest is the characteristic operator at C,(¢, x) which is given in the
lemma below.

Lemva 21. 4 C,(t,x) = — B °T(ag + x — p + DI(ag + X))V + (o +
x)B '+ e

ProOF. See appendix.

For ¢ > 0, define B, = B,(p) = {AC,(¢, X(£)) > 0}. The cost C, is in the mono-
tone case if and only if, for all ¢ < s, B, C B, and lim,_,  P(B,) = 1. This definition
is modeled after the definition of the monotone case given by Chow, Robbins, and
Siegmund (1971) for discrete time problems, and is interpreted in a similar way.
Namely, if 4C,(¢, x) > 0, then the “infinitesimal” prospect for the future (proceed-
ing from state (¢, x)) is bad since by (2.4) the expected value of the incremental
change in C, is positive. If the cost sequence is in the monotone case, then once the
infinitesimal prospect becomes bad, it remains bad. Thus, if @p is well behaved, the
infinitesimal look-ahead rule which stops the first time 4C, (¢, X()) is nonnegative,
should be optimal. Before giving sufficient conditions for @p to be in the monotone
case, a result about the ratio of gamma functions is needed.

LeMMA 2.2. Suppose w > 0. Then T'(w — b)T(w)~! is increasing in w for b < 0
and decreasing in w for 0 < b < w.

Proor. Take b > 0, and note that I'(w — b)['((w)~! is decreasing in w since
log T'(w) is convex (Berk (1972), equation (2.1)).

LeMMa 2.3. In each of the cases (i)-(iii) below, @p is in the monotone case:
i) cg=0,¢,>00<p <1

) 1<p<2

(i) ¢, =0,¢;>0,2<p < 3.

ProoF. In each of the cases (i)—(iii), there exists functions K, K,; such that
AC, > 0if and only if K\i(a,, B,) > Ky(a,, B,) Where K, is nondecreasing in ¢ and
K,; is nonincreasing in ¢.

Henceforth, only cases (i)—(iii) of Lemma 2.3 will be considered. For such p, ¢,
and c;, define the stopping time

(2.6) 7, = firstz > 0 such that 4C,(#, X(¥)) > 0.

Another property of ratios of gamma functions is needed to derive bounds on 7,
and X(7,).

LEMMA 24. Ifw >p > 0, then T(w — p)T(w)~! > w2,
IfO<p<landw>p+ 1, then T(w — p)T(w)~' < (w — (p + 1))~
Ifp > 1 and w > p, then T(w — p)T(w)~' < (w — p)~~.
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PROOF. Let a be in [0, ) and define h(w, a) = (w — a)’T(w — p)I'(w)~ !, for
w > a. Then A(w, a) < h(w + 1, a) if and only if
2.7 logw + p log(w — a) < p log(w + 1 — a) + log(w — p).
If p > 1, then using the concavity of logs, (2.7) holds with a = p; thus, A(w, p) <
h(w + 1, p). If p < 1, then (2.7) holds with a = p + 1, and hence A(w,p + 1) <
h(w + 1, p + 1). Noting that A(w, a) > 1 as w —» oo for each a yields the upper
bounds in the lemma. Choosing a = 0 reverses the inequality in (2.7) and gives the
lower bound, with only w > p required.

LEMMA 2.5. For the cases of Lemma 2.3, the following bounds on 1, and X(r,)
hold:
() 0<p<21, <c/??,
(i) 1 <p<31, </,
(i) 0 <p < 2, X(1,) < c; /7B ~2/7 + 1,
(iv) 1 <p < 3,X(1,) < cp /@ D=/~ 4 1,
where the bounds are infinite if the cost involved is zero.

Proor. First, note that any stopping rule 7, with both costs positive is bounded
by the corresponding 7, with only one cost positive. Thus, it suffices to bound the
7, and X(7,) defined with one nonzero cost. For (i), AC, < 0 implies that

B> P <ci'T(a, +1—p)T(a,+ 17"
<c
This implies the bound claimed. (ii) is proven in a similar fashion.
For (iii), 4C, < 0 implies that
¢ I(e, + 1) < B T(a, + 1 - p)
< B2 T(e, + 1 — p).
Next, if p > 1, then

¢,B2? < T(a, +1—p)T(a, + 1)7"
<(a,+1—-p)” byLemma24.

If 0 <p < 1, then ¢, B¥ P < (a, — p)? by Lemma 2.4. Recalling that a, = X(¢)
+ a, yields (iii). Part (iv) is proven by a similar argument.

To deduce the optimality of rules 7,, E G, (0, X(o)) will be expressed in terms of
AC,. Referring back to f(t, x) and Af(z, x) defined earlier in the section, let o
denote a stopping time with Ec < oo. Also note that X(¢) is marginally a strong
Markov process. If f is bounded and f(¢, X(?)) is a.s. right continuous in #, then the
following identity due to Dynkin is well known:

(2.8) Ef(0, X(0)) = EfS Af(t, X(¢))dt + £(0, 0).
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For details, see Athreya and Kurtz (1973). In the present situation C,(¢, x) is not a
bounded function, and hence some extension of (2.8) which will include C, (¢, x) is
needed.

LEMMA 2.6. Suppose f is nonnegative and continuous in (t, x). Let o be a stopping
time such that E[§|Af(t, X(?))|dt < 0.

(1) If EX(0) < oo and if f is nonincreasing in t and nondecreasing in x such that
Ef(0, X(0)) < oo, then (2.8) holds.

(ii) If Eo < oo and if f is nondecreasing in t and nonincreasing in x such that
Ef(o, 0) < oo, then (2.8) holds.

ProOF. (i) Define the following sets of stopping times:
St = {0: EX(0) < o0, Ef(0, X(0)) < o0, Ef3|Af(t, X(2))|dt < 0},
S3 = {0:0isin S} and Eo < o},
S} = {o: 0 is in S} and X(o) is bounded}.
First, (2.8), will be shown to hold for ¢ in S¥, then for ¢ in S¥, and finally for ¢ in
St

Let o be in S¥. Then there exists m < oo such that X(¢) < m. Define f,,(¢, x) =
f(t, x) on [0, o0) X [0, m], and = f(¢, m) otherwise. Then (2.8) holds for f,, and o.
But X(¢) < m implies that f,, can be replaced by f in the expression of (2.8). Thus,
(2.8) holds for all o in S%.

Now take ¢ in S¥, and sequence m,foo. Define stopping times o, = ¢ if
X(0) < my and = ¢, if X(0) > my, where 1, is the first time that X(¢) = m,. Then o,
is in S¥ and (2.8) holds for f and o,. However, Ef(0,, X(0,)) = Ef(o, X(0)) [X(0) <
m] + Ef(4, X(t,)) [X(0) > m]. The first term tends to Ef(o, X(0)) and the second
term tends to O since f(o, X(0)) and f(¢, X(z,)) are both bounded by f(0, X(0)),
which is integrable, and EX(o) < . In like manner E[§Af(t, X(¢))dt =
Ef§ Af(t, X()dt[ X(0) < m] + E[EAf(t, X(£))dt[X(0) > m,], where the first term
tends to E[§Af(t, X(#))dt and the second term is bounded by E[|Af|[X(0) > m,]
which tends to 0.

Now take o in S¥, and sequence 7,1 oo. The truncation is now done on o. Define
o, = min(o, ). Then o, is in S} for all k¥ and (2.8) holds for o, and f. As before,
Ef(o,, X(0,)) = Ef(o, X(0)) [0 < 1] + Ef(#, X(1,)) [ > t,]. Note that ¢ in S} im-
plies EX(6) < oo, and hence P(6 < oo0) = 1. Using this and arguments similar to
those above imply that Ef(o,, X(o,)) tends to Ef(o, X(0)). Finally, using similar
arguments, E[JAf(¢, X(¢))dt can be shown to tend to Ef§ Af(¢, X(¢))dt.

(i) The proof is parallel to that of (i) with the roles of X(o) and ¢ reversed.

The lemma below makes precise the roles of the characteristic operator and
Dynkin’s identity in proving the optimality of 7,.

LeMMA 2.7. Consider only those Gp in the monotone case, and define S, = {o:
either (2.8) holds with f(i, x) = @p(t, x) or E @p(o, X(0)) = o0}. If 7, is in S, and
EC,(1,, X(1,)) < oo, then EC,(,, X(1,)) < EC,(0, X(0)), for all 0 in S,.



176 C. P. SHAPIRO AND ROBERT L. WARDROP

PrOOF. Let o be a stopping time such that (2.8) holds and EC (0, X(0)) is
finite, and recall the definition of 7,- Then

EG,(0,X(0)) ~ EC,(7,, X(1,)) = E[34C, — E[34C
=E[0>1,]/;4C, — E[0 <1,][24C

which is nonnegative by definition of 7, and the monotone property of Gp.

THEOREM 2.1. For the cases of Lemma 2.3, 1, optimal in that EC,(r,, X (1)) <
EC,(a, X(0)) for all stopping times o.

PrROOF. In each of the cases (i)-(iii) of Lemma 2.3, the class S, defined in
Lemma 2.7 will be shown to include all stopping times o. In case (1), G, (t, x) is
decreasing in ¢ and increasing in x. Suppose o is a stopping time with EX (0) <
and note that if EX(0) = oo then the expected cost is infinite. Next, @ (05 x) is
bounded above by B8 *(a,+ x + 1 — p)' 7 + c,x using the lower bound in
Lemma 2.4. Thus, EX(0) < oo implies that E£C,(0, X()) < co.

To show that Ef5|4C,|dt < oo, consider a sequence of integers m,loo, and
define o, = o if X(0) <my and o, = 1, if X(6) > m,, where ¢, is the first time
X(#) = my. Then it follows that E(X(a;)) = E[§a,B,”'dt (see Shapiro and Wardrop
(1977), Lemma 2.4). By Fatou’s lemma,

Ef§a,B,”'dt = E lim inf [Ja,B,”'dt < lim inf E(X(0,)) < E(X(0)) < oo.
But from the expression for 4C, in Lemma 2.1, Ef§a,B,”'dt < co implies that
Ef§|4C,|dt < co. Hence, Lemma 2.6 implies that S, contains all o and part (i) is
completed by noting that E(C,(,, X(7,))) < oo.

For case (ii), first note that E @ ( » X(7,)) < oo. The cost is C, (2, x) = (B, +
P T (ag + x + 1 — p)T(aq + x)_ + c¢,x + crt, where the first term is decreas-
ing in both ¢ and x. Using techniques similar to those in Lemma 2.6, it can be
shown that (2.8) holds with f(¢, x) = (By + £ T(ag + x + 1 — p)[(ay + x)~"
and ¢ a stopping time such that P(6 < o) = 1. Then Lemma 2.6 can be applied
directly to the last two terms of the cost depending on which costs are nonzero to
yield S, containing all 0.

For (iii), again note that EC,(7,, X(1,)) < oo, and that the cost is now increasing
in ¢ and decreasing in x. Consider ¢ with Eg < oo since the expected cost is infinite
if Eo = oco. Then EC,(0,0) < o0 since Eo < co implies that Eo?~2 < oo for
2 <p < 3. Also |AG,| is bounded which implies that Ef§|4C,| < o, and Lemma
2.6 (ii) can be used to imply that S, contains all o.

If either ¢, =p =0, or ¢, =0 and p = 1, then stopping rule T, is type I
censoring with X(7,) unbounded while 7, is bounded. If either ¢; = 0 and p = 2, or

= 0 and p = 3, then 1, is type II censoring and 7, » is unbounded while X(7,) is
bounded For all other 7,, both X(7,) and 7, are bounded (this may be an important
consideration in applications). Finally, the stopping times 7, are (computationally)
easy to use, especially for integer p.
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3. AAsymptotic properties of 7,. In this section the Bayes sequential procedures
(1,, 0(1,)), 0 < p < 3, are examined from the sampling theory perspective. Atten-
tion is first restricted to the case when exactly one of the pair (c,, c;) is positive
and the other is zero. The case of both costs positive is considered at the end of this
section. The parameter 6 is considered fixed but unknown and all probabilities and
expectations are conditional on # and denoted by P, and E,, respectively. Of
interest are the asymptotic behaviors of the procedures.

Write 7(p, ¢4, 7, ag, By) = 7, to make explicit the dependence of 7, on the
various design parameters. It is easy to verify that, for 0 < p < 2,

3.1 (P, ¢,0,09,B)) =7(p+1,0,c,ap + 1, By).
In the results that follow, (3.1) will be useful in simplifying proofs.
For ¢ > 0,and 0 < p < 3, define

(32) g = 1306, cur eg) = (cad + ) 190D/

Lemma 3.1. (i) Letcy, =0,c; = c > 0. For every e >0and 1 < p < 3,
Po[l'rp/t; -1 >e] < kexp[c_%D(c, €, 0,p)],

Jor k a constant and D(c, ¢, 0, p) — D(e, 8, p) < 0 and finite as ¢ — 0.
(i) Let ¢c; = 0,c, = ¢ > 0. For every e > 0and 0 < p < 2,

Py[|r,/ex — 1] >e] <k exp[c‘%D(c, e 0,p + 1)],
Jor k and D given in (i).
ProoF. (i) The result is easy to obtain for p = 1. For p > 1, write 7 = 7,, and
t* = t¥. Then Pyl|7/t* — 1| > €] equals
(3.3) Po[r/t* > 1+ ]+ Py[7/t* <1—¢].

The first term in (3.3) equals Py[r > s]withs = t*band b = 1 + ¢. By Lemma 2.4,
Py[r > 5] does not exceed

(34) Py[ X(5) < (2 = ag) + /=P RE=I/G=D],

By Bernstein’s inequality for 0 <u < 1, (1;.4) is bounded above by
e? exp[c‘%D *(c, & 0, p, u)]
with
D*(c, &, 0, p, u) = ub§®~P/2[(B,/5)® ™I/ Dp2/A=P) 4 (¢7v — l)u“].

Note that (B,/s)®~3/®~D11 as ¢|0; b¥""P < 1; and (e ™ — Du~'> — 1 as
u — 0. Thus, there exists 5 > 0 such that forall u, 0 <u < ugD *(c, ¢ 0, p, u) <
0 for all c.
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The second term in (3.3) equals Py(7 < s) with s = t*band b = 1 — &. A similar

argument to the one above shows that Py,(r <s) is bounded above by
1
e* explc™ 2D ~(c, &, 6, p, u)] with
D~(c,¢ 0,p,u) = ubf®~P2[(e* — Du~"' — (B,/5)¢ "/ C~Dp/-p],

Thus, there exists ¥, such that for all u,0 <u <u;, D~ is negative for all
¢ < ¢ for some ¢, > 0. Let u, = min(yy, u,) and let D(c, e, 8, p) =
max[D *(c, & 8, p, uy), D (¢, &, 09, p, up)].

(i) may be proven by the above argument and the identity (3.1).

LemMA 32. (i) Let ¢y =0,c; = ¢ > 0. For 1 < p <3, 1,/tf is uniformly inte-
grable as ¢ — 0.

(i) Let c; =0,¢c4 = ¢ > 0. For 0 < p <2, 1,/ is uniformly integrable as c —
0.

ProoF. (i) Let Y, =|7,/¢ — 1|. It suffices to show that for fixed a >0,
Jiv,>aY.dP, tends to 0 as ¢ — 0. By Lemmas 2.5 and 3.1,

Jtv.>a Y 4Py < 0(”_')/2[0_%]@_1)/(3_“"* eXP[C_%D(& a,6,p)]

which tends to 0 as ¢ — 0. Also, (ii) can be proven with the same argument.

THeEOREM 3.1. (i) Let ¢4 =0,cr =¢ > 0. For 1 < p < 3,lim_47,/8f =1 (in
P, probability) and lim,_,Ey(7,/t}) = 1.

(i) Let c; =0,¢c4 = ¢ >0. For 0 < p < 2,lim_47,/t¥ =1 (in P, probability)
and lim,_,Ey(,/ty) = 1.

Proor. (i) The first limit follows immediately from Lemma 3.1. If 1 < p < 3,
then the second limit follows from Lemmas 3.1 and 3.2. If p = 3, then the
definition of 7, implies that

cTi—ap < X(13) <cTi+ (3 — ap).
Thus,
22— af ' <OTX(1)) <3+ 073 — ap)
and,
1= () laf ' < () ' Egry < 1+ () 710713 — a).
Noting that #§f — oo as ¢ — 0 completes the proof. The proof of (ii) is similar.
1 A

Once the limiting form of 7, is derived, the asymptotic normality of 7,2(6,(7,) —
#) follows from standard sequential methods. The theorem below gives the limiting
form of the expected cost.

THEOREM 3.2. (i) Letc, =0,c;, =c>0.For 1 <p <3,

c;%t‘)(”_l)/zE,@p(Tp, X(1,))>2 asc—0.
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(ii) Let c; =0,c, =c¢c > 0. For 0 < p < 2,
1
(6c,)” 209~ D2EyC (1, X(7,)) >2 asc—0.

PrOOF. (i) Write 7 = 7,, #* = ¢*. From the definition of 7,
(3.5) ¢ > B2 7T (a, + 1 = p)l(e,)”"
which implies that c‘%E,,@p < c%E,,,BT + c%Eo'r. This upper bound tends to
201-P/2 by Theorem 3.1. For a lower bound, let 7 — ¢ be the time of the X(7) —
Ist arrival. Then the reverse inequality of (3.5) is satisfied at + — ¢ and @, — 1 to
yield
¢ < BrZT(a, — p)T(a, — 17"
This implies that
(3.6)

¢T1E,C, > EciB[1+ e(B, — ) |7 [1+ (1 - p)e, — D) 7'] + ciE,r.

The function inside the expectation of expression (3.6) is uniformly integrable and
tends to #'~P/2 in probability by Theorem 3.1 and the result that both 7 and a,
tend to oo as ¢ tends to 0.

(i) First note that c%E,,X ()= c%0E,1-, (by Doob’s optional stopping theorem),
which tends to §?~?/2 by Theorem 3.1. Now, from the definition of 7,

ca, > B27T(a, + 1 — p)T(e,) ™"
which implies that
¢"1E,C, < ciEga, + cTEX(r).
This upper bound tends to 20?~?7/2, Using the same techniques as in (i) yields

cTIE,C, > Egci(a, — p)[ BB, — &) ']" T + cIEX(r)

which tends to 26 ¢~»/2,

For the remainder of this section, assume that both costs are positive and write
¢ = (¢4, c7). Recall that 1 < p < 2 is required for the monotone case. The limiting
form of 7, is easily obtained.

THEOREM 3.3. If ¢, c; — O, then

7./t =1 as. (Py).

ProOF. The definition of 7, is used to obtain upper and lower bounds on 7,/%,
both bounds tending to 1 a.s. (P).

The theorem above does not give exponential rates which play a major role in
deriving the limiting form of the expected cost. When c,, ¢; — 0 such that ¢,c; ' —
¢o < oo, such rates are obtained for p = 1 and 2 to yield the following result.
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THEOREM 3.4. Suppose p = 1 or 2, and that c,, c; — 0 such that c,c;' — ¢y <

00. Then
(c0 + CT)_%O(”—')/ZEGGP(TP, X('rp)) - 2.

Proor. The techniques used in the proof of Lemma 3.1 yield the following
exponential rates:

If ¢y > 0, then Py[|7,/tf — 1| >e] <2 exp[cA 2D],

if ¢y = 0, then Pyf|,/t¥ — 1| >¢] < 2 exp[cch D],
where D = D(c, ¢, 6, p) > D(¢, 8, p) < 0 and finite. The result then follows using

methods in the proof of Theorem 3.2. Details for p = 1 may be found in Shapiro
and Wardrop (1977).

4. Concluding remark. In section 3, the Bayes sequential procedure 7, is shown
to be asymptotically equivalent to z* = £*(8). This £ can be motivated as follows.
Let

L(0,0) =070 —6)+ c,X(¢) + cpt.
If sampling continues up to time #, and if estimator 6 = X(6)t ™" is used, then
E,L(0,0)=0""7t"" + c,0t + crt is minimized at ¢ = £}.

APPENDIX
PrOOF OF LEMMA 2.1. Write
C,(t, x) = H,(¢,x) + c4x + crt, where
H,(t,x) = Bf "T(apg + x + 1 — p)['(ap + x)"

the cost due to estimation. Then, 4C,(¢, x) = AH,(t, x) + c(ag + X)B, ' + ¢,
with the last two terms being easily computed since Ax = (a, + x)B,”'. To derive
AH,(t, x), write

E(H,(t + h, X(t + h)) — H,(1, x)|(#, X(2)) = (¢, x), )
= E(BriT(ag+ x+ Y+ 1 —p)T(ag+ x + )™
— Hy(t, x)|(, X(1)) = (4, x), 9)

where Y is Poisson (6h) given 8. Express this expectation as
r, o0, h, t) + 1, (0, b, t) + R, 5(8, h, ), with

o8 by 1) = (BPS2 — BP~IT(a, + 1 — p)T(a,) "e=%,
o 1(0, by t) =[ BPAT(e, + 2 — p)T(a, + 1)
—BP (e, + 1 — p)T(at,) ™" |Ohe =",
R, (0, h, 1) = 2%2_,[ B2 T (e, + K + 1 — p)T(o, + K) ™'

_'Btp—ZI‘(a’ +1- P)r(ar) ] (ig?
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E[R, 58, h, H)|(¢, X(2)) = (¢, x)] will be shown to be o(k). Define
dK(t) = Htul(at 4 + i)(at -1+ i)_l,

and note that di(#) < 1 forp > 1, and that di(¢) < (e, — p + D¥a, Xfor0 < p <
1. In terms of di(?),

Ry (6, 1) = S2_o( 7 — B0, — p + DE@) () e
Thus, for p > 1,
IR, (8, b, )] < T(a, — p + DI(a) | 8752 — B *e™"|e™ — 1 — 0h|

which is o(k) as 40, and is also dominated by an integrable function of 4 for 4 in a
neighborhood of zero. Thus, E(R, (8, h, )|(t, X(#)) = (¢, x)) = o(h). Likewise, for
0<p<l,

R, 26, b, ] < T(e, = p + DI(e) ™| A5 — B 72le™"[|e™ — 1 — 6k
+|efh—p+Da _ 1 — gh(a, — p + 1)a” "]

which yields E(R, (8, h, 1)|(¢, X(2)) = (2, x)) = o(h).
Finally, as |0,

r, o(0, h, t) _
LI (p ~ B T(e, + 1 = p)T(a) ™,

T, 1(0}; h, 1) — BP(T(e, + 2 — p)I(a, + 1) ' = T(a, + 1 — p)I(a,) " 1)8.

Using E[0|(2, X(¢)) = (¢, x)] = (ap + x)B,”", and noting that the limit and ex-
pectation can be interchanged yields

h_'E(rp’0 + 1, (2, X(9) = (¢, x))

- =B (e, + 1 — p)I(a,) " ashlO
completing the proof.
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